八年级数学上册《一次函数》教学案例与反思
湖北省钟祥市兰台中学 雷全洲
师:一次函数的一般表达式是y=kx+b(k、b为常数,k≠0,请同学们在黑板上写出一些常数较简单的一次函数表达式,行吗?(生表现踊跃,写出了十多个) 师:黑板上这些一次函数大致有几个类型?
生:(讨论后)四类,即k>0,b>0;k>0,b<0;k<0,b>0;k<0,b<0。
教师按不同类型在学生板书的函数中各选两个,并把复杂的常数更换成简单的常数,找到如下函数:
y=2x+2,y=-2x+3,y=-x+1,y=x+2,y=-2x-2,y=x-2,y=-x-3,y=2x-1.(教师在这里是让学生自己准备学习素材。)
教师启发学生找到画直线的“两点式”简易方法后,把画上述八个函数图象的任务分配给八个小组,一组一个,八人一组在已画好坐标系的小黑板上动手操作。学生在自己提供的素材上进行再“加工”,兴趣很大,合作交流充分,课堂气氛活跃。教师到每组巡视、指导,在确认画图全部正确的情况下,提出了要求,开始了探究之旅。
师:请同学们小组之间比较一下,你们画的图象位置一样吗? 生;不一样。
师:有什么不一样?(开始聚焦矛盾) 生A:走向不一样。
生B:经过的象限不一样。
生C:我们的图象在原点的上方,他们的图象在原点的下方。
师:看来是有些不一样,那么它们位置的不一样是由什么要素决定的?(教师指明了探究方向,但未指明具体的探究之路,这是明智的) 生:是由k、b的取值确定的。
师:好了,根据同学们的回答,能得到图象或函数的那些结论?(顺水推舟,放手让学生一搏)
热烈讨论后,生A回答并板书,当k>0时,图象从“左下”到“右上”;当k<0时,图象从“右上”到“左下”。
生B板书:当b>0时,图象在原点的上方,当b<0时,图象在原点的下方。
生C板书:当k>0,b>0时,图象过一、二、三象限。
另一生D跑到黑板前补充:当k>0,b<0时,图象过一、三、四象限;当k<0,b>0时,图象过一、二、四象限,当k<0,b<0时,图象过二、三、四象限。 (这个过程约用了十多分时间,学生体会非常充分,从学生的神情看,绝大多数学生已接受了这几个学生的板书,但教师未对结论进行优化。怎么没有一个学生说出一次函数的性质呢?短暂停顿后,教师确定了思路)
师:刚才你们是研究图象的性质,你们能否由图象性质得出相应的函数的性质?(学生茫然)
师:请看同学们的板书,能揣摩图象“走向”的意思吗? 生:(七嘴八舌)当k>0时,图象向上爬;当k<0时,图象向下走。(未
出现教师所预期的结论)
师:好,你们从图象的直观形象来理解的图象性质,很贴切,你们能从自变量与函数值之间的变化角度来说明“向上爬”和“向下走”吗? 生:当k>0时,x与y同向变化;当k<0时,x与y异向变化。 师:也就是说,k>0,x增大,y…… 师: 当k<0时,x……y……
生:x增大,y减小;x减小,y增大。
(在这里,教师努力避免了“告诉”的知识传授方式。间接引导需要智慧,是一种艺术)
师:好了,我们就用x与y之间的变化规律来表述一次函数的性质,好吗?请同学们在书上补充一下图象的性质,并熟悉一下一次函数的性质。(接下来学生练习几道题)
师;有人能得出正比例函数性质吗? 生:它是y=kx+b中b=0时的性质,其实y=kx与y=kx+b的性质是一致的。(特殊与一般的关系,学生理解起来非常容易) [案例反思]
这节课,我对教材进行了探究性重组,同时放手让学生在探究活动中去经历、体验、内化知识的做法是成功的。通过充分的过程探究,学生容易得出也是最早得出了图象的性质,借助直观图象的性质而得到一次函数的性质。花费了一番周折,说明去掉这个中介,直接让学生从单调性来接受一次函数性质是困难的。
真正的形成往往来源于真实的自主探究。只有放手探究,学生的潜力与智慧才会充分表现,学生也才会表现真实的思维和真实的自我。在新课程理念的指导下,我们的一切教学都要围绕学生的成长与发展做文章,真正让学生理解、掌握真实的知识和真正的知识。
首先,要设计适合学生探究的素材。教材对一次函数的性质是从增减来描述的,我们认为这种对性质的表述是教条化的,对这种学术、文本状态的知识,学生不容易接受。当然教材强调所呈现内容的逻辑性、严密性与科学性是合理的。但是能让学生理解和接受的知识才是最好的。如果牵强的引出来,不一定是好事。
其次,探究教学的过程就是实现学术形态的知识转化为教育形态知识的过程。探究教学是追求教学过程(本文来自优秀教育资源网斐.斐.课.件.园)的探究和探究过程的自然和本真。只有这样探究才是有价值的,真知才会有生长性。要表现过程的真实与自然,从建构主义的观点出发,就是要尊重学生各自的经验与思维方式、习惯。结论是一致的,但过程可以是多元的,教师要善于恰倒好处地优化提炼学生的结论。追求自然,就要适当放开学生的手、口、脑,例如本文中的“走向”问题,“向上爬”、“向下走”等,如果是讲授注入式,我们就听不到学生真实的声音了。
最后,教师在学生探究真知之旅上应是一个促进者、协作者、组织者。要做善于点燃学生探究欲望和智慧火把的人,要善于让学生说教师要说的话,做教师想做的事,这就是一个成功的促进者。数学教学的过程是师生共同活动、共同成长与发展的过程。真正的知识不全是由教材和教师讲授的途径获取的,其实学生也是课程资源的开发者,如本课例中的“走向”问题,“同向变化”等,这为函数性质的得出做了很好的铺垫。要彻底抛弃“唯书论”“唯师论”,与学生
一起去探究协作,寻觅适合学生自己的真知才是最有效的教学。要开展成功的探究,教师要科学设置问题情景或问题素材,使探究的问题具有层次性和探究性,适时、适势、适度地用教学机智调控课堂。例如本课中,学生老是得不出一次函数性质的内容,其中引导的过程就是充满机智的过程。在教学设计中,要预设多种意外和可能,这样探究真知的过程就会艰辛并顺利展开。这才是一个成功的组织者。 人类在漫长的岁月里,创造了丰富多彩的音乐文化,从古至今,从东方到西方,中国文化艺术,渊源流长。 我国最早的歌曲可以追溯到原始社会,例如传说中伏羲时的【网罟之歌】,诗经中的【关关雉鸠】,无论是思想内容,还是艺术形式,都已发展到很高的水平。 我们华人音乐有着悠久的历史,有着独特的风格,在世界上,希腊的悲剧和喜剧,印度的梵剧和中国的京剧,被称为【世界三大古老戏剧】,而京剧则是国之瑰宝,是我们华人的骄傲,亦是世界上最璀璨的一颗明珠。 你可知道高山流水遇知音的故事?你可知道诸葛亮身居空城,面对敌兵压境,饮酒抚琴的故事? 列宁曾经说过:我简直每天都想听奇妙而非凡的音乐,我常常自豪的,也许是幼稚的心情想,人类怎么会创造出这样的奇迹?一个伟大的无产阶级革命家,为什么对音乐如此痴狂?音乐究竟能给我们带来什么? 泰戈尔说:我举目漫望着各处,尽情的感受美的世界,在我视力所及的地方,充满了弥漫在天地之间的乐曲。 【二】 音乐,就是灵魂的漫步,是心事的诉说,是情愫的流淌,是生命在徜徉,它可以让寂寞绽放成一朵花,可以让时光婉约成一首诗,可以让岁月凝聚成一条河,流过山涧,流过小溪,流入你我的麦田…… 我相信所有的人,都曾被一首歌感动过,或为其旋律,或某句歌词,或没有缘由,只是感动,有的时候,我们喜欢一首歌,并不是这首歌有多么好听,歌词写的多么好,而是歌词写的像自己,我们开心的时候听的是音乐,伤心的时候,慢慢懂得了歌词,而真正打动你的不是歌词,而是在你的生命中,关于那首歌的故事…… 或许,在我们每个人的内心深处,都藏着一段如烟的往事,不经阳光,不经雨露,任岁月的青苔覆盖,而突然间,在某个拐角,或者某间咖啡厅,你突然听到了一首歌,或是你熟悉的旋律,刹那间,你泪如雨下,即使你不愿意去回忆,可是瞬间便触碰了你心中最柔软的地方,荡起了心灵最深处的涟漪,这就是音乐的神奇,音乐的魅力!
【三】 德国作曲家,维也纳古典音乐代表人贝多芬,49岁时已经完全失聪,然而,他的成名曲【命运交响曲】却是震惊世界,震撼我们的心灵,在他的音乐世界里,你能感受到生命的悲怆,岁月的波澜,和与命运的抗衡,这就是音乐赋予的力量! 贝多芬说:音乐是比一切智慧、一切哲学更高的启示,谁能渗透我音乐的意义,便能超脱寻常人无以自拔的苦难。 其实,人生就是一次漫长的旅行,一场艰难的跋涉,无论遇见怎样的风景,繁华过后,终归平淡,无论遇见还是告别,相聚亦是别离,我们都应该怀着感恩的心,善待生命,善待自己…… 每一首歌都是一个故事,每一段音乐都是一段过往,不知哪首歌里写满了你的故事?哪段音乐有你最美的回忆?想念一个人的时候,是否在安静的夜晚?悲伤的时候,是否单曲循环?高兴时分,是否在音乐里手舞足蹈? 我喜欢音乐,没有任何理由,音乐是我灵魂的伴侣,是我生活的知己,它能懂我的喜,伴我的忧,伴随着淡淡的旋律,它便融入我的生命,浸透我的灵魂。 我喜欢音乐,音乐不仅仅是一种艺术享受,还能丰富我的生活,给我带来创作灵感,一首歌,或一句歌词,都是我写作的素材,都是我灵感的源泉,它犹如涓涓细流,汩汩流淌,令我思绪翩翩,令我意象浓浓…… 当我忧伤的时候,我喜欢在音乐里漫步,当我快乐的的时候,我喜欢在音乐里起舞,当我迷茫困惑的时候,唯有音乐,才是我最好的陪伴…… 【四】 红尘喧嚣,世事沧桑,三千烟火,韶光迷离,我们在尘世间行走,凡尘琐事总会困扰于心,我已经习惯了,将浅浅的心事蕴藏在文字里,将淡淡的忧伤释怀在音乐中,委婉的旋律,环绕于耳,凄美的歌词,萦绕于心, 当我累了,倦了,我只想置身于音乐的海洋,忘记凡尘,忘记喧嚣,安静的去听一首歌……
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- efsc.cn 版权所有 赣ICP备2024042792号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务