维普资讯 http://www.cqvip.com 第24卷第3期 2007年7门 深圳大 :学报 T版 JOURNAL OF SHENZHEN UNIVERSITY SCIENCE AND ENGINEERING Vo1.24 No.3 July 2007 文章编号:1000—2618(2007)03—0261—06 基于微焦斑源X射线传播的相衬成像模拟 刘 鑫 ,郭金川。,牛憨笨 (1.华中科技大学光电子科学与工程学院,武汉430074; 2.深圳大学光电子研究昕,光电子器什与系统教育部重点实验室(深圳大学),深圳518060) 摘要:从标量衍射及部分相干光衍射理论出发,结合硬x射线特点,建立基于微焦斑x射线源的衍 射成像模型.该模型将Fresnel积分运算转换到空间频域,利用快速傅里叶变换计算衍射光场.根据部分相 干光理论分析,有限大小光源的物体衍射光场为光源光强分布与点源所形成的物体衍射光场的卷积,将卷 积运算转换到空间频域并利用快速傅里叶变换算法提高运算速度.模拟衍射结果表明,物体到x射线源的 距离、X射线光子能量以及x射线源焦斑尺寸均影响自由空间传播相衬成像系统的图像衬度.研究结果有 助于X射线相衬成像系统的设计和性能优化. 关键词:x射线衍射;快速傅立叶变换;空间频域;相衬成像;微焦斑X射线管 中图分类号:0 434.19;0 438.2 文献标识码:A 自20世纪90年代中期以来,利用物体对x射 线相位改变的相衬成像技术受到广泛关注 引,并 m的方孔,视场为500 Ixm×500 m的直边衍射, 需2 h的运算(Celeron D 2.5 G,256 M内存).同 时,部分相干衍射中互强度的计算是积分运算,同 样存在算法效率低的问题.很多模型只是针对某些 发展了多种相位探测技术,如基于传播的边缘增强 成像技术 、利用光栅的微分成像 。及利用晶体衍 射的衍射增强成像 等.这些方法中,探测器同物 体有一定的距离,使x射线的折射及衍射效应很明 显.此时,成像的物理过程变得复杂,理论分析困 难,通常要做一些近似处理才能得到清晰的理论结 具体问题而建立的,不具备通用性. 本文建立通用x射线衍射模型,应用于常见的 硬x射线衍射.针对不同光源条件,将模拟衍射成 像分为相干成像和部分相干成像.光场的复振幅及 光强计算,不是采用空间积分运算,而是将衍射方 程转换到空间频域,利用快速傅里叶变换算法 (FFT)来计算复振幅分布及光强分布,以提高运 算速度.在模拟衍射部分中,主要考虑物体的相位 所产生的衬度变化,同时考虑各种距离及光源的相 干性对相位衬度的影响.最后,对模拟衍射中的探 测器噪声做相应的讨论. 果,例如基于传播的理论分析 ,只能适用于弱 吸收物体,了该理论的适用范围. 数值模拟可方便地给出各种相干硬x射线的衍 射图像,而不需做各种类似于理论分析中的近似处 理.模拟结果可充分评估实验方案的可行性,并优 化实验参量.将模拟数据同实验数据进行比较分 析,有利于对成像过程的理解及有用信息的提取. 模拟传播的目的是计算成像面的振幅、相位或 强度分布,利用标量衍射理论可计算各种分布.标 量衍射理沦所给出衍射光场的计算为Fresnel积分 运算,为保证积分的准确性,数据的采样频率必须 满足Nyquist抽样定理.由于硬x射线的波长短, 抽样率的要求使得数据量非常庞大,Fresnel积分运 任何复杂的X射线成像过程都可理解为以下过 1 理论模型 程:X射线从光源自由传播到第一个物体,透过物 体,再自由传播到第二个物体,透过第二个物体, 最后自由传播到像面.整个过程可分解为透射和自 算将消耗很长的时间.例如,一个500 Ixm×500 收稿日期:2006一l0・l2;修回日期:2007 05一O8 基金项目:国家自然科学重点基金资助项M(60532090) 作者简介:刘 鑫(1978.),男(汉族),湖北省随卅l市人,深圳大学与华中科技大合培养博士研究生 通讯作者:牛憨笨(1940.),男(汉族),中阚工程院院上,深圳人学研究员,E-nmil:hbniu@SZI1.edu ci1 维普资讯 http://www.cqvip.com 262 深圳大学学报理工版 第24卷 要解决透射过程,必须了解物体同X射线是如 ,.来描述物体! 互作用・x射线透过物体时,通常用透射函数 ,物体的透射函数由物体复合折射 , , , , ) ‘!,,散射因子 釜的强度在损耗介质中的衰减.6和 依赖享主 且 。… 一 )= (∞)~ ( ),)决定.其中, 分导致透过的x射线的相位变化虚部 f ,1—6( ,y,z)+ ( 剧1相干光自由空间传播 Fig.1 The free-space propagation of monochromatic X-ray 式式(6)先变换到空间频域再变换到空域,即对 (8) 6=错( ( (1) f2) 。 (6)两边做Fourier变换和逆变换得式(8). ( , )=F {FT(U )・FT(h)},. = 中, ()及F ()分别为F0urier变换及其逆变 换・这样,将FresneI积分变换为2个Fouri 蛮搀 警中'、r 为电子经典半径;Ⅳ为原子数密度;,=l为光波 ; 为光子圆频率, =2订 在选择物体时,可查 不 波长复散射因子值来确定物体 和 值.. 个积分运算,但Fnurier变换及逆变换可采用FF T。 .-爪F0u—er逆变换运算.虽然1个积分运算变为 . :相对于x射线自由传播距离、, 面 算法,在速度有很大的提高,物体可作为一个 1・3部分相干光空间自由传播 :/薄”物体・通过以上分析给出物体的透射函袅 、 ,、 光的传播中都是相干传播,光场用复振幅 坌 来描述,没有考虑到光源的空间相干性.当光 分相干光时,要采用部分相干光传播理 其中,衰减部分 (zy)=一 ,对于单包光如于理论用互强度来描述任意两点的相干 , (x,yz)d。;相移 ,图2,图中r 和r!为距离矢量.两 部分 ∥)= (XU,Z) ,.物体入射光复振幅分布设为 ( , 、 ),出射光 f4) 刀 nut c ,Y),贝0在薄物体近似下 ut= ( ,y) ( ,y). 1・2相干自由空间传播 的自由传播采用标量衍射理论如图1,波 前复振幅分布(/l( 。y。)沿 轴传播距离 到平面 … ,,( ,y)的复振幅分布 ( J・)为 ( )= exp(jkzI,1 A . J J ‘、” u ( × 一 (5) 兰 厂f厂2 一d ds ‘ .(9)\ / 个单色的扩展光源衍射芊 ,波数 =2"rr/A,式(5)为Fresne1. rchh。ff ,, 微焦斑x射线光源 采用傍轴近似,可写为卷积形式 ( ,y) ( ,y) 『l( , 苎 ,由式( ,7)计算得到 i维卷积符号;、『l( )为卷积核, ‘ . .什。 )。 (6) 源上的任意两点与统计光学无关上任意两点(0t,0 )的互强度可近似表示为 ,I三] 于长度(!(1几个到几十个波长)和成像 测 譬  ̄1O0肛m)相比,是个小量可进 ,一 k( jz,)h(x,y)=exp1 A i。., exp[j后( + z)]., /J。 (7) \ , 维普资讯 http://www.cqvip.com 第3期 刘鑫,等:基于微焦斑源x射线传播的相衬成像模拟 263 其中, 为复共轭运算符号. 图3的成像系统中,尺。和尺:分别为源到物体和 对于相干衍射,将任何复杂的衍射过程都分解为两 个基本过程,首先从光源得到物体前波面(平面波 或球面波),由式(3)得到物体后波面,然后自由 传播,由式(6)计算得到下一个物体前波面,进入下 一物体到探测器的距离.将式(8)转换到频域计算,并 将式(10)和式(11)代入,可得像面的强度分布为 个基本衍射过程,最终得到像面的复振幅分布. 利用式(1)和式(2)计算物体的透射函数,产 生一个物平面的矩阵.在产生物矩阵前需要确定以 下参数:物体形状,衍射光子能量,物体材料及视 —一R1———+ —一R2———+I 场大小.程序中已设计好一些常用的光学元件,如 针孔、针孔阵列、单缝、双缝、振幅光栅、相位光 栅和球体等,使用者也可添加自己物体的代码.同 时,可利用任意一幅图像作为透射函数的相位或振 图3部分相干成像系统 Fig.3 The layout of imal ng with partial coherence source 幅的分布,使物体具有通用性.程序包括一些常见 ,(r)=,、( r) 2 10(r). (12) 元素、物质的衰减系数及折射率,可直接选用. 其中, 为光源的强度分布;,。为点源在坐标原点时 所形成的像面强度分布.代人式(5),可得 部分相干衍射需确定光源的强度分布,通常将 x射线源焦斑可近似看作圆形,所以程序中只设计 了均匀圆形光源,可选择光源的半径大小.同时, ,(r)= ( r) 2 f(x,f(T y)) h(X,xy) (13)( ) 为使光源具有通用性,设计了图像输入作为光源的 强度分布,这样光源可为任意分布及形状的光源. 式(6)计算像面的复振幅分布,同时从该式还可 以得到振幅、相位及强度分布.在衍射的任何一个 步骤中,都可得到这3个分布.典型的衍射过程包 同样,对于卷积运算,可利用Fourier变换采 用FFT算法来提高运算效率. 如需考虑x射线的带宽,可将每个波长所形成 的强度乘上谱分布函数并叠加起来如式(14) ,(r)=f (A),(r,A)dk. 其中, (A)为谱分布. (14) 括:①初始化参量.确定各个距离,包括源到物 体的距离及物体到像面的距离.选择入射光子的能 量.②产生物体矩阵.此时需要确定物体形状、材 料及视场大小.③透过物体后的波面矩阵.对平面 2模拟计算 根据以上理论模型,采用Matlab软件作为开发 平台,设计一套硬x射线衍射程序,并进行一维或 二维的相干或部分相干单色模拟衍射.如上所述, 表1模拟衍射的主要代码光,透过物体后波面为物体透射函数;对球面波, 乘上球面波即可得物体透射函数.④自由传播.利 用式(6)计算.⑤输出分布.输出包括振幅、相 位和强度.⑥如果需要下一次衍射,返回到②.模 拟衍射的主要代码见表1. Table 1 Main code of the simulation 维普资讯 http://www.cqvip.com 264 深圳大学学报理J_版 第24卷 (b)有较好的对比度.改变距离进行模拟衍射可以 3 模拟衍射应用举例 模拟衍射分为相 光源和部分相干光源,主要 为实验提供距离参考,以便找到最佳的对比度距 离.强度分布图同时反映了相位光栅成像的周期特 性,光栅周期为2 m,图4(b)~图4(d)图强 度分布周期都近似为1 Ixm,周期变为光栅周期的 1/2.其中,光子能量E=12.4 key;光栅周期为2 txm;物体距离光源1.5 m;光栅设置为纯相位光 栅,对入射x射线的相位改变为 . 模拟物体的相位所引起的同轴相衬成像,以及距 离、光子能量和光源焦斑大小对相位衬度的影响, 并针对上面3个因素,给出几组衍射实验.图4为 相位光栅不同距离球面波衍射图,图4(b)和图4 (c)表明距离改变对成像对比度有明显影响.图4 / ==] // 宣 邑 3一一一 —2 —1 0 l 2 3 —3 —2 —1 0 1 2 3 —3—2 —1 0 l 2 3 IXm IXin IXnl ㈨成像示意 (h)5.0 mill处强度分布 (c)7.1 llm处强度分布 (d)10.2 mill处强度分布 图4球面波条件下光栅成像 Fig.4 Imaging of phase grating with spherical wave 光子能量对物体成像有很大的影响,特别是相 位衬度成像,研究波长或带宽对成像的影响有重要 意义.图5(a)~图5(d)为球面波两个半径为 的效应所引起的,同时能量越高,边缘增强的效果 越显著.考虑到式(14),当为宽带光源时,不同 波长强度的叠加必然会使图像丧失物体的细节部 分.在实际应用中,可对光源做适当的滤波处理, 硬化x射线束,削弱低能量X射线光子成分,使相 位衬度图像更清晰. 20 Ixm的铝球的点光源衍射图像,同时考虑了铝球 对入射x射线的吸收及相移作用.由图5可见,铝 球相衬成像有很亮的边缘部分,这是由于边缘增强 (a)9 keV (h)10 keV (c)12 keV (d)l5 ke\ 图5不同光子能量衍射图,物体到像面的距离为1 m Fig.5 Intensity distributions with various energy of X—ray are calculated by the model 将式(12)转换到频域,可得到成像系统的点 扩展函数(point spread function,PSF),成像系统 改变x射线光子的能量,从而可研究同一焦斑下, X射线光子能量对成像的影响.图7为同一焦斑 下,不同光子能量的模拟衍射图,根据系统的传递 的分辨率主要受PSF影响.图6为两个半径为20 txm的铝球,在不同光源半径下的强度分布.从图 6可见光源半径越大,小球边缘部分越“模糊”, 即系统分辨率越低.对于x射线管,其焦斑大小一 般为固定值,通过调节x射线管的电压,可以获得 函数选择最佳成像距离为1.2 m.从图7可见,光 子能量与图像的对比度C=(, 一, )/(, +, ) 成反比.图7中对比度依次为0.91、0.83、0.815 和0.802,对比度依次降低. 维普资讯 http://www.cqvip.com 第3期 刘鑫,等:基于做焦斑源x射线传播的相衬成像模拟 265 ● ● fa)点源 (b)半径为20 m (f・)半径为30 m 图6 光子能量为15 keV时半径不同圆形光源衍射图. Fig.6 Simulated image with different radiuses of sources. : (a)9 keV (I1)10 keY (c)12 keY (( )15 keV 图7 当光源半径为20 成像距离为1.2 m时。不同光子能量下两个炭球模拟衍射图. Fig.7 Simulation image with different photon energy at 20 Inn radiuses of sources and 1.2 m of imaging distance 利于成像分辨率;x射线源的焦斑大小对图像的分 结 语 数值模拟的输入输出为离散数据,需对物体模 型及卷积核做抽样处理,抽样需满足Nyquist抽样 定理.卷积核的频率同波长及距离成反比,因此在 近场及高能量光子衍射时,要求有相当高的抽样频 率才能保证较精确的计算,对于探测器分辨率对成 像的影响,可将衍射后的强度分布按像素大小积分 从而将探测器的分辨率考虑进去.同时。若已知探 测器的噪声分布规律,也可在图像中加入探测器的 辨率有极大的影响,足够小的焦斑是x射线成像的 必要条件. 参考文献: [1]Wilkins S W,Gureyev T E,Gao D,等.硬x射线复色 光相衬成像[J].自然,1996,384(28):335—338(英 文版). [2]高大超,Pogany A,Stevensona W,等.硬x射线位相 衬度成象[J].物理学报,2000,9(12):2357—2368. 『3]Nesterets Y I,Wilkins S W,Gureyev T E,等.同轴相 衬成像实验参数优化[J].科学仪器评论,2005,76 (9):1—14(英文版). 噪声影响.在计算中,若视场要求很大,而x射线 能量很大的情况下,根据Nyquist抽样定理的要求, [4]Pogany A,Gao Da—chao,Wilkins S.衍射增强X射线源 成像衬度与分辨率[J].科学仪器评论,1997,68(9): 2774—2782(英文版). 图像数据将很庞大,建议使用1 GB以上存储设备. 标量衍射理论及部分相干光衍射理论所给出光 场的各种分布运算为普通积分运算,无有效的快速 算法.但是,将光场分布的空域运算转换到空间频 [5]Chapman D,Thomlinson W,Johnston R E,等.做焦斑 x射线成像[J].生物医学物理,1997,42(2):2015— 2025(英文版). 域,再转换到空域运算,普通的二维积分运算可用 [6]Weitkamp T,Diaz A,David C.采用光栅干涉仪x射线 相衬成像[J].光学快报,2005,13(16):2289—2302 (英文版). 多个Fourier变换及逆变换运算代替,用FFT算法 极大地提高运算效率,减少运算时间. x射线相衬成像质量主要受各种距离、光子能 量及光源焦斑大小的影响,模拟实验可给出这些参 量对相衬成像质量直观的影响.模拟结果表明,对 [7]Mayo S C,Davis T J,Gureyev T E.X射线相衬 微结 断层成像[J].光学快报,2003,11(15):2286—2302 (英文版). [8]张志朋,杨淑雯.Bragg光栅编/解码器[J].深圳大学 学报理工版,2002,19(3):19—23. 光栅成像存在最佳成像距离;提高x射线的能量有 维普资讯 http://www.cqvip.com 266 深圳大学学报理工版 第24卷 [9]Goodman J w.博里叶光学导论[M].纽约:McGraw— Hill lnc,1998:64—69(英文版). [10]Born M,Wolf E.光学原理[M].剑桥:剑桥大学出 版社,1993:569—578(英文版) Abstract:1000—261 8(2007)03—0266一EA The simulation of X-・ray phase-・contrast imaging with partially coherence source LIU Xin 一.GUO Jin.chuan .and NIU Han.ben 1)Institute of Optoelectronics Science and Engineering, 2)Institute of Optoelectronics Key Laboratory of Optoelectronic Devices and Huazhong University of Science and Technology, Wuhan 430074 P.R.China Systems of Ministry of Education, Shenzhen University Shenzhen 5 l 8060 P.R.China Abstract:An X—ray diffraction imaging model based on microfocus X—ray tube was presented.The model used the scalar diffraction and partial coherent X.ray diffraction theories,taking the hard X—ray features in consideration.In this model,the Fresnel integral was performed in the spatial frequency domain,and the X—ray diffraction field was calculated by means of the fast Fourier transform(FFT).According to the partial coherent theory,the X—ray intensi— ty in the image plane was the convolution of the intensity of object irradiated by the X—ray beam from an ideal point source with the intensity distribution of the expanded source.Thus the intensity distribution in the image plane can be obtained by transforming the convolution in the real space to the multiplication in the spatial frequency domain, and its calculation eficiency can be improved by usifng the FFT.The simulation results show that the image contrast is determined by the distance from the source to object plane,by the energy of X—ray photon,and by the size of X— ray focal spot.The simulation is helpful for the design of X—ray phase contrast imaging system based on the free space propagation. Key words:X—ray diffraction;fast Fourier transform;spatial frequency domain;X—ray phase contrast imaging;mi— crofocus X—ray tube References: [1]Wilkins S W,Gureyev T E.Phase contrast imaging using polyehromatic hard X—ray[J].Nature,1 996,384(28): 335—338. [6]Weitkamp T,Diaz A,David C.X—ray phase imaging with a grating interferometer[J].Optics Express,2005,1 3 (1 6):2289—2302. [2]GAO Da—than,Pogany A,Stevenson A W,et a1.Hard X一 [7]Mayo S C,Davis T J,Gureyev T E.X—ray phase—contrast ray phase—contrast imaging[J].Acta Physica Siniea, 2000,49(12):2357—2368(in Chinese) Nesterets [3] I,Wilkins S W,Gurm ev T E,et a1.On the micros(’opy and microtomography[J].Optics Express, 2003.1 1(15):2286—2302. [8]ZHANG Zhi—peng,YANG Shu—wen.Discussion on fiber— Bragg—grating—based encoder/decoder[J]. Journal of Shenzhen University Science and Engineering,2002,1 9 optimization of experimental parameters for X—ra? in—line phase—eontrast imaging[J].Review of Scientific lnstru— nlents,2005,76(9):1—14. lkins S.Contrast and resolu— [4] Pogany A,GAO Da—chao,Wi(3):19—23(in Chinese). [9]Goodman J W.Introduction to Fourier Optics『M].NY: McGraw—Hill,1 968:64—69. tion in imaging with a nficrofocus X—ray source[J].Review of Scientific Instruments,1997,68(9):2774—2782. inson W.Johnston R E.Diifraction en— f 5] Chapman D.Thoml[10]Born M,Wolf E.Principles of Optics[M].Camb,’idge: Cambridge University Press,1993:569—578. haneed x—ray imaging[J]Physics in Medicine and Biolo— gY,1997,42(2):2015-2025. 【中文责编:英子;英文责编:雨辰】