您好,欢迎来到筏尚旅游网。
搜索
您的当前位置:首页电 泳 涂 装

电 泳 涂 装

来源:筏尚旅游网
电 泳 涂 装

一、 概述

电泳涂装技术研究起于一百多年前,基于人们对金属表面防腐防锈要求的不断提高而相关表面处理工艺技术又不能较好地解决这种需求的压力下,而被逐渐研制开发。直到 60 年代才由 George Brewer 博士及福特汽车公司研制开发成功阳极电泳漆。

电泳涂装(electro-coating)是利用外加电场使悬浮于电泳液中的颜料和树脂等微粒定向迁移并沉积于电极之一的基底表面的涂装方法。电泳涂装的原理发明于是20世纪30年代末,但开发这一技术并获得工业应用是在1963年以后,电泳涂装是近30年来发展起来的一种特殊涂膜形成方法,是对水性涂料最具有实际意义的施工工艺。具有水溶性、无毒、易于自动化控制等特点,迅速在汽车、建材、五金、家电等行业得到广泛的应用。

电泳涂装是把工件和对应的电极放入水溶性涂料中,接上电源后,依靠电场所产生的物理化学作用,使涂料中的树脂、颜填料在以被涂物为电极的表面上均匀析出沉积形成不溶于水的漆膜的一种涂装方法。电泳涂装是一个极为复杂的电化学反应过程,其中至少包括电泳、电沉积、电渗、电解四个过程。电泳涂装按沉积性能可分为阳极电泳(工件是阳

极,涂料是阴离子型,简称 AED)和阴极电泳(工件是阴极,涂料是阳离子型, 简称 CED);按电源可分为直流电泳和交流电泳;按工艺方法又有定电压和定电流法。 二、 电泳涂装的优势

1 、涂膜厚度均匀,附着力强,涂装质量好,工件各个部位如内层、凹陷、焊缝等处都能获得均匀、平滑的漆膜,解决了其他涂装方法对复杂形状工件的涂装难题;在很凹的部位,即可形成完成均匀之保护膜,并可利用调整不同之操作电压,即可控制镀层的厚度,达到极高的防腐性,并消除了电镀过程中的厚薄不均电极效应,同时也消除了喷漆过程中的桔皮、流挂之故障。

2 、涂料利用率高达 95% ,与喷漆法相比,减少了材料的浪费。

3 、采用水溶性涂料,以水为溶解介质,节省了大量有机溶剂,大大降低了大气污染和环境危害。免除了火灾危险,安全性提高,减少了环保设备费用。

4 、可减少贵金属镀层厚度,仍可维持及超越原来镀层寿命,用彩色电泳漆可取代镀金,大大降低了生产成本。 5 、生产性高,生产时间缩短。金属表面处理、电镀、皮膜等,完成后携带大量水,传统喷涂方法要先行烘干再生产,费时而且浪费能源,而电泳可连续作业,易于大量及自动化生产。

三、电泳与电镀比较

电 泳

电 镀

→OH-+H+

2 、电泳动(泳动、迁移)

阳离子树脂及 H+ 在电场作用下,向阴极移动,而阴离子向阳极移动过程。 3 、电沉积(析出)

在被涂工件表面,阳离子树脂与阴极表面碱性作用,中和而析出不沉积物,沉积于被涂工件上。 4 、电渗(脱水)

涂料固体与工件表面上的涂膜为半透明性的,具有多数毛细孔,水被从阴极涂膜中排渗出来,在电场作用下,引起涂膜脱水,而涂膜则吸附于工件表面,而完成整个电泳过程。 五、电泳原理

电泳涂装的机理,在于离子型聚合物的水溶性会随着pH值的变化而变化。 电沉积过程中,最先发生的电化学反应是水的电解。这样在阳极的周围,呈现很强的酸性,而阴极的周围呈现碱性。

阳极电泳是含有-COOA多元酸聚合物的胺盐。-COO-基是以阴离子形式在阳极发生沉淀反应的基团,A+是NH4+。含羧酸聚合物在阳极形成涂膜。另外由于阳极以及金属件的电化学溶解,在沉积涂膜中含有一部分的阳极金属离子。同时会发生金属阳极的电化学溶解和树脂基料的氧化等副反应。

在阴极电泳涂料里,基料中含有胺基团,通过加入酸中和成盐而水溶,形成带有RnX+Z-的聚合物,其中Z-为相应的有机酸(多为醋酸和甲酸)基团,RnX+为聚合物离子。阳离子型基料(环氧、丙烯酸、聚酯、聚氨酯或其他树脂)含有氨基或叔胺基团,在碱性条件下,阴极周围的阳离子基团由于与OH-相互作用,而失去水溶性,并在阴极上以R3N的形式沉积下来。这种涂装方法与电泳过程有一定的相似性,但仍存在着差别,电泳过程针对的是一种憎液胶体的运动,而电沉积发生在聚合物溶液的热动态平衡。涂料中的颜填料也通过电沉积过程沉积在电极上,电沉积涂膜是一种高度集中的胶体结构,并含有少量的有机溶剂。

六、 电泳工艺

上挂 → 预清洗 → 脱脂 → 热水洗 → 冷水洗 → 酸洗 → 水洗 → 表调 → 磷化 → 水洗 → 水洗 → 纯水洗 → 纯水洗 → 电泳 → 回收 → 回收 → 纯水洗 → 纯水洗 → 进烘箱 → 下挂 1、 前处理

工件处理方式,是指工件以何种方式与槽液接触达到化学预处理之目的,包括全浸泡式、全喷淋式、喷淋浸泡组合式、刷涂式等。它主要取决于工件的几何尺寸及形状、场地面积、投资规模、生产量等因素的影响。例如几何尺寸复杂

的工件,不适合于喷淋方式;油箱、油桶类工件在液体中不易沉入,因而不适合于浸泡方式。 1.1浸渍式

将工件完全浸泡在槽液中,待处理一段时间后取出,完成除油或除锈磷化等目标的一种常见处理方式,工件的几何形状繁简各异,只要液体能够到达的地方,都能实现处理目标,这是浸泡方式的独特优点,是喷淋、刷涂所不能比拟的。其不足之处,是没有机械冲刷的辅助使用,因此处理速度相对较慢,处理时间较长,特别是象连续悬挂输送工件时,除工件在槽内运行时间外,还有工件上下坡时间,因而使设备增长,场地面积和投资增大。仅对磷化而言,目前国外比较趋向于采用全浸泡方式,据称全浸泡磷化易形成含铁量较高的颗粒状结晶磷化膜,与阴极电泳具有好的配套性。 1.2 全喷淋方式

用泵将液体加压,并以0.1~0.2Mpa的压力使液体形成雾状,喷射在工件上达到处理效果。由于喷淋时有机械冲刷和液体更新使用,因此处理速度加快、时间缩短。生产线长度缩短,相应节首了场地、设备、不足之处是,几何形状较复杂的工件,像内腔、拐角处等液体不易到达,处理效果不好,因此只适合于处理几何形状简单的工件。喷淋方式也不太适合于酸洗除锈,它会带来设备腐蚀、工序间生锈等一系

列问题,因此在选择喷淋酸洗时必须十分慎重。据报道,全喷淋磷化易形成结晶枝状粗大、含铁量较低的磷化膜,国外不提倡作为阴极电泳漆前打底的前处理。全喷淋方式主要应用于家用电器、零部件类的粉末涂装、静电涂漆、阳极电泳等。

1.3 喷淋-浸泡结合式

喷淋-浸泡结合式,一般是在某道工序时,工件先是喷淋,然后入槽浸泡,出槽后再喷淋,所有的喷淋、浸泡均是同一槽液。这种结合方式即保留了喷淋的高效率,提高处理速度,又具有浸泡过程,使工件所有部位均可得到有效处理。因此喷淋-浸泡结合式前处理即能在较短时间内完成处理工序,设备占用场地也相对较少,同时又可获得满意的处理效果。目前在国内外,对于前处理要求较高的汽车行业,一般都趋向于采取喷淋-浸泡结合方式。 1.4 刷涂方式

直接将处理液通过手工刷涂到工件表面,来达到化学处理的目的,这种方式一般不易获得很好的处理效果,在工厂应用较少。对于某些大型、形状较简单的工件,可以考虑用这种方式。

2.1预清洗:清除金属碎末及焊渣,消除磷化及电泳潜在的

尘埃源。 2.2脱脂

脱脂的目的是除去金属表面的油污。目前脱脂普遍采用水溶性碱性脱脂剂,关键在于控制好脱脂温度和脱脂时间。脱脂温度过高,水解速度加快,工件表面易泛黄;温度过低,不利于脱脂液中表面活性剂的润湿、乳化、增溶等作用,脱脂不干净。脱脂液除油能力随pH值的提高而提高,但pH值过高可能使铝及铝合金等金属工件被腐蚀。工件除有液态油污外,还有少量固态油脂,在低温下,固态油脂很难去除,因此脱脂温度不管是浸泡还是喷淋均应选择中温范围。如果只有液态油脂,选用低温脱脂完全可以达到要求。一般控制脱脂温度60~80℃、脱脂时间10~15min效果较好。此外,脱脂后应立即清洗干净。否则金属表面覆盖一层碱性物质,会影响后续除锈和磷化工序,最终使电泳涂层的抗腐蚀性下降。

2.3热水洗:有效处理工件表面的遗留碱膜。

2.4酸洗:除锈及活化金属表面。对一般锈蚀及氧化皮工件,应选择中温酸洗,方可保证在10min内彻底除掉锈蚀物及氧化皮。除非有足够的理由,一般不选择低温或不加温酸洗除锈,低温酸洗仅限于如:工件锈蚀很少、无氧化皮;除锈时间不受限制;允许采用盐酸酸洗等情况。

2.5表调:调整表面,以形成疏密均匀之磷化膜.。表面调整工序,通常不需加温,一般就是常温处理 2.6磷化

对于阴极电泳涂装,磷化膜必须是轻量极的(膜厚为2~6μm)过厚的磷化膜导致电阻增大,使电沉积的效率降低。此外,电泳涂装还要求磷化膜致密而均匀,只有在工件的导电能力、电场强度一致的前提下,才能得到均匀的电沉积膜。我国广泛采用锌系或锌钙系中低温、低渣快速磷化工艺。低锌磷化与阴极电泳配套性好,可充分发挥阴极电泳涂装的优势,发达国家高档汽车的电泳涂装均采用低锌磷化。磷化工序的控制重点是磷化液的游离酸和总酸度、促进剂含量,以及磷化温度和时间。一般低锌磷化采用NO3-促进剂体系(含量>15g/L),处理温度50~60℃,浸入时间3~5min,总酸度20~27点(滴定10mL磷化液至酚酞终点时所消耗的氢氧化钠溶液的毫升数),游离酸0.7~1.3点(滴定10mL磷化液至甲基橙终点时所消耗的氢氧化钠溶液的毫升数)。若在锌系或锌钙系磷化液中加入一定量的Ni2+或Mn2+(2~5g/L),可形成颗粒状晶粒致密的磷化膜,增强磷化膜的耐碱性。从而提高电泳涂层的耐腐蚀性。此外,磷化后必须彻底洗净磷化膜上残留的可溶性盐,因为在湿热条件下这种可溶性盐容易引起涂层的脱落,且它带入电泳槽会严重污染电泳涂料。

2.7水洗及纯水洗:充分水洗,避免前道工序之酸、碱及盐份带入电泳槽污染漆槽,影响漆膜。纯水电导率小于 5 μs 3、注意事项

3.1在工艺设计中有些小地方应该十分注意,即使有些是与设备设计有关的,如果考虑不周,将会对生产线的运行及工人操作产生很多不利的影响,如工序间隔时间,溢流水洗,磷化除渣,工件的工艺孔,槽体及加热管材料等。 3.2 工序间隔时间

各个工序间的间隔时间如果太长,会造成工件在运行过程中二次生锈,特别是有酸洗工艺时,酸洗后工件极易在空气中氧化生锈泛绿,最好设有工序间水膜保护,可减少生锈。生锈泛黄泛绿的工件,严重影响磷化效果,造成工件挂灰、泛黄,不能形成完整的磷化膜,所以应尽量缩短工序间的间隔时间。工序间的间隔时间若太短,工件存水处的水,不能完全有效的沥干,产生串槽现象,特别在喷淋方式时,会产生相互喷射飞溅串槽,使槽液成分不易控制,甚至槽液遭到破坏。因此在考虑工序间隔时,应根据工件几何尺寸、形状选择一个恰当的工序间隔时间。 3.3 溢流水清洗

提倡溢流水洗,以保证工件充分清洗干净,减少串槽现象。溢流时应该从底部进水,对角线上部开溢流孔溢流。 3.4工件工艺孔

对于某些管形件或易形成死角存水的工件,必须选择适当的位置钻好工艺孔,保证水能在较短的时间内充分流尽。否则会造成串槽或者要在空中长时间沥干,产生二次生锈,影响磷化效果。 3.5磷化除渣

对于任何一种磷化液都会或多或少产生沉渣(轻铁系彩色磷化沉渣很少),应在工艺予设计时注明设有磷化除渣装置,特别是喷淋磷化时,除渣装置必不可少,典型的除渣装置有:斜板沉淀器、高位沉淀塔、离心除渣器、纸布袋滤渣等都可供选择。 3.6 槽体及加热管材料

虽然对于槽体加热管材料的选择不是工艺设计的内容,如果在工艺设计时不予提醒,可能会造成设备设计人员的疏忽,而影响整个生产线的运行。对于硫酸、盐酸酸洗时,其槽体材料只能选用玻璃钢、花岗岩、塑料,加热管只能选用铅锑合金管、陶瓷管,而不能选用不锈钢材料。如果是采用磷酸

酸洗,其槽体及加热管材料均可选用不锈钢材料,当然玻璃钢、塑料、花岗岩均可。 七、电泳设备组成

电泳涂装的设备是由电泳槽、搅拌装置、涂料过滤装置、温度调节装置、涂料管理装置、直流电源装置、电泳涂装后的水洗装置、超滤装置、烘烤装置、备用罐等组成。 1、 电泳槽槽体的大小及形状需根据工件大小、形状和施工

工艺确定。在保证一定的极间距离条件下,应尽可能设计小些。根据电泳工艺的特殊要求,电泳漆槽一般由以下向个部分组成:主槽、 副槽、连续循环过滤装置、隔离的阳极区和热交换装置。 主槽应根据零件的大小,工作量和工作间距等参数确定合理的槽容量。零件 在槽中距液面和槽底均为 100 - 150mm ,距阳极装置 200 - 300mm 。主、副槽体 积比为 5 - 6 : 1 。 主、副槽均用硬聚氯乙烯塑料制造。主、副槽间开一长条溢流孔相连。 阳极板为耐酸不锈钢,阳极和阴极(零件)的面积比为 1 : 4 - -5 ,采用离子 交换膜的阳极隔离装置。 连续循环过滤装置要求循环泵 24h 运转,电机温升不超过 60℃ ,使用 5μm 滤 芯连续过滤,并应经常检查和更换清洗滤芯。 热交换装置最好不要用电加热管直接加温电泳液,以避免局部过热而使漆膜 成分发生变化,并应有温度显示和自动控温装置。

2、 超滤装置

超滤装置是电泳涂装的主要辅助装置。它可以除去低分子物质及水溶性盐类,以帮助零件润湿和增加漆膜的耐蚀性及结合力,另外还可以降低电导率,使漆膜平滑。 超滤的工作原理是当电泳漆液经过超滤机中的超大型滤管时,由于超滤管是由 数百条中空纤维管组成,当管内外存在压力差时,每务纤维管就具有渗透能力, 将金属离出,过多的酸及其无机污染物渗透排出,而电泳漆固体分,因颗粒较 大,不会渗透排出,故全部流回电泳槽。渗透液经过回收器吸收污染物后再回 收槽,循环使用,可保证电泳漆使用率高达 98% 。

3、 槽内装有过滤装置及温度调节装置,以保证漆液一定的

温度和除去循环漆液中的杂质和气泡。

4、 搅拌装置可使工作漆液保持均匀一致,多采用循环泵,

漆液的循环一般每小时4~6次,当循环泵开动时,槽内漆液液面应均匀翻动。

5、 涂料管理装置的作用在于补充调整涂料成分,控制槽液

的PH值,用隔膜电极除去中和剂和用超滤装置排除低分子量成分等。

6、 电泳电源的选择,一般采用直流电源。整流设备可采用

硅整流器或可控硅。电流的大小与涂料的性质、温度、

工作面积、通电方式等有关,一般为30~50A/m2。 7、 水洗装置用于电泳涂装前后工件的冲洗,一般用去离子

水,但需加压设备,常用的是一种带螺旋体的淋洗喷嘴。 8、 烘烤装置用来促进电泳涂料的干燥成膜,可采用电阻

炉、感应电热炉和红外线烘烤设备。烘房设计要有预热、加热和后热三段,应根据涂料的品种和工件的情况制订。

八、 电泳的重要工艺控制 1、电压

电泳涂装采用的是定电压法,设备相对简单,易于控制。电压对漆膜的影响很大;电压越高,电泳漆膜越厚,对于难以涂装的部位可相应提高涂装能力,缩短施工时间。但电压过高,会引起漆膜表面粗糙,烘干后易产生“橘皮”现象。电压过低,电解反应慢,漆膜薄而均匀,泳透力差。电压的选择由涂料种类和施工要求等确定。一般情况下,电压与涂料的固体分及漆温成反比,与两极间距成正比。钢铁表面为40~70V,铝和铝合金表面可采用60~100V,镀锌件采用70~85V。 2、电泳时间

漆膜厚度随着电泳时间的延长而增加,但当漆膜达到一定厚度时,继续延长时间,也不能增加厚度,反而会加剧副反应;反之,电泳时间过短,涂层过薄。电泳时间应根据所

用的电压,在保证涂层质量的条件下,越短越好。一般工件电泳时间为1至3分钟,大型工件为3至4分钟。如果被涂物件表面几何形状复杂,可适当提高电压和延长时间。 3、涂料温度

涂料温度高,成膜速率快,但漆膜外观粗糙,还会引起涂料变质;温度低,电沉积量少,成膜慢,涂膜薄而致密。施工过程中,由于电沉积时部分电能转化成热能,循环系统内机械摩擦产生热量,将导致涂料温度上升。一般漆液温度控制在某些方面15~30℃。 4、涂料的固体分和颜基比

市售的电泳涂料的固体分一般为50%左右,施工时,需用蒸馏水将涂料固体分控制在10%~15%。固体含量太低,漆膜的遮盖力不好,颜料易沉淀,涂料的稳定性差。固体分过高,粘度提高,会造成漆膜粗糙疏松,附着力差。一般颜基比为1比2左右,高光泽电泳涂料的颜基比可控制在1比4。由于实际操作中,涂料的颜料量会逐渐下降,必须随时添加颜料分高的涂料来调节。 5、涂料的PH值

电泳涂料的PH值直接影响槽液的稳定性。PH值过高,新沉积的涂膜会再溶解,漆膜变薄,电泳后冲洗会脱膜。PH值过低,工件表面光泽不一致,漆液的稳定性不好,已溶解的树脂会析出,漆膜表面粗糙,附着力降低。一般要求施工

过程中,PH值控制在7.5~8.5之间。在施工工程中,由于连续进行电泳,阳离子的铵化合物在涂料中积蓄,导致PH值的上升。可采用补加低PH值的原液,更换阴极罩蒸馏水,用离子交换树脂除去铵离子,采用阳极罩等方法降低PH值。若PH值过低时,可加入乙醇铵来调节。 6、涂料电阻

被涂物件从前一道工序带入电泳槽的杂质离子等引起涂料电阻值的下降,从而导致漆膜出现粗糙不均和针孔等弊病。在涂装施工中,需对涂料进行净化处理。为了得到高质量涂膜,可采用阴极罩设备,以除去铵及钙、镁等杂质正离子。

7、工件与阴极间距离

距离近,沉积效率高。但距离过近,会使漆膜太厚而产生流挂、橘皮等弊病。一般距离不低于20cm。对大型而形状复杂的工件,当出现外部已沉积很厚涂膜,而内部涂膜仍较薄时,应在距离阴极较远的部位,增加辅助阴极。

九、阴极电泳

随着阳极电泳漆生产使用,日渐暴露其漆膜中包含有金属离子造成抗蚀性差的缺陷,因而,高抗蚀性的阴极电泳漆于七十年代被开发成功,并被人们等认可并大力推广应用。

阴极电泳涂料除保留了阳极电泳涂料的优点外,还具有可避免工件的阳极溶解、泳透力高、抗腐蚀性强、自动化程度高等优点,已广泛用于汽车、家电、仪器仪表、玩具、五金及工艺品等的表面涂装。

1、 在电泳中阳极形式的比较

阳极的形式有:板式阳极、管式阳极、弧形阳极

在电泳工艺中阳极的作用是十分重要的,目前在阴极电泳工艺中应用较多的阳极类型有板式阳极、管式阳极、弧形阳极。但无论阳极的类型上有什么不同,都应满足设计和使用者的

要求,出现了上述的三种阳极,在生产使用中各有利弊。 1.1板式阳极

板式阳极

优点:1、它一个阳极就可提供较大的阳极面积。 (注:这即是优点也是缺点,在较小的槽中若选板式阳极, 阳极个数较少,不易排布,造成电压分布不均) 2、制造较易,在 价格上较便宜。 3、阳极的利用率大( 100% ) 。相对寿命长。

缺点:体积大,重量沉。更换时操作十分困难。另外,阳极盒为长方体,有棱角,易积存槽内的污垢。

1.2管式阳极

管式阳极

优点:1、一个阳极提供较小的阳极面积和体积。在电泳槽内可以根据设计要求排布。很适用于小型电泳槽,即较小的阳极面积,可提供较多数量的阳极,易排布。对大型电泳槽,这种阳极系统的一次性投资十分可观。2、体积小,重量轻。更换时操作十分方便。另外,阳极管为园柱体,不易阻留和积存槽内的污垢。

缺点:1、制造难度大,在价格上较昂贵(同等规格的全进口设备)。2、阳极不能全部利用,利用率约为60%。相对寿命

短。 1.3弧形阳极

弧形阳极

弧形阳极的优点:1、弧形阳极提供较小的阳极面积。在电泳槽内可布置的很均匀。很适用于各类型电泳槽,即较小的阳极面积,可提供较多数量的阳极,易排布。2、体积小,重量轻。更换时操作十分方便。另外,弧形阳极为半园柱体,不易阻留和积存槽内的污垢。3、阳极可达到100%利用,并且电场覆盖面大。4、在价格上虽比板式阳极贵,但比同等面积的进口管式阳极便宜。中国用户易于接受。 缺点:制造难度大,在价格上比板式阳极贵

2、 阴极电泳的工艺控制 2.1 电压

阴极电泳涂装的电压主要取决于涂料的品种,操作时还应该综合考虑极间距、极比、槽液温度等因素,以确定最佳电压范围。电压的高低对电泳涂膜的质量影响很大。通常电泳时间是固定的,通过提高或降低电压来调节涂膜厚度。极间电压越高,电场强度越强,电沉积量亦随之增加,工件内表面及半封闭面的涂膜厚度增大。但电压过高,工件入槽瞬间的冲击电流太大,涂膜沉积速度过快,易造成涂膜外观和性能变差。电压高到超过电泳膜的击穿电压时,沉积涂膜被击穿,电解反应加剧,电极表面产生大量气体,涂膜表面产生大量气泡。电泳电压过低,涂料泳透力差,沉积速度慢,效率低,涂膜变薄。一般在保证涂膜外观质量前提下,尽可能采用较高的电压进行阴极电泳涂装。电压控制在150~340V为宜。阴极电泳涂装时采用不同的供电方式对涂膜的外观影响较大。线性升高电压既可获得较高的泳透力,又可限制峰值电流,防止涂膜弊病的产生。 2.2 固体分

阴极电泳槽液的固体分通常控制在18%~25%(质量分数),固体分的高低对涂料电沉积量的影响较大。涂料的固体分高,槽液导电性好,电沉积量也随之增加,但固体分过高(> 30%),电沉积量增加过多,涂膜变得过厚,烘烤

时因流平性不佳而在表面形成桔皮等弊病;固体分过低(<10%)时,涂料的泳透力低,涂膜的遮盖力差,还会引起电解反应加剧,涂膜易产生针孔,槽液稳定性变差。实际涂装过程中,由于涂料固体分的下降,需要定期检测固体分的下降值,通过计算向槽液中补加新鲜电泳涂料。 2.3 颜基比

对以颜料为着色物质的阴极电泳漆,颜基比失调会导致涂膜的外观和抗腐蚀能力变差。颜基比过高,涂膜粗糙无光泽,甚至颜料发生沉淀;颜基比过低,涂膜易产生针孔,抗腐蚀能力降低。阴极电泳过程中,一般通过向槽液中补加高颜基比的颜料浆的方法,以维持颜基比恒定在0.24~0.3。 2.4 助溶剂

助溶剂是阴极电泳涂料的重要组成部分,一方面有利于保持涂料的稳定,另一方面影响涂膜的质量。助溶剂含量太低,降低了树脂的水溶性,导致电沉积量和泳透力降低;助溶剂含量太高,涂膜变厚,与此同时,泳透力和涂膜的击穿电压下降,槽液不易控制。通常,阴极电泳涂料中助溶剂含量为20%~40%;在中和及用水稀释之后,槽液中有机溶剂一般控制在2%~5%。若选择的助溶剂是低沸点的醇类溶剂,生产中还需注意定期补加其损失量。 2.5 槽液的pH值

电泳过程中,槽液的pH值是控制电泳涂料稳定性的重要

因素。通常情况下,阴极电泳涂装需严格控制pH在5.90~6.15。槽液的pH值太高,电泳涂料变得不稳定,严重时导致沉淀析出;槽液的pH值也不应过低,虽然pH值降低时电泳电流增大,电沉积量增加,有利于涂膜形成,但漆膜的再溶解程度也随之加大。

连续电泳时,由于树脂不断沉积,中和剂不断积累,使得槽液pH值渐渐降低、电导率增大,导致泳透力降低。更为严重的是已沉积在工件上的漆膜重新溶解的趋势加大,使沉积膜变薄,失光甚至露底。一般通过极罩法、补加低中和度涂料和更换超滤液的方法来调整pH值,使之稳定在规定的范围之内。 2.6 槽液电导率

阴极电泳涂料槽液的电导率通常在1200~1600μS/cm,维持槽液一定的导电能力,保证涂层的质量。在电泳过程中,由于杂质离子的混入,以及游离出的中和剂的浓度增加的缘故,电导率会逐渐增大。电导率过高既增加耗电量,降低了泳透力,又使槽液升温过快,涂膜光泽降低,颜料颗粒析出、漆膜抗腐蚀能力下降。 2.7 槽液温度

槽液温度对阴极电泳涂装及涂膜性能的影响是非常显著的。在其他工艺条件不变的情况下,升高温度,槽液粘度降低,电极反应加快,同时涂膜的电阻值也下降,有利于电

沉积,使膜厚增加。但槽液温度过高(>35℃),涂膜变得粗糙,烘干后产生波浪状的堆积,且槽液中的助溶剂易挥发,导致槽液变质,稳定性变差。温度过低(<15℃ ),沉积量很小,涂膜很薄,光泽度和遮盖力都差,且槽液粘度大,电沉积过程中产生的气泡难以消除,漆膜易出现针孔。一般阴极电泳槽液温度控制在 28~34℃,实际操作中需采取恒温措施。以防止槽液温度超出此范围。 2.8电泳时间

一般情况下,电泳时间长,膜厚及泳透力会增加,涂膜电阻值也随之增大,约2~3min后,涂膜达到一定厚度,厚度就几乎不再增加。电泳时间过长,会导致涂膜缺陷产生,外观变差。因此,在保证涂层质量前提下,应尽量缩短电泳时间,电泳结束后,被涂物应尽快从槽中取出,以免涂膜发生再溶解而变薄。 2.9 极间距与极比

阴极电泳时阳极与阴极(被涂物)之间的距离(极间距)和面积比值(极比)对电沉积效率有一定影响。极间距过远,极间电阻增大,电沉积效率降低,沉积量减小,涂膜不均匀,局部甚至电泳不上;反之则会产生局部电流大和过量电沉积,影响膜厚均匀度。一般合适的极间距为50~400mm。对于较大的工件,必要时可设置辅助阳极,以达到合理的极间距范围。阳极面积过大,被涂物表面易产生异常

电沉积,沉积出的涂膜厚且粗糙,附着力也降低;阳极面积过小,电沉积效率降低,涂膜变薄,泳透力也低。一般合适的极比(阳极面积/阴极面积)为1/4~1/6。 2.10 烘烤温度和时间

烘烤温度和时间对涂膜的耐腐蚀性、耐冲击性均有很大的影响。高温长时间烘烤可能导致涂膜泛黄、变脆等;烘烤温度太低,树脂没有充分交联,耐腐蚀性变差。一般烘烤温度为165~180℃,烘烤时间20~30min。

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- efsc.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务