您好,欢迎来到筏尚旅游网。
搜索
您的当前位置:首页数学分析课后习题答案(华东师范大学版)

数学分析课后习题答案(华东师范大学版)

来源:筏尚旅游网


P.182 习题

1.验证下列等式

f(x)dxf(x)Cdf(x)f(x)C(1) (2)

证明 (1)因为f(x)是f(x)的一个原函数,所以f(x)dxf(x)C.

(2)因为duuC, 所以df(x)f(x)C.

2.求一曲线yf(x), 使得在曲线上每一点(x,y)处的切线斜率为2x, 且通过点(2,5).

2f(x)f(x)dx2xdxxC解 由导数的几何意义, 知f(x)2x, 所以. 于是知曲线为

yx2C, 再由条件“曲线通过点(2,5)”知,当x2时,y5, 所以有 522C, 解得C1, 从而所

2yx1 求曲线为

x2ysgnx23.验证是|x|在(,)上的一个原函数.

x2x2yyyx2, 2, yx; 当x0时, y的导数为证明 当x0时, ; 当x0时,

152

x0y2(x2)sgnx0xsgnxlimlim0xx0x0x2, 所以

x0x0|x|x0

4.据理说明为什么每一个含有第一类间断点的函数都没有原函数?

解 由P.122推论3的证明过程可知:在区间I上的导函数f,它在I上的每一点,要么是连续点,要么是第二类间断点,也就是说导函数不可能出现第一类间断点。因此每一个含有第一类间断点的函数都没有原函数。

5.求下列不定积分

x2x433(1xx3x2)dx1dxxdxxdxxdxx243x3C⑴

12311x342(xx)dx(x2xx)dx33xln|x|C⑵

122123⑶

dx2gx12gxdx1212g2xC122xCg

xx22xx2xxxx(23)dx(22(23)3)dx(4269)dx

153

4x26x9xCln4ln6ln9

344x2313dxarcsinxC221x2

dxx2x211111dxdx(1)dx(1arctanx)C3(1x2)3(1x2)1x233⑹

22tanxdx(secx1)dxtanxxC

2sinxdx1cos2x111dx(1cos2x)dx(xsin2x)C2222

cos2xcos2xsin2xdxdx(cosxsinx)dxsinxcosxCcosxsinx⑼ cosxsinx

cos2xcos2xsin2x11dxdx()dxcotxtanxC222222cosxsinxsinxcosx⑽cosxsinx

(109)t90t103dt(109)dtln(109)Cln90C⑾

t2tt⑿

8xxxdxxdxx8C15

7815 154

(1x1x1x1x2)dx()dxdx2arcsinxC2221x1x1x1x1x

2(cosxsinx)dx(1sin2x)dx1dxsin2xdxx12cos2xC

cosxcos2xdx111(cos3xcosx)dx(sin3xsinx)C223

13x13xxx33xxx3xxx(ee)dx(e3e3ee)dxe3e3eeC33⒃

P.188 习题

1.应用换元积分法求下列不定积分:

11cos(3x4)d(3x4)sin(3x4)C33

cos(3x4)dx⑵

2xxedx212x212x22ed(2x)eC44

dx1d(2x1)1ln|2x1|C2⑶ 2x122x1

155

nn(1x)dx(1x)d(1x)1(1x)n1Cn1

(⑸

13x2113x2)dx123x13xx1arcsinarcsin3xC33dx1312)d3x

2⑹

2x312x322x322x2dx2d(2x3)CC22ln2ln2

11222283xdx(83x)d(83x)(83x)C(83x)2C3339

133⑻

3113333(75x)d(75x)(75x)C(75x)3C5521075x

dx122⑼

2xsinxdx1122sinxdxcosx2C22

)114cot(2x)C2224sin(2x)sin2(2x)44⑽

dxd(2x 156

dx1cosxdx2cos2x2dx2x2tan⑾ 解法一:

cos2xC2

dx(1cosx)dxdxcosxdx1cos2xsin2xsin2x

解法二: 1cosxcotxdsinx1cotxCsinxsin2x

⑿解法一:利用上一题的结果,有

d(2x)dx1xtan(x)Ctan()C1sinx22421cos(x)2

dx(1sinx)dxdxdcosx1tanxC2221sinxcosx1sinxcosxcosx解法二:

dxdxdx1sinx(sinx2cosx2)2cos2x2(tanx21)2解法三:

2dtanx22C2tanx21(tanx21)

⒀ 解法一:cscxdxsec(2x)dxsec(2x)d(2x)

157

ln|sec(2x)tan(2x)|Cln|cscxcotx|C

1sinxdcosx1cosx1dxdxlnC22sinx2cosx1sinxcosx1

解法二:

cscxdxln|cscxcotx|C

解法三:

cscxdxcscx(cscxcotx)dxcscxcotx

d(cscxcotx)Cln|cscxcotx|Ccscxcotx

cscxdx解法四:

11dxdxxxxx2sincos2sin2cos2222

sinx2xxxdcotln|cot|Cln|tan|Cx222cot2

x1x211d(1x2)1x2C21x2

dxx111x224x4dx24(x2)2dx4arctan2C⒂

158

dxdlnxln|lnx|Cxlnxlnx⒃

x411115dxd(1x)C52(1x5)3(1x5)3510(1x)⒄

x3114dxdxx824(x4)22⒅

11x421x42ln|4|Cln|4|C422x282x2

dx11x()dxln|x|ln|1x|Cln||Cx(1x)x1x1x⒆

cotxdxcosxdxln|sinx|Csinx

(21)

5422cosxdxcosxcosxdx(1sinx)dsinx

21(12sin2xsin4x)dsinxsinxsin3xsin5xC35 dxd(2x)ln|csc2xcot2x|Csinxcosxsin2x(22) 解法一:

dxcosxdxdtanxln|tanx|C2sinxcosxtanxsinxcosx解法二:

159

dx(sin2xcos2x)dxsinxcosxsinxcosx解法三:

(sinxcosx)dxln|sinx|ln|cosx|Ccosxsinx

dxexdxdexxarctaneCxx2x2xe1e1(23) ee

2x3d(x23x8)2dxln|x3x8|C22x3x8(24) x3x8

x22(x1)22(x1)3dx(x1)3dx(x1)312323()dxln|x1|C232x1x1(x1)(x1)2(x1)(25)

(26)

dxx2a2

解 令xatant, 则

asec2tdtln|secttant|C1ln|xx2a2|Casectx2a2 dxdx1x1xd(x2a2)32a2(x2a2)12a2(x2a2)12C(27)

160

解法2 令xatant, 则

dxasec2tdt11xcostdtsintCC2(x2a2)32a3sec3ta2222aaxa

x51x2(28)

dx

解 令xsint, 则

sin5tcostdxdtsin5tdt(1cos2t)2dcostcost1x2135x52121costcos3tcos5tC(1x2)2(1x2)2(1x2)2C3535

(29)

116x3xdx

65解 令xt, 则xt, dx6t

t3t5dt(t2)411(t21)(t6t4t21)1dt13xdx61t261t2dt61t21t7t5t36t16426((ttt1))dt6(t)ln||C27532t11t

x 161

其中tx

16(30)

x11x11dx

2解 令x1t, 则x1t, dx2tdt,

x11x11dxt124t42tdt(1)2tdt(2t)dt(2t4)dtt1t1t1t1t24t4ln|t1|C1x14x14ln|x11|C1x4x14ln|x11|C

2.应用分部积分法求下列不定积分:

x1x2⑴

arcsinxdxxarcsinxdxxarcsinx1x2C

1lnxdxxlnxxdxxlnxxCx⑵

222xcosxdxxdsinxxsinx2xsinxdxx2sinx2xdcosxx2sinx2xcosx2cosxdx⑶

x2sinx2xcosx2sinxC

162

lnx111lnx11lnx1dxlnxddxC322322222xxxx2x4x⑷

222(lnx)dxx(lnx)2lnxdxx(lnx)2xlnx2xC

1121x22xarctanxdxarctanxdxxarctanxdx22221x⑹

1211121xarctanx(1)dxxarctanx(xarctanx)C222221x 121(x1)arctanxxC22

⑺

[ln(lnx)11]dxln(lnx)dxdxlnxlnx

xln(lnx)x11dxdxxln(lnx)Cxlnxlnx

2xarcsinx1x2⑻

22(arcsinx)dxx(arcsinx)dx

x(arcsinx)22arcsinxd1x2

11x2x(arcsinx)221x2arcsinx21x2

dx

163

x(arcsinx)221x2arcsinx2xC sec⑼ 3xdxsecxdtanxsecxtanxsecxtan2xdx

secxtanxsecx(sec2x1)dxsecxtanxsec3xdxsecxdx

secxtanxsec3xdxln|secxtanx|

所以

3secxdx1secxtanxln|secxtanx|)C2

x2a2dxxx2a2xxxa22dx

xxa(xa2222a2xa22)dx

xxaxadx2222a2xa22dx

xx2a2x2a2dxa2ln(xx2a2)

所以

x2a2dx1(xx2a2a2ln(xx2a2))C2

164

类似地可得

1(xx2a2a2ln(xx2a2))C2

x2a2dx3.求下列不定积分:

1[f(x)]a1Ca1

aa[f(x)]f(x)dx[f(x)]df(x)f(x)1dx1[f(x)]21[f(x)]2df(x)arctanf(x)C⑵

f(x)df(x)dxln|f(x)|Cf(x)f(x)

f(x)f(x)f(x)ef(x)dxedf(x)eC

4.证明:

1tann1xIn2n1

⑴ 若

Intanxdxn,n2,3,,则

In证

Intann2x(sec2x1)dxtann2xsec2xdxtann2xdx

165

tann2xdtanxIn2.

tan因为n2xdtanxtann1x(n2)tann2xdtanx,

所以

n2tanxdtanx1tann1xn1.

从而

In1tann1xIn2n1.

⑵ 若

I(m,n)cosmxsinnxdx,则当mn0时,

cosm1xsinn1xm1I(m,n)I(m2,n)mnmn cosm1xsinn1xn1I(m,n2)mnmn,n,m2,3,

I(m,n)cosmxsinnxdx1m1n1cosxdsinxn1

1[cosm1xsinn1x(m1)cosm2xsinn2xdx]n1 1[cosm1xsinn1x(m1)cosm2xsinnx(1cos2x)dx]n1

166

1[cosm1xsinn1x(m1)(I(m2,n)I(m,n))]n1

cosm1xsinn1xm1I(m,n)I(m2,n)mnmn所以,

cosm1xsinn1xn1I(m,n)I(m,n2)mnmn同理可得

P.199 习题

1.求下列不定积分:

x3x31112dxdx(xx1)dxx1x1x1⑴

x3x2xln|x1|C32

x221(x4)2x27x12dx(x4x3)dxln|x3|C⑵ 解法一:

解法二:

x212x713dxdxdxx27x122x27x122x27x12

167

1d(x27x12)3222x7x1217d(x)712(x)224

13x4ln|x27x12|lnC22x3

11ABxC3221x1x(1x)(1xx)1xx⑶ 解

21A(1xx)(BxC)(1x) 去分母得

令x1,得A13. 再令x0,得AC1,于是C23. 比较上式两端二次幂的系数得 AB0,从而B13,因此

dx1dx1x2112x111dxln|1x|dxdx221x331x31xx2361xx21xx11111(1x)212x12ln|1x|ln(1xx)dxlnarctanC362(x12)23461xx233

dx1(1x2)(x21)11x21x21dxdxdx4444221x21x1x⑷ 解 1x

11111d(x)d(x)221111xdxxdxxx1122122122x2x2x22x22xxxx

1 168

11d(x)d(x)1x1x1122(x)22(x)22xx

11x2x1lnxC1242x2x

122xarctan2x212x22x1arctanln2C482xx2x1

dx(x1)(x21)2⑸

1ABxCDxE22222x1(x1)(x1)x1(x1)解 令, 解得

A111BCDE4, 4, 2, 于是

dx1dx1x11x1dx(x1)(x21)24x14x212(x21)2dx

111111xln|x1|ln(x21)arctanx(arctanx)C4844x214x21

169

1|x1|1x(ln2arctanx2)C24x1x1

x214x251dxdxdx2222(2x22x1)24(2x2x1)2(2x2x1)⑹

4x2d(2x22x1)1dx(2x22x1)2(2x22x1)22x22x1其中

141dxdx2(2x22x1)2[(2x1)21]2[(2x1)21]2d(2x1)

2x1arctan(2x1)2(2x1)1 参见教材P.186 例9或P.193关于Ik的递推公式⑺.

于是,有

x21152x15dxarctan(2x1)C22(2x22x1)242x2x12(2x1)12 5x35arctan(2x1)C22(2x2x1)2

2.求下列不定积分

170

dx⑴ 53cosx

解 令

ttanx2,则

dx53cosxdx2dtdt1d(2t)1arctan2tC2222221t1t14t1(2t)531t2

1xarctan(2tan)C22

dxdxdxdtanx2sin2x2cos2x3sin2x(23tan2x)cos2x(23tan2x)⑵

3tanx)1132arctan(tanx)C326(1tan2x)62

d(dxcosxdx1cosxsinxsinxcosxdx1tanxcosxsinx2cosxsinx⑶

1sinxcosx1d(sinxcosx)(1)dx(dxcosxsinx) 2cosxsinx21(xln|cosxsinx|)C2

171

另解:设

I1cosxdxsinxdxI2cosxsinx,cosxsinx,

I1I2cosxsinxdxxCcosxsinx,

I1I2cosxsinxd(cosxsinx)dxln|cosxsinx|Ccosxsinxcosxsinx

dx1I(xln|cosxsinx|)C12所以1tanx

x21xx2dx1xx2dx(x1)dx1xx2

1xx2dx1(2x1)dx3dx21xx221xx2

其中(利用教材P.185例7的结果)

1xx2dx51152x11(x)2dx[arcsin(x)1xx2]422425

(2x1)dx1xx2d(1xx2)1xx221xx2

172

dx1xx2dx51(x)242arcsin2x15

所以有

x21xx2dx

152x11132x1[arcsin(x)1xx2]21xx2arcsinC2422255 72x12x3arcsin1xx2C845

⑸

dxxx21d(x)12ln|xx2x|C211(x)224

12⑹ x1xdx1x

4tdt1x1t2dxtx222(1t),代入原式得 1x解 令 ,则1t,

1x2

1t21xdx1t21x4t4t21t21t(1t2)2dt(1t2)2dt4(1t2)2dt

173

2

4111112dt4dt4dt[(1t2)21t2(1t)2(1t)21t2]dt1t2 1111t11dt[]dtln||C(1t)2(1t)21t1t1t1t2

211x21x2ln||Cxx

总 练 习 题

求下列不定积分:

x23x14xdx(x2x141124241244x)dxx4xxC5133

145133⑵

xarcsinxdx112122arcsinxdx[xarcsinxxdx]2221x

其中

sin2t1cos2t11dxcostdtdt(tsin2t)cost2221x2

x21(arcsinxx1x2)2

174

1212xarcsinxdx[xarcsinxx1x2dx]2所以

11[x2arcsinx(arcsinxx1x2)]C22 1211xarcsinxarcsinxx1x2C244

dxx

⑶

1解 令xu,则dx2udu

dxx2udu12(1)du2(uln|1u|)C1u1u

12(xln|1x|)C

sinxsinxsinxsinxesin2xdx2esinxcosxdx2esinxdsinx2sinxde⑷

2(esinxsinxesinxdsinx)2(esinxsinxesinx)C2esinx(sinx1)C

exdx(令xu)eu2udu2(euueu)C2ex(x1)C

175

x⑹

dxx21dxx211x211d()arcsinCxx112x

1解法二:令xsect,

dxx21secttant1dttCarccosCsecttantxx

1tanxcosxsinxd(cosxsinx)dxdxcosxsinxcosxsinx

⑺ 1tanxln|cosxsinx|C

1tanxdxtan(x)dxln|cos(x)|C1tanx44

x2x(x2)23(x2)231dxdxln|x2|C32(x2)3x2(x2)(x2)⑻

dxdx122secx(1tanx)dtanxtanxtan3xC423cosx⑼cosx

1cos2x2422sinxdx(sinx)dx()dx2⑽

176

111cos4x2(12cos2xcos2x)dx(12cos2x)dx442 1xsin4x311(xsin2x)Cxsin2xsin4xC4288432

x5dx32⑾ x3x4

x5x5dxx33x24(x1)(x2)2dx解

x5ABC22x1x2(x1)(x2)(x2)令

2去分母得:x5A(x2)B(x1)(x2)C(x1)

解得:

A22B3,3,C1

x521211dxdxdxx33x24x13x2(x2)2dx3所以

2x21ln||C3x1x2

arctan(1x)dx

177

解 令1xu,dx2(u1)du

arctan(1x)dxarctanu2(u1)du2arctanuudu2arctanudu

[(u21)arctanuu]2uarctanuln(1u2)C1

xarctan(1x)xln(2x2x)C

x7x72x32x32x33dxdx(x4)dx44x2x2⒀ x2

141xln(x42)C42

x7x4x3121414dxdx(1)dxxln(x42)C444442x2x2另解:x2

tanxdx21tanxtanx⒁

解 令tanxu

tanxu111dxdudu1tanxtan2x1uu21u21u21uu2du

178

arctanu23arctan2u13Cx23arctan2tanx13C

x2(1x)22(1x)1dx100(1x)100dx(1x)⒂

111C99989799(1x)49(1x)97(1x)

arcsinx1arcsinx1dxarcsinxddxx22xxx1x⒃

arcsinx11x2ln||Cxx

xln1x1dxx[ln(1x)ln(1x)]dx[ln(1x)ln(1x)]dx21x2

121211x211xx[ln(1x)ln(1x)]x()dxlnxC221x1x21x

1sinxcosx7dx1tanxcosx4dx1tan2xtanxdtanx

12tanx(1tan2x)C5

179

21x2ex2xx1x2xxe()dxedxdxe1x2(1x2)21x2(1x2)2dx⒆

xex1exexexexxdxeddxdxC1x21x21x21x21x21x2

vnu⒇

Indx,ua1b1x,va2b2x

Invnudx2n2nvdu[vunub2vn1dx]b1b1

b2uvn1(b1va1b2a2b1)vn12n2n[vundx][vundx]b1buu1

2n[vunb1Inn(a1b2a2b1)In1]b1

2[vnun(a1b2a2b1)In1](2n1)b1

所以

In 180

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- efsc.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务