P.182 习题
1.验证下列等式
f(x)dxf(x)Cdf(x)f(x)C(1) (2)
证明 (1)因为f(x)是f(x)的一个原函数,所以f(x)dxf(x)C.
(2)因为duuC, 所以df(x)f(x)C.
2.求一曲线yf(x), 使得在曲线上每一点(x,y)处的切线斜率为2x, 且通过点(2,5).
2f(x)f(x)dx2xdxxC解 由导数的几何意义, 知f(x)2x, 所以. 于是知曲线为
yx2C, 再由条件“曲线通过点(2,5)”知,当x2时,y5, 所以有 522C, 解得C1, 从而所
2yx1 求曲线为
x2ysgnx23.验证是|x|在(,)上的一个原函数.
x2x2yyyx2, 2, yx; 当x0时, y的导数为证明 当x0时, ; 当x0时,
152
x0y2(x2)sgnx0xsgnxlimlim0xx0x0x2, 所以
x0x0|x|x0
4.据理说明为什么每一个含有第一类间断点的函数都没有原函数?
解 由P.122推论3的证明过程可知:在区间I上的导函数f,它在I上的每一点,要么是连续点,要么是第二类间断点,也就是说导函数不可能出现第一类间断点。因此每一个含有第一类间断点的函数都没有原函数。
5.求下列不定积分
x2x433(1xx3x2)dx1dxxdxxdxxdxx243x3C⑴
12311x342(xx)dx(x2xx)dx33xln|x|C⑵
122123⑶
dx2gx12gxdx1212g2xC122xCg
⑷
xx22xx2xxxx(23)dx(22(23)3)dx(4269)dx
153
4x26x9xCln4ln6ln9
344x2313dxarcsinxC221x2
⑸
dxx2x211111dxdx(1)dx(1arctanx)C3(1x2)3(1x2)1x233⑹
⑺
22tanxdx(secx1)dxtanxxC
⑻
2sinxdx1cos2x111dx(1cos2x)dx(xsin2x)C2222
cos2xcos2xsin2xdxdx(cosxsinx)dxsinxcosxCcosxsinx⑼ cosxsinx
cos2xcos2xsin2x11dxdx()dxcotxtanxC222222cosxsinxsinxcosx⑽cosxsinx
(109)t90t103dt(109)dtln(109)Cln90C⑾
t2tt⑿
8xxxdxxdxx8C15
7815 154
⒀
(1x1x1x1x2)dx()dxdx2arcsinxC2221x1x1x1x1x
⒁
2(cosxsinx)dx(1sin2x)dx1dxsin2xdxx12cos2xC
⒂
cosxcos2xdx111(cos3xcosx)dx(sin3xsinx)C223
13x13xxx33xxx3xxx(ee)dx(e3e3ee)dxe3e3eeC33⒃
P.188 习题
1.应用换元积分法求下列不定积分:
11cos(3x4)d(3x4)sin(3x4)C33
⑴
cos(3x4)dx⑵
2xxedx212x212x22ed(2x)eC44
dx1d(2x1)1ln|2x1|C2⑶ 2x122x1
155
⑷
nn(1x)dx(1x)d(1x)1(1x)n1Cn1
(⑸
13x2113x2)dx123x13xx1arcsinarcsin3xC33dx1312)d3x
2⑹
2x312x322x322x2dx2d(2x3)CC22ln2ln2
⑺
11222283xdx(83x)d(83x)(83x)C(83x)2C3339
133⑻
3113333(75x)d(75x)(75x)C(75x)3C5521075x
dx122⑼
2xsinxdx1122sinxdxcosx2C22
)114cot(2x)C2224sin(2x)sin2(2x)44⑽
dxd(2x 156
dx1cosxdx2cos2x2dx2x2tan⑾ 解法一:
cos2xC2
dx(1cosx)dxdxcosxdx1cos2xsin2xsin2x
解法二: 1cosxcotxdsinx1cotxCsinxsin2x
⑿解法一:利用上一题的结果,有
d(2x)dx1xtan(x)Ctan()C1sinx22421cos(x)2
dx(1sinx)dxdxdcosx1tanxC2221sinxcosx1sinxcosxcosx解法二:
dxdxdx1sinx(sinx2cosx2)2cos2x2(tanx21)2解法三:
2dtanx22C2tanx21(tanx21)
⒀ 解法一:cscxdxsec(2x)dxsec(2x)d(2x)
157
ln|sec(2x)tan(2x)|Cln|cscxcotx|C
1sinxdcosx1cosx1dxdxlnC22sinx2cosx1sinxcosx1
解法二:
cscxdxln|cscxcotx|C
解法三:
cscxdxcscx(cscxcotx)dxcscxcotx
d(cscxcotx)Cln|cscxcotx|Ccscxcotx
cscxdx解法四:
11dxdxxxxx2sincos2sin2cos2222
sinx2xxxdcotln|cot|Cln|tan|Cx222cot2
x1x211d(1x2)1x2C21x2
⒁
dxx111x224x4dx24(x2)2dx4arctan2C⒂
158
dxdlnxln|lnx|Cxlnxlnx⒃
x411115dxd(1x)C52(1x5)3(1x5)3510(1x)⒄
x3114dxdxx824(x4)22⒅
11x421x42ln|4|Cln|4|C422x282x2
dx11x()dxln|x|ln|1x|Cln||Cx(1x)x1x1x⒆
⒇
cotxdxcosxdxln|sinx|Csinx
(21)
5422cosxdxcosxcosxdx(1sinx)dsinx
21(12sin2xsin4x)dsinxsinxsin3xsin5xC35 dxd(2x)ln|csc2xcot2x|Csinxcosxsin2x(22) 解法一:
dxcosxdxdtanxln|tanx|C2sinxcosxtanxsinxcosx解法二:
159
dx(sin2xcos2x)dxsinxcosxsinxcosx解法三:
(sinxcosx)dxln|sinx|ln|cosx|Ccosxsinx
dxexdxdexxarctaneCxx2x2xe1e1(23) ee
2x3d(x23x8)2dxln|x3x8|C22x3x8(24) x3x8
x22(x1)22(x1)3dx(x1)3dx(x1)312323()dxln|x1|C232x1x1(x1)(x1)2(x1)(25)
(26)
dxx2a2
解 令xatant, 则
asec2tdtln|secttant|C1ln|xx2a2|Casectx2a2 dxdx1x1xd(x2a2)32a2(x2a2)12a2(x2a2)12C(27)
160
解法2 令xatant, 则
dxasec2tdt11xcostdtsintCC2(x2a2)32a3sec3ta2222aaxa
x51x2(28)
dx
解 令xsint, 则
sin5tcostdxdtsin5tdt(1cos2t)2dcostcost1x2135x52121costcos3tcos5tC(1x2)2(1x2)2(1x2)2C3535
(29)
116x3xdx
65解 令xt, 则xt, dx6t
t3t5dt(t2)411(t21)(t6t4t21)1dt13xdx61t261t2dt61t21t7t5t36t16426((ttt1))dt6(t)ln||C27532t11t
x 161
其中tx
16(30)
x11x11dx
2解 令x1t, 则x1t, dx2tdt,
x11x11dxt124t42tdt(1)2tdt(2t)dt(2t4)dtt1t1t1t1t24t4ln|t1|C1x14x14ln|x11|C1x4x14ln|x11|C
2.应用分部积分法求下列不定积分:
x1x2⑴
arcsinxdxxarcsinxdxxarcsinx1x2C
1lnxdxxlnxxdxxlnxxCx⑵
222xcosxdxxdsinxxsinx2xsinxdxx2sinx2xdcosxx2sinx2xcosx2cosxdx⑶
x2sinx2xcosx2sinxC
162
lnx111lnx11lnx1dxlnxddxC322322222xxxx2x4x⑷
⑸
222(lnx)dxx(lnx)2lnxdxx(lnx)2xlnx2xC
1121x22xarctanxdxarctanxdxxarctanxdx22221x⑹
1211121xarctanx(1)dxxarctanx(xarctanx)C222221x 121(x1)arctanxxC22
⑺
[ln(lnx)11]dxln(lnx)dxdxlnxlnx
xln(lnx)x11dxdxxln(lnx)Cxlnxlnx
2xarcsinx1x2⑻
22(arcsinx)dxx(arcsinx)dx
x(arcsinx)22arcsinxd1x2
11x2x(arcsinx)221x2arcsinx21x2
dx
163
x(arcsinx)221x2arcsinx2xC sec⑼ 3xdxsecxdtanxsecxtanxsecxtan2xdx
secxtanxsecx(sec2x1)dxsecxtanxsec3xdxsecxdx
secxtanxsec3xdxln|secxtanx|
所以
3secxdx1secxtanxln|secxtanx|)C2
⑽
x2a2dxxx2a2xxxa22dx
xxa(xa2222a2xa22)dx
xxaxadx2222a2xa22dx
xx2a2x2a2dxa2ln(xx2a2)
所以
x2a2dx1(xx2a2a2ln(xx2a2))C2
164
类似地可得
1(xx2a2a2ln(xx2a2))C2
x2a2dx3.求下列不定积分:
1[f(x)]a1Ca1
⑴
aa[f(x)]f(x)dx[f(x)]df(x)f(x)1dx1[f(x)]21[f(x)]2df(x)arctanf(x)C⑵
⑶
f(x)df(x)dxln|f(x)|Cf(x)f(x)
⑷
f(x)f(x)f(x)ef(x)dxedf(x)eC
4.证明:
1tann1xIn2n1
⑴ 若
Intanxdxn,n2,3,,则
In证
Intann2x(sec2x1)dxtann2xsec2xdxtann2xdx
165
tann2xdtanxIn2.
tan因为n2xdtanxtann1x(n2)tann2xdtanx,
所以
n2tanxdtanx1tann1xn1.
从而
In1tann1xIn2n1.
⑵ 若
I(m,n)cosmxsinnxdx,则当mn0时,
cosm1xsinn1xm1I(m,n)I(m2,n)mnmn cosm1xsinn1xn1I(m,n2)mnmn,n,m2,3,
证
I(m,n)cosmxsinnxdx1m1n1cosxdsinxn1
1[cosm1xsinn1x(m1)cosm2xsinn2xdx]n1 1[cosm1xsinn1x(m1)cosm2xsinnx(1cos2x)dx]n1
166
1[cosm1xsinn1x(m1)(I(m2,n)I(m,n))]n1
cosm1xsinn1xm1I(m,n)I(m2,n)mnmn所以,
cosm1xsinn1xn1I(m,n)I(m,n2)mnmn同理可得
P.199 习题
1.求下列不定积分:
x3x31112dxdx(xx1)dxx1x1x1⑴
x3x2xln|x1|C32
x221(x4)2x27x12dx(x4x3)dxln|x3|C⑵ 解法一:
解法二:
x212x713dxdxdxx27x122x27x122x27x12
167
1d(x27x12)3222x7x1217d(x)712(x)224
13x4ln|x27x12|lnC22x3
11ABxC3221x1x(1x)(1xx)1xx⑶ 解
21A(1xx)(BxC)(1x) 去分母得
令x1,得A13. 再令x0,得AC1,于是C23. 比较上式两端二次幂的系数得 AB0,从而B13,因此
dx1dx1x2112x111dxln|1x|dxdx221x331x31xx2361xx21xx11111(1x)212x12ln|1x|ln(1xx)dxlnarctanC362(x12)23461xx233
dx1(1x2)(x21)11x21x21dxdxdx4444221x21x1x⑷ 解 1x
11111d(x)d(x)221111xdxxdxxx1122122122x2x2x22x22xxxx
1 168
11d(x)d(x)1x1x1122(x)22(x)22xx
11x2x1lnxC1242x2x
122xarctan2x212x22x1arctanln2C482xx2x1
dx(x1)(x21)2⑸
1ABxCDxE22222x1(x1)(x1)x1(x1)解 令, 解得
A111BCDE4, 4, 2, 于是
dx1dx1x11x1dx(x1)(x21)24x14x212(x21)2dx
111111xln|x1|ln(x21)arctanx(arctanx)C4844x214x21
169
1|x1|1x(ln2arctanx2)C24x1x1
x214x251dxdxdx2222(2x22x1)24(2x2x1)2(2x2x1)⑹
4x2d(2x22x1)1dx(2x22x1)2(2x22x1)22x22x1其中
141dxdx2(2x22x1)2[(2x1)21]2[(2x1)21]2d(2x1)
2x1arctan(2x1)2(2x1)1 参见教材P.186 例9或P.193关于Ik的递推公式⑺.
于是,有
x21152x15dxarctan(2x1)C22(2x22x1)242x2x12(2x1)12 5x35arctan(2x1)C22(2x2x1)2
2.求下列不定积分
170
dx⑴ 53cosx
解 令
ttanx2,则
dx53cosxdx2dtdt1d(2t)1arctan2tC2222221t1t14t1(2t)531t2
1xarctan(2tan)C22
dxdxdxdtanx2sin2x2cos2x3sin2x(23tan2x)cos2x(23tan2x)⑵
3tanx)1132arctan(tanx)C326(1tan2x)62
d(dxcosxdx1cosxsinxsinxcosxdx1tanxcosxsinx2cosxsinx⑶
1sinxcosx1d(sinxcosx)(1)dx(dxcosxsinx) 2cosxsinx21(xln|cosxsinx|)C2
171
另解:设
I1cosxdxsinxdxI2cosxsinx,cosxsinx,
则
I1I2cosxsinxdxxCcosxsinx,
I1I2cosxsinxd(cosxsinx)dxln|cosxsinx|Ccosxsinxcosxsinx
dx1I(xln|cosxsinx|)C12所以1tanx
⑷
x21xx2dx1xx2dx(x1)dx1xx2
1xx2dx1(2x1)dx3dx21xx221xx2
其中(利用教材P.185例7的结果)
1xx2dx51152x11(x)2dx[arcsin(x)1xx2]422425
(2x1)dx1xx2d(1xx2)1xx221xx2
172
dx1xx2dx51(x)242arcsin2x15
所以有
x21xx2dx
152x11132x1[arcsin(x)1xx2]21xx2arcsinC2422255 72x12x3arcsin1xx2C845
⑸
dxxx21d(x)12ln|xx2x|C211(x)224
12⑹ x1xdx1x
4tdt1x1t2dxtx222(1t),代入原式得 1x解 令 ,则1t,
1x2
1t21xdx1t21x4t4t21t21t(1t2)2dt(1t2)2dt4(1t2)2dt
173
2
4111112dt4dt4dt[(1t2)21t2(1t)2(1t)21t2]dt1t2 1111t11dt[]dtln||C(1t)2(1t)21t1t1t1t2
211x21x2ln||Cxx
总 练 习 题
求下列不定积分:
⑴
x23x14xdx(x2x141124241244x)dxx4xxC5133
145133⑵
xarcsinxdx112122arcsinxdx[xarcsinxxdx]2221x
其中
sin2t1cos2t11dxcostdtdt(tsin2t)cost2221x2
x21(arcsinxx1x2)2
174
1212xarcsinxdx[xarcsinxx1x2dx]2所以
11[x2arcsinx(arcsinxx1x2)]C22 1211xarcsinxarcsinxx1x2C244
dxx
⑶
1解 令xu,则dx2udu
dxx2udu12(1)du2(uln|1u|)C1u1u
12(xln|1x|)C
sinxsinxsinxsinxesin2xdx2esinxcosxdx2esinxdsinx2sinxde⑷
2(esinxsinxesinxdsinx)2(esinxsinxesinx)C2esinx(sinx1)C
⑸
exdx(令xu)eu2udu2(euueu)C2ex(x1)C
175
x⑹
dxx21dxx211x211d()arcsinCxx112x
1解法二:令xsect,
dxx21secttant1dttCarccosCsecttantxx
1tanxcosxsinxd(cosxsinx)dxdxcosxsinxcosxsinx
⑺ 1tanxln|cosxsinx|C
1tanxdxtan(x)dxln|cos(x)|C1tanx44
x2x(x2)23(x2)231dxdxln|x2|C32(x2)3x2(x2)(x2)⑻
dxdx122secx(1tanx)dtanxtanxtan3xC423cosx⑼cosx
1cos2x2422sinxdx(sinx)dx()dx2⑽
176
111cos4x2(12cos2xcos2x)dx(12cos2x)dx442 1xsin4x311(xsin2x)Cxsin2xsin4xC4288432
x5dx32⑾ x3x4
x5x5dxx33x24(x1)(x2)2dx解
x5ABC22x1x2(x1)(x2)(x2)令
2去分母得:x5A(x2)B(x1)(x2)C(x1)
解得:
A22B3,3,C1
x521211dxdxdxx33x24x13x2(x2)2dx3所以
2x21ln||C3x1x2
⑿
arctan(1x)dx
177
解 令1xu,dx2(u1)du
arctan(1x)dxarctanu2(u1)du2arctanuudu2arctanudu
[(u21)arctanuu]2uarctanuln(1u2)C1
xarctan(1x)xln(2x2x)C
x7x72x32x32x33dxdx(x4)dx44x2x2⒀ x2
141xln(x42)C42
x7x4x3121414dxdx(1)dxxln(x42)C444442x2x2另解:x2
tanxdx21tanxtanx⒁
解 令tanxu
tanxu111dxdudu1tanxtan2x1uu21u21u21uu2du
178
arctanu23arctan2u13Cx23arctan2tanx13C
x2(1x)22(1x)1dx100(1x)100dx(1x)⒂
111C99989799(1x)49(1x)97(1x)
arcsinx1arcsinx1dxarcsinxddxx22xxx1x⒃
arcsinx11x2ln||Cxx
⒄
xln1x1dxx[ln(1x)ln(1x)]dx[ln(1x)ln(1x)]dx21x2
121211x211xx[ln(1x)ln(1x)]x()dxlnxC221x1x21x
⒅
1sinxcosx7dx1tanxcosx4dx1tan2xtanxdtanx
12tanx(1tan2x)C5
179
21x2ex2xx1x2xxe()dxedxdxe1x2(1x2)21x2(1x2)2dx⒆
xex1exexexexxdxeddxdxC1x21x21x21x21x21x2
vnu⒇
Indx,ua1b1x,va2b2x
解
Invnudx2n2nvdu[vunub2vn1dx]b1b1
b2uvn1(b1va1b2a2b1)vn12n2n[vundx][vundx]b1buu1
2n[vunb1Inn(a1b2a2b1)In1]b1
2[vnun(a1b2a2b1)In1](2n1)b1
所以
In 180
因篇幅问题不能全部显示,请点此查看更多更全内容