搜索
您的当前位置:首页正文

生物技术综述

来源:筏尚旅游网


生物技术在医学、制药领域的应用及展望

摘要:随着基因克隆技术趋向成熟和基因测序工作逐步完善,后基因时代逐步到来。人们逐渐认识到,无论健康或疾病都是生物分子的相互作用的结果,生物分子起关键性作用。近十年,分子生物技术已成为医学领域极其有力的研究工具。生物传感器、基因芯片技术、分子生物芯片技术、分子生物纳米技术在医学研究中得到广泛应用。同时,在结构基因组学、功能基因组学和环境基因组学逢勃发展的形势下,分子生物医学技术将会取得突破性进展,也给医学带来了崭新的局面,为医学事业的发展提供了新的机遇。现代生物技术制药工业始于1971年,现已创造出35个重要治疗药物,全球大约有2500多家公司,主要产品有重组蛋白质药品、重组疫苗和诊断、治疗用的单克隆机体三大类。我国自80年代开始进行现代生物技术药品的研究和开发,到1998年7月底,我国已有近200多个现代生物技术制药企业,已有14种现代生物技术药品和疫苗投产,已经批准进入临床的有近10种药,正在进行临床前研究的有10多种。在采用现代生物技术改造传统生物技术制药产业方面已取得初步成果。但我国生物技术诊断试剂、酶工程、动植物细胞工程医药产品、现代生物技术支撑技术、后处理技术和制剂技术等方面与国外还存在差距。其中不重视中试放大过程是影响我国生物技术产业化发展的一个很重要的原因。

前言: 二十一世纪,生物医学发展的主要特点之一是对生命现象和疾病本质的认识逐渐向分子水平深入。DNA双螺旋结构的发现为分子医学和基因医学的发展奠定了基础。事实上,无论健康或疾病状态都是生物分子及相互作用的结果,生物分子中起关键性作用者为基因及其表达产物蛋白质。因此,从本质上说,所有的疾病都可以被认为是“基因病”。近十年来,分子生物技术已成为医学领域最有力的研究工具。生物传感器、分子生物纳米技术、分子生物芯片技术、基因芯片技术等等在医学中的重要性正在突出显现。

生物技术药物(biotech drugs)或称生物药物(biopharmaceutics)是集生物学、医学、

药学的先进技术为一体,以组合化学、药学、基因功能抗原学、生物信息学等高技术为依托,以分子遗传学、分子生物、生物物理等基础学科的突破为后盾形成的产业。现在,世界生物制药技术的产业化已进入投资收获期,生物技术药品已应用和渗透到医药、保健食品和日化产品等各个领域,尤其在新药研究、开发、生产和改造传统制药工业中得到日益广泛的应用,生物制药产业已成为最活跃、进展最快的产业之一。有些学者认为,20世纪的科学技术是以物理学和化学的成就占主导地位,而21世纪的科学技术是以生物学的成就占主导地位。无论这种说法是否得到普遍的认同,生物技术是当今高技术中发展最快的领域似乎是不争的事实。 科学家预测,生命科学到2015年会取得革命性进展。这些进展可以帮助人类解决很多目前无法医治的疾病的治疗问题,彻底消除营养不良,改善食品的生产方式,消除各种污染,延长人类寿命,提高生命质量,为社会安全和刑侦提供新的手段。有些成果还可以帮助人类加速植物和动物的人工进化以及改善生态环境对人类的影响等。产生新的有机生命的研究也会取得进展。

1、生物技术在医学领域的重要应用

1.1生物传感器在医学中的应用

生物传感器是传感器的一种,它是一门由生物、化学、物理、医学、电子科技等多种学科互相渗透成长起来的高新技术,在生物、医学、环境监测、食品及军事等领域有着重要应用价值,已引起世界各国的极大关注。

生物传感器是利用一定的生物或化学固定技术,将生物识别元件(如酶、抗体、抗原、蛋白、核酸、受体、细胞、微生物、动植物组织)固定在换能器上,当待测物与生物识别元件发生特异性反应后,通过换能器将所产生的反应结果转变为可以输出、检测的电信号和光信号等,以此对待测物质进行定性和定量分析,从而达到检测分析的目的。生物传感器可以广泛地

应用于对体液中的微量蛋白、小分子有机物、核酸等多种物质的检测。在现代医学检验中,这些项目是临床诊断和病情分析的重要依据。能够在体内实时监控的生物传感器对于手术中或重症监护的病人都很有帮助。生物传感器在医学领域发挥着越来越大的作用:在临床医学中,酶电极是最早研制且应用最多的一种传感器,利用具有不同生物特性的微生物代替酶,可制成微生物传感器;在军事医学中,对生物毒素的及时快速检测是防御生物武器的有效措施。生物传感器已应用于检测多种病菌、病毒及其毒素。生物传感器还可以用来测量乙酸、乳素、尿酸、尿素、抗生素、谷氨酸等各种氨基酸,以及各种致癌和质变物质。

1.2分子生物纳米技术在医学中的应用

1.2.1分子生物纳米技术在基因诊断中的应用

基因诊断是利用分子杂交及荧光技术检测DNA片段,已经为基因诊断在临床上的应用带来了巨大的发展前景。研究表明,利用纳米技术,如利用金纳米微粒结合杂交DNA片段,很容易进入机体细胞核,并与核内染色体组合,具有较高的特异性,可以克服目前基因诊断所面临的一些困难和问题,进一步提高了基因诊断在实验室中的地位。科学家通过超顺磁性氧化铁纳米粒脂质体对肝癌的研究,提高了直径3 mm以下的肿瘤检测率。结论表明,纳米微粒对肿瘤早期发现、早期诊断具有重要意义。

1.2.2分子生物纳米技术在医学制药中的应用

分子生物技术发展的一个重要方向是医学制药的研究与开发。与传统的化学合成制药相比,它不仅具有针对性强、疗效好、副作用较小的优点,同时对蛋白质药物改造、提高疗效、降低毒性、提高稳定性具有重要作用,并且能够利用生物系统,将自然界中存在的含量极低的有效生物活性物质进行大规模生产以及建立起高效、快速、准确、简便的分子诊断技术和

开发出新药,更重要的是可以预防和治疗一些应用传统治疗方法无法克服的疾病。目前这一领域的应用主要包括以下几个方面:生产基因工程药物;生产发酵工程药物;生产核酸类药物;利用生物系统加工天然药物;从海洋生物中纯化提取药物。

1.2.3分子纳米技术在基因疗法中的应用

基因治疗是临床治疗学上的重大发展,其基本原理是:质粒DNA进入目的细胞后,可以修复遗传错误,或可产生治疗因子,如多肽、蛋白质、抗原等,纳米技术能使DNA通过主动靶向作用定位于细胞。将质粒DNA缩小到50~200nm,带上负电荷进入到细胞核,插入到细胞核DNA的确切部位,起到对症治疗效果。同时分子纳米技术能够快速有效地确定基因序列、基因和药物的体内走向、传送和定位传递,使临床诊断和治疗过程效率得以提高。同时无机纳米颗粒体积小,可在血管中随血液循环,透过血管壁进入各个脏器的细胞中,作为新型非病毒型基因载体能有效介导DNA的转导,并使其在细胞内高水平的表达,从而为基因表达、功能研究及基因治疗提供了新的技术和手段。

1.3分子生物芯片技术在医学检验中的应用

随着分子生物学的发展及人们对疾病过程的认识加深,随着人类基因组计划(HGP)的完成,蛋白质组计划也已经启动,基因序列数据、蛋白序列和功能数据以惊人的速度增长,而传统的生物技术已经不能满足数据倍增的要求,生命科学需要更快捷、更准确的自动化的生物技术,而生物芯片在这种情况下应运而生。所谓的生物芯片是指将大量探针分子固定于支持物上(通常支持物上的一个点代表一种分子探针),并与标记的样品杂交或反应,通过自动化仪器检测杂交或反应信号的强度而判断样品中靶分子的数量。在检测病原菌方面,由于大部分细菌、病毒的基因组测序已完成,将许多代表每种微生物的特殊基因制成1张芯片,通过反转录可检测标本中的有无病原体基因的表达及表达的情况,以判断病人感染病原及感染的进

程、宿主的反应。由于P53抑癌基因在多数肿瘤中均发生突变,因此其实是重要的肿瘤诊断靶基因。

1.4基因芯片技术在医学中的应用

生物芯片技术是随着“人类基因组计划”的进展而发展起来的。它是二十世纪九十年代中期以来影响最深远的科技进展之一,为“后基因组计划”时期基因功能的研究提供了强有力的工具。生物芯片技术包括基因芯片、蛋白质芯片、细胞芯片、组织芯片以及元件型微阵列芯片。它可以大规模、高通量地对成千上万个基因进行同时研究,从而克服了传统分子生物基因测序时,每个核苷酸或突变位点都必须检测出来:如果芯片仅用检测基因表达,只需设计出针对基因中的特定区域的几套寡核苷酸即可。表达检测需要较长的杂交时间。更高的样品浓度和低温度,这有利于增加检测的特异性和低拷贝基因检测的灵敏度。突变检测需要鉴别出单碱基错配,需要更高的杂交严谨性和更短的时间。生物芯片技术主要应用于测序、寻找与疾病有关的新基因、基因表达分析和药物研究与开发等等。

2、生物技术在医学领域中应用前景

在新的世纪里,生命科学的新发现,生物技术的新突破,生物技术产业的新发展将极大地改变人类及其社会发展的进程。日益成熟的转基因技术、克隆技术以及正在加速发展的基因组学技术和蛋白质组技术、生物信息技术、生物芯片技术、干细胞组织工程等关键技术,正在推动生物技术产业成为新世纪最重要的产业之一,深刻地改变人类的医疗卫生、农业、人口和食品状况。尽管世界各国对高科技领域范围的界定不完全相同,但几乎无一例外地将生命科学和生物技术放在重要位置。特别是近二十年来,生命科学与生物技术获得了飞速发展,为世界各国医疗业、制药业、农业、环保业等行业开辟了广阔发展前景。世界上许多国家已把发展生命科 学、生物技术及其产业作为赢得未来竞争的战略选择。

目前,生命科学的研究热点仍然集中在基因组学、蛋白质学等领域。继2000年人类基因组计划完成之后,水稻、疟原虫、蚊子和老鼠的全部DNA序列测定也在2002年完成,这些研究成果都直接与粮食生产和人类健康有关。老鼠和河豚鱼基因序列的测定,将可能为人类提供关于脊椎动物进化的重要线索。特别是科学家们已经把目光投入到功能基因组学(Functional Genomics)和蛋白质组学(Proteomics)这两个极富挑战性的领域,这将带来更多与人类自身发展密切关联的重大研究成果。

当代科学技术发展正在呈现出前所未有的技术融合趋势。特别是生物技术与其他高技术的融合,形成了生物芯片、生物信息、生物材料、生物物能源、生物光电、生物传感器等高技术领域,产生了生物技术群。比如,生物芯片技术的开发和运用,将在生物学和医学基础研究、疾病诊断、新药开发、食品、农业、环保等广泛领域中开辟一条全新的道路,改变生命科学的研究方式,革新医学诊断和治疗。据Goldman Sachs最新技术报告显示,美国的IBM、Sun、康柏和摩托罗拉等公司都已与生物技术公司达成了广泛合作意向,内容涉及到DNA敏感基因芯片、通过计算机模拟药效等各种技术领域。据有关专家估计,到2010年全球仅生物芯片的市场就将达到600亿美元。科技发展的这一突出现象以及由此带来的产业深层次变革,已经引起许多国家的高度关注。

3.生物制药现状

目前生物制药主要集中在以下几个方向:

3.1肿瘤 在全世界肿瘤死亡率居首位,美国每年诊断为肿瘤的患者为100万,死于肿瘤者达54.7万。用于肿瘤的治疗费用1020亿美元。肿瘤是多机制的复杂疾病,目前仍用早期诊断、放疗、化疗等综合手段治疗。今后10年抗肿瘤生物药物会急剧增加。如应用基因工程抗体抑制肿瘤,应用导向IL-2受体的融合毒素治疗CTCL肿瘤,应用基因治疗

法治疗肿瘤(如应用γ-干扰素基因治疗骨髓瘤)。基质金属蛋白酶抑制剂(TNMPs)可抑制肿瘤血管生长,阻止肿瘤生长与转移。这类抑制剂有可能成为广谱抗肿瘤治疗剂,已有3种化合物进入临床试验。

3.2神经退化性疾病 老年痴呆症、帕金森氏病、脑中风及脊椎外伤的生物技术药物治疗,胰岛素生长因子rhIGF-1已进入Ⅲ期临床。神经生长因子(NGF)和BDNF(脑源神经营养因子)用于治疗末稍神经炎,肌萎缩硬化症,均已进入Ⅲ期临床。美国每年有中风患者60万,死于中风的人数达15万。中风症的有效防治药物不多,尤其是可治疗不可逆脑损伤的药物更少,Cerestal已证明对中风患者的脑力能有明显改善和稳定作用,现已进入Ⅲ期临床。Genentech的溶栓活性酶(Activase重组tPA)用于中风患者治疗,可以消除症状30%。

3.3自身免疫性疾病 许多炎症由自身免疫缺陷引起,如哮喘、风湿性关节炎、多发性硬化症、红斑狼疮等。风湿性关节炎患者多于4000万,每年医疗费达上千亿美元,一些制药公司正在积极攻克这类疾病。如 Genentech公司研究一种人源化单克隆抗体免疫球蛋白E用于治疗哮喘,已进入Ⅱ期临床;Cetor′s公司研制一种TNF-α抗体用于治疗风湿性关节炎,有效率达80%。Chiron公司的β-干扰素用于治疗多发性硬化病。还有的公司在应用基因疗法治疗糖尿病,如将胰岛素基因导入患者的皮肤细胞,再将细胞注入人体,使工程细胞产生全程胰岛素供应。

3.4冠心病 美国有100万人死于冠心病,每年治疗费用高于1 170亿美元。今后10年,防治冠心病的药物将是制药工业的重要增长点。Centocor′s Reopro公司应用单克隆抗体治疗冠心病的心绞痛和恢复心脏功能取得成功,这标志着一种新型冠心病治疗药物的诞生。基因组科学的建立与基因操作技术的日益成熟,使基因治疗与基因测序技术的商业化成为可能,正在达到未来治疗学的新高度。转基因技术用于构造转基因植物和转基因动

物,已逐渐进入产业阶段,用转基因绵羊生产蛋白酶抑制剂ATT,用于治疗肺气肿和囊性纤维变性,已进入Ⅱ,Ⅲ期临床。大量的研究成果表明转基因动、植物将成为未来制药工业的另一个重要发展领域。

4.生物制药展望

据Parexel′s pharmaceutical R&D statistical source book报告,已有723种生物技术药物正在进行通过FDA审批(包括Ⅰ~Ⅲ期临床及FDA评估),还有700种药物在早期研究阶段(研究与临床前),有200种以上产品已到最后批准阶段(Ⅲ期临床与FDA评估)。根据Consulting Resources Corporation统计,生物技术药物的销售规模将从1996年的100亿元扩大到2006年的320亿美元。治疗药物平均年增长16%,诊断药物年增长9%,将达到40亿美元。

在284种开发的生物技术药物中有2/5用于多种肿瘤的治疗,如脑瘤、直肠癌和乳腺癌。发展最快的是基因治疗剂,美国FDA已批准100多个基因治疗方案进入临床试验。基因治疗的主要对象是囊性纤维变性、癌症、艾滋病及Gaucher′s症。phRMA主席Gerald J Mossinghoff预言,再过10年,生物技术将使许多老年性疾病得到治疗,是新药“黄金时代”的新开端。

开发中的生物技术疫苗迅速增加,年增加品种达44%(达66种),用于癌症、艾滋病、类风湿性关节炎、镰刀形贫血、骨质疏松症、百日咳、多发性硬化症、生殖器疱疹、乙型肝炎及其它感染性疾病。最近生物技术药物还试用于普通感冒、帕金森氏症、遗传性慢性舞蹈症。

快速基因测序技术的进展,使诊断工具日益专一、快速,检测有关疾病的发病基因使

疾病诊断进入一个新阶段。如hMLHI基因与30%继发性肿瘤相关,P53基因涉及到近一半的肿瘤。Alzheimer′s高胆固醇症与精神分裂症基因诊断研究也已取得进展。有些疾病,如肿瘤与心脏病是多基因性的疾病,因此一种疾病一种药物的治疗模式已愈来愈行不通,针对个体发病的基因型差异选用特殊治疗手段将会诞生新的医药市场。10年内基因操作将从占近代疾病检查中的0.5%扩大到占全部诊断检查的8%,到2000年基因操作将达到20亿美元的市场效益。今后10年生物技术将对当代重大疾病治疗剂创造更多的有效药物,并在所有前沿性的医学领域形成新领域。

结论:二十一世纪是分子生物学继续发展的阶段,还有不少技术热点正在成熟。如用转基因动植物来生产生物工程产品;基于基因芯片技术中缩微芯片实验室等等。随着分子生物技术研究的不断进步和应用,随着多科学交叉,大科学时代的到来,分子生物技术将日臻完善。可以预见在几年内,子生物技术将改变医学的研究方式,革新医学诊断和治疗,从而进一步促进人类 健康水平的提高。现代生物技术在众多领域都起到了重要作用,其在医学领域的应用可以说改变了现代医学的发展,对人类基因和遗传学的研究,帮助人类在医学领域逐渐改变被动的地位,由疾病的治疗向疾病的预防发展,利用生物技术对人类自身的研究,使得医学研究的范围开始扩大化。医学技术,医学手段在生物技术的发展下也迅速发展,在将来,生物技术将成为现代医学不可或缺的重要组成部分

综合多学科的努力,通过新技术的创立可以大大拓宽发明新药的空间,增加发明新药的机遇与速度。通过这些手段可以寻找快速鉴定药物作用的靶,更有效地发现更多新的先导物化学实体,从而为发明新药提供更加广阔的前景。

参考文献:1、马大龙,生物工程进展

2、莽克强,生物工程进展

3、熊宗贵.生物技术制药[M].北京:高等教育出版社,1999.52-93.

4、白文齐.国内外生物制药现状及发展前景[M].北京:化学工业出版社,2004.63-75.

5、张惠斌.未来药学的发展趋势及药学人才培养的要求[J].药学教育,2000,2:1.

6、百度百科

宋扬

生技1212

1220212206

因篇幅问题不能全部显示,请点此查看更多更全内容

Top