您好,欢迎来到筏尚旅游网。
搜索
您的当前位置:首页An overview on plant cuticle biomechanics

An overview on plant cuticle biomechanics

来源:筏尚旅游网
PlantScience181(2011)77–84

ContentslistsavailableatScienceDirect

PlantScience

journalhomepage:www.elsevier.com/locate/plantsci

Review

Anoverviewonplantcuticlebiomechanics

EvaDomíngueza,JesúsCuarteroa,AntonioHerediab,∗

ab

EstaciónExperimentalLaMayora,CSIC,E-29750Algarrobo-Costa,Málaga,Spain

DepartamentodeBiologíaMolecularyBioquímica,UniversidaddeMálaga,E-29071Málaga,Spain

article

info

abstract

Articlehistory:

Received3February2011

Receivedinrevisedform11April2011Accepted26April2011

Availableonline4May2011

Keywords:PlantcuticleBiomechanicsTomatofruitCutin

Fruitcracking

Plantbiomechanicscombinestheprinciplesofphysics,chemistryandengineeringtoanswerquestionsaboutplantgrowth,developmentandinteractionwiththeenvironment.Theepidermal-growth-controltheory,postulatedin1867andverifiedin2007,statesthatepidermalcellsdeterminetherateoforganelongationsincetheyareundertension,whileinnertissuesareundercompression.Thelipidcuticlelayerisdepositedonthesurfaceofouterepidermalcellwallsandmodifiesthechemicalandmechanicalnatureofthesecellwalls.Thus,theplantcuticleplaysakeyroleinplantinteractionwiththeenvi-ronmentandincontrollingorganexpansion.Rheologicalanalysesindicatethatthecuticleisamostlyviscoelasticandstrain-hardeningmaterialthatstiffensthecomparativelymoreelasticepidermalcellwalls.Cuticlestiffnesscanbeattributedtopolysaccharidesandflavonoidspresentinthecuticlewhereasacutinmatrixismainlyresponsibleforitsextensibility.Environmentalconditionssuchastemperatureandrelativehumidityhaveaplasticizingeffectonthemechanicalpropertiesofcuticlesincetheylowercuticlestiffnessandstrength.

Theexternalappearanceofagriculturalcommodities,especiallyfruits,isofgreateconomicvalue.Mechanicalpropertiesofthecuticlecanhaveapositiveornegativeeffectondisorderslikefruitcracking,fungalpathogenpenetrationandpestinfestation.Cuticlerheologyhassignificantvariabilitywithinaspeciesandthuscanbesubjectedtoselectioninordertobreedcultivarsresistanttopests,infestationanddisorders.

©2011ElsevierIrelandLtd.Allrightsreserved.

Contents1.2.3.4.

5.

6.7.8.

Introduction:theplantcuticle.......................................................................................................................Generalaspectsonplantbiomechanics..............................................................................................................Cuticlebiomechanics:ageneralview................................................................................................................Thecompositionofcuticleanditsroleinmechanicalproperties...................................................................................4.1.Cutinandpolysaccharides....................................................................................................................4.2.Waxesandflavonoids.........................................................................................................................Environmentalconditions............................................................................................................................5.1.Hydration.....................................................................................................................................5.2.Temperature..................................................................................................................................Cuticlemechanicsduringgrowth....................................................................................................................Theroleofcuticleinfruitquality:apracticalapproach.............................................................................................Futureandperspectives..............................................................................................................................Acknowledgements..................................................................................................................................References............................................................................................................................................

7878798080808080818181828383

∗Correspondingauthor.Tel.:+34952131940;fax:+34952132000.E-mailaddress:heredia@uma.es(A.Heredia).

0168-9452/$–seefrontmatter©2011ElsevierIrelandLtd.Allrightsreserved.doi:10.1016/j.plantsci.2011.04.016

78

E.Domínguezetal./PlantScience181(2011)77–84

“Therearesolidsinrheology,evenifthey...creep”

MarkusReiner[1]

1.Introduction:theplantcuticle

Plantsprotectthemselvesfromthesurroundingenvironmentwiththeextracellularlipidcuticle.Thismembranecoversaerialpartsofhigherplantssuchasleaves,fruits,flowers,seedsandnon-woodystems[2].Suchamembranenotonlyconstitutestheinterfacebetweentheplantanditsenvironmentbutalsofunc-tionsasapermanentbiologicalbarriercontrollingthediffusionofmolecules.Thus,themainfunctionsascribedtothecuticleareprotectionfromwaterlosswhileatthesametimeregulatinggasexchange,protectingagainstmechanicalinjurycausedbymicroor-ganisms,pestsortheenvironment,attenuatingUVlightsorption,andgeneratingamicroenvironmentsuitableforthegrowthofepiphyticorganismssuchassomebacteria,fungiandarthropods[3].Thecuticleisattachedtoandinteractswiththesubtendingouterepidermalcellwallwhichcanberegardedasacutinizedcellwall.Itsstructure,composition,thickness(submicronstoover10microns)andquantity(fewhundredstooverathousandmicro-gramspersquarecentimeter)varywidelyamongplants,organsandgrowthstages[2,4–6].Leavesareaclearexampleofanasym-metricalpatternofcuticledepositionwithinanorgan;withthickeradaxialthanabaxialcuticles[6].Thesedifferencesplayasignificantroleinthemodificationandadaptationofcuticlepropertiestospe-cificenvironmentalandgrowthconditionsthatcanbeobservedbetweenandwithinorgansanddevelopmentalstages.

Theplantcuticleischaracterizedbyaheterogeneouschemi-calnature.Itsmaincomponentisthebiopolyestercutin,amatrixofpolyhydroxylatedC16and/orC18fattyacidscross-linkedbyesterbonds[5,7].Significantamountsofglyceroloccurinafewcutinmatrixes[8],althoughitsimportanceasamajorcompo-nentofthecutinmatrixneedstobeexplored.Cutanisanotherlipidbiopolymerthatispresentinsomeplantcuticles,eitherasanalternativetoorincombinationwithcutin[9–13].Itiscom-posedofpolyunsaturatedfattyacidderivatives,mostlylinkedbyetherbonds[11],whichrenderamatrixhighlyresistanttochemicaldegradation.Thepotentialadvantagesforplantgrowthofthismorechemically-resistantcuticlematrixdeservefurtherstudy.Waxes,mostlymixturesofC20–C40n-alcohols,n-aldehydes,verylongchainfattyacidsandn-alkanes,canbedepositedonthesurface(epicuticularwaxes)orembeddedinthecutinmatrix(intracutic-ularwaxes).Phenolics,principallycinnamicacidsandflavonoids[14],arealsopresentinthecutinmatrixasminorcompounds.Thisphenolicfractioningymnospermsseemstobemoresignif-icantandispresentintheformoflignin[15].Ontheinnersideofthecuticle,cutinismixedwithpolysaccharidesfromtheepi-dermalcellwall.Thispolysaccharidematerialisphysicallyand/orchemicallyinterconnectedwithcutininanasyetunknownfash-ion.Knowledgeoftheseinterconnections,theirextension,whetherchemicallyreversibleorirreversible,wouldbeofimportancetounderstandcuticledepositionandattachmenttothecellwallandwouldalsohaveanimpactonthethermal,mechanicalandhydricpropertiesoftheplantcuticle.Aschemeofacuticlecross-sectionindicatingitsmaincomponentsispresentedinFig.1.

2.Generalaspectsonplantbiomechanics

Anexternalforceappliedtoamaterialproducesinternalforces(stresses)thatresultindeformation(strain).Strainreflectstheratioofthemagnitudeofadeformeddimensiontothatoftheunde-formeddimension.Stressisdefinedastheamountofforceperareauponwhichitacts.Maximumstrainandbreakingstressareparam-etersthatreflectthestressandstrainobtainedatthebreaking

Fig.1.Schemeofatransversesectionofthecuticleofalandplantrepresentingthelocationofthedifferentcomponents.OEW=outerepidermalwall.

Source[38],withpermissions.

point.Foranygivenmaterialandovercertainrangesofforces,thestressesandstrainsarerelatedtooneanotherbyamodulusthatcanbeusedtodistinguishamongmaterialsundercertainconditionsofloading.ThemodulusthatreflectstheratioofnormalstresstonormalstrainiscalledelasticmodulusorYoung’smodulus.Ahighelasticmodulusisdesirableinstiffstructuresthatresiststresses,whilematerialswithlowelasticmodulusallowlargedeformations[16].

Planttissueshaveacomplexmechanicalbehavior;theyarenei-therelasticsolidsnoridealfluids.Besides,plantscanchangetheirmechanicalpropertiesastheygroworinresponsetoanappliedforce.Thewayamaterialdeformsdependsonthenatureofitsinter-andintra-molecularbonds.Mostplantmaterialsaremainlyviscoelastic,butshowanelasticcomponentatsmalldeformations.Viscoelasticmaterialshaveelasticandviscouscomponents.Thesematerialsundergogreatchangesinshapeandinternalstructurethatincreaseovertime(i.e.,therelationshipbetweenstressandstrainistimedependent)andcanbepartiallyortotallyrecoveredoncetheexternalforcediminishesordisappears.Elasticmaterialshaveaproportionalrelationshipbetweentheappliedstressesandtheresultingstrains(Hooke’slaw),anddeformationandrecoveryafterremovaloftheexternalforceareinstant,nottimedependent.Chemically,theforcesappliedareaddedtothebondingforcesthatholdthemoleculesandmacromoleculestogetherandthisstoredenergyreturnsinstantaneouslytotheoriginalshapewhentheforceisremoved[16,17].Rheologyisthescienceconcernedwiththestudyoftheflowanddeformationofmaterialsthathaveacomplexmolecularstructure(e.g.polymersandsomebiologicalmaterials)andcannotwithstandastressinequilibriumwithoutchangingtheirviscosity[18].

Stress–straindiagramisthemostcommonrepresentationincuticleliteratureofatensilemechanicaltest.Fig.2showsanexam-pleofastress–straincurve.Asitcanbeobserved,deformationofacuticlesubjectedtoarapidandconstantextensionrateproducesagraphwithtwophaseswithdifferentslopes.Thefirstslopecorre-spondstothelinearelasticphase,whichcanbeabsentorhighly

E.Domínguezetal./PlantScience181(2011)77–84

79

5040)aPM30( ssertS20100010203040Strain (%)

Fig.2.Exampleofastress–straincurveshowingtwophases(elasticandviscoelas-tic)withdifferentslopes.Pointsshowpercentageofcuticledeformationafterincreasingloads.

reduceddependingonthesampleandconditions,andthesec-ondtothenon-linearviscoelasticorplasticphase[19,20].Whereasdeformationduringtheelasticphaseisfullyreversible,thesecondphasecorrespondstoamostlyirreversibledeformation.Duringtheviscoelasticorplasticdeformation,thestressneededtostrainthematerialcanincreaseordecrease,showingeitherstrainhardeningorsoftening.Strainhardeningisanincreaseinthestrengthofamaterialduetoorientationofmolecularchainsparalleltotheaxisofstress[16].

3.Cuticlebiomechanics:ageneralview

Thecuticleprotectsplantsbyfulfillingadoublemechanicalrole:itamelioratestheimpactofexternalstressesonplantorgansand,inconjunctionwiththeepidermis,preventsdamagesuchastis-suebreaking.Inaddition,itcontrolsorgangrowthbyimpartingamechanicalrestrainttoinnertissueexpansion[21–23].Epidermalcellsareorganizedinacontinuous(withoutairspacesbetweencells)anduniformmonolayerofstronglyattachedcellswithanasymmetricalcellwalldeposition[24].Thisasymmetryleadstoamuchthickeroutercellwallincomparisonwiththeinnerepi-dermalwallorparenchymacellwalls,althoughhypodermalcellscanalsohavewallthickeningsthatcontributetothemechanicalsupport[21,25].Inaddition,thisoutside/insideasymmetryoftheepidermisisreinforcedbythesecretionofcuticleintothethickenedexternalcellwall.

Theepidermis-growth-controltheorypostulatedin1867andcorroboratedin2007[22]statesthattheepidermisisresponsi-blefortherestrictionoforgangrowth.However,notmuchworkhasbeendonecomparingthemechanicalpropertiesofanintactorgananditsisolatedskin(epidermispluscuticle).Inmostcases,theseexperimentshavebeendonewithcoleoptilesandhypocotylssincetheyrepresenttissuesunderrapidexpansion,withoutsec-ondarygrowth,andcanbeeasilyemployedinmechanicaltests.Resultsindicatedthatthepeelisstretchedorundertension(lon-gitudinalandtransverse)whiletheinnertissuesaremaintainedundercompression.Theskincontractsaround18%uponisola-tionwhiletheinnertissuesexpandabout5%[26].Thisalsoholdstruefortheisolatedcuticle[Heredia,unpublisheddata].Thus,mechanicalcomparisonofanintactcoleoptileandapeeledone(withouttheskin)revealedthattheinnertissuesarecapableofasignificantplasticdeformation,whilenosignificantdifferencesinelasticdeformationwereobservedbetweenintactandpeeledtissue[21,26].Theseresultsindicatethatthepeelisamorerigid

structurethantheinnertissuesandthattheskinismainlyresponsi-bleforthemechanicalpropertiesoftheintactorgan.Thigmonastic(plantnasticresponsetotouch)movementofthistlestaminalfilamentshasbeensuggestedtodependstronglyontheelasticmechanicalpropertiesofthecuticlethatprovidestheforceforfilamentcontraction[27].Strongviscoelasticbehaviorwasalsoobservedinfilamentnasticmovementthatcouldbecorrelatedtoahighratioofpectintocelluloseinthecellwalls[28].

Accordingtoengineeringtheory,stressesarehighestonthesur-faceofabody;therefore,thecuticledepositedontheoutersurfaceoforganswouldplayanimportantroleasastructuralelementaddingmechanicalsupporttotheepidermaltissue[16].How-ever,littleresearchhasbeenperformedtocomparethemechanicalpropertiesoftheepidermalpeelanditsisolatedcuticle[29,30].Althoughtheisolationofastripofepidermislackingcuticlewouldbeidealforstudyingtheprobablemechanicalsynergybetweenepidermalcellsandcuticle,noprocedureknowntodateisabletospecificallyeliminatethecuticlewithoutaffectingthesurroundingtissue.Comparisonoftomatofruitskinandisolatedcuticlerevealedthatthebiomechanicalbehavioroftheskinmirrorsthatofitsiso-latedcuticle,bothbeingisotropic,viscoelasticandstrain-hardeningmaterials[29–31].Themechanicalpropertiesoftheisolatedcuti-cleandskinoftomatofruitswerealsocomparedatdifferentstagesofdevelopment[30].Therewasanincreaseintheelas-ticmodulusduringgrowthtogetherwithatendencytodecreasethemaximumstrainandbreakingstressinboththeskinandcuticle.

Theisolatedcuticleofcherrytomatofruitdisplayedahigherelasticmodulus(E)butalowerworkoffracture(theamountofenergyrequiredtopropagateacrack)thanthepeel[29].Thus,whilethecuticlecanbeinterpretedasamembranethatstiffensthecellwalls,epidermalandsubepidermalcellsgivestrengthtothecuti-cle.Epidermalandsubepidermaltissuesarecapableofsignificantelasticdeformationbeforebreaking[16],theycanbetheninter-pretedasenergysinksthatabsorbstrainenergyastheskindeformssuchthatmoreenergyisrequiredtopropagateacrackthroughcellwallsthanthroughisolatedcuticle[32].Contrarily,comparisonoftheskinanditsisolatedcuticleinnormal-sizedtomatoesshowedahigherE,breakingstressandbreakingstrainintheskinthanintheisolatedcuticle[30].Thesemechanicaldifferencesobserved[29,30]couldbeattributedtothetypeoftomatofruit(cherryvs.normal-sizedvarieties),aneffectofthesolutionemployedtokeepthesampleshydrated,orsimplytothefactthatthesubepidermaltissuewasnotconsidered[30]whenmeasuringthecross-sectionalareaoftheskin.Althoughthecuticlemayhaveasignificantroleinsupportingmechanicalstress,onecannotdismissthemechanicalroleoftheepidermalandhypodermalcells.

Thebiomechanicalnatureoftheisolatedplantcuticlehasbeenmostlystudiedintomatofruitwithafewexceptions.Thetomatofruitcuticlehasamostlyviscoelasticnaturewithanelaticcom-ponentatlowstresses[33].Thismeansthat,inthetime-courseofcuticlecreep,twophasescanbeobserved.Inthefirstphase,thecuticlerespondstoeachloadbyinstantaneousextensionwithnofurtherextensionuntilthenextloadisadded;thestraininthisphaseispurelyelastic.Inthesecondphase,thecuticlerespondsbyinstantaneousextension(elasticstrain)togetherwithsomeaddi-tionalextension(viscoelasticstrain)duringthetimethattheloadismaintained.Thetransitionfromelastictoviscoelasticisusuallygradualwithelasticstrainpredominatingoverviscoelasticstrainatlowerloadsandviscoelasticstrainbeingpredominantatgreaterloads[34].Thisbehaviorimpliesthatthecuticleisstiffandresistsdeformationatlowstresses.Athigherones,itsviscoelasticandstrain-hardeningnatureallowsdeformationandmightthusreduceitsriskofmechanicalfailureduetoenergydissipation.Thegen-eralnatureofthisbehaviorhasbeenconfirmedinseveralotherspeciesaswellasinothertissues[35–37].Asix-foldvariabilityin

80

E.Domínguezetal./PlantScience181(2011)77–84

theelasticmodulushasbeenreportedamongspeciesandtissues(0.2–1.3GPa)[35–37].

4.Thecompositionofcuticleanditsroleinmechanicalproperties

Thecuticleisacomplexcompositemembranethatcontainsremnantsofcellwall,acompositestructureitself[38].Althoughmostcuticlesshareasimilarbasiccomposition,differencesinthepercentageofeachcuticlefractionorinthecompositionofafrac-tionhavebeenfoundbetweenspeciesandorgans.Understandingthepossiblecontributionofcuticlecompositiontoitsbiomechani-calandrheologicalperformanceisofgreatinterest.Littleworkhasbeendoneonthistopic,mostlyduetotheinconveniencesderivedfromtheremovalofaspecificcuticlefractionwithoutaffectingtheremainingmaterialandtothelackofcomparablematerial(samespeciesandgenotype)thatdifferonlyinthecomponentofinter-est.Notwithstanding,somestudieshavepostulatedaneffectofthechemicalcompositionofthecuticleonitsbiomechanics[39,40].Thus,cuticleswithahighcontentoftri-hydroxyC18weremoreeasilydeformed[40]andapossibleroleofglucuronicacidincuticledeformabilitywasalsosuggested[27].

4.1.Cutinandpolysaccharides

Importantmechanicalroleshavebeenascribedtocutinandpolysaccharides,thetwomajorcuticlefractions[34].Abiome-chanicalcomparisonbetweencutinandintactcuticleshowedadecreaseoftheelasticmodulusandbreakingstressinthecutinbyafactorof8–13and2–4,respectively[34].Atthesametime,atwo-foldincreaseinthemaximumstraincouldbeobservedinthecutin,whichonlyshowedaviscoelasticphase.Therefore,itcouldbeconcludedthatthepolysaccharidefractionofthecuticleismainlyresponsibleforthelinearelasticbehaviorofthecuti-cleandhighelasticmodulusandbreakingstress,whereasthecutinmatrixischieflyresponsiblefortheviscoelasticbehaviorandhighmaximumstrain[34].Thepresenceofapolysaccha-ridefractioninthecuticle,andthemodificationofthecuticle’smechanicalpropertiesoncethisfractionisremoved,isaclearsignofthesignificantcontributionoftheepidermalcellwalltotheoverallmechanicalbehaviorofthecuticle.Unfortunately,thisepi-dermalmaterialcannotbeisolatedinordertobetested.However,estimationofitselasticmodulususingaVoigt-modelindicatedavaluemuchlowerthantheoneobservedfortheisolatedcuti-cleorskin,andsimilartotheonereportedintheliteratureforhypodermaltissue[29,41].Thefactthatthepolysaccharidefrac-tionofthecuticleischieflyresponsibleofthecuticle’shighelasticmodulus,butthatthisepidermalcellwallfractionisestimatedtohavealowelasticmodulusitself,impliesasignificantsynergyinthemechanicalpropertiesbetweenthecellwallandthecutinmatrix.

4.2.Waxesandflavonoids

Theroleofcuticularwaxesonthemechanicsoftomatofruitcuticlehasalsobeenstudied[33].Waxesactasfillers,sincetheirremovalcausedadecreaseinbreakingstressandanincreaseintheplasticbehavior[33].Unfortunately,onlythemechanicalroleoftotalwaxeshasbeenstudied,althoughmostauthorsagreethattheirroleasfillerscanonlybeattributedtointracuticularwaxes[37],withepicuticularwaxesmakingalimitedcontribution,ifany,totheoverallmechanicalproperties.Nevertheless,itwouldbenec-essarytoverifythisassumptionbycomparingthecontributionofeachwaxfractiontocuticlemechanics.

Finally,thecontributionofphenolics,mostlyflavonoids,hasbeenrecentlyanalyzed.Tomatofruitcuticleaccumulates

flavonoidsduringtheripeningprocess,turningfromcolorlesstoayellow-orangecolor.Thereareseveralknownmutationsintomatowithacolorlesscuticleatmaturityduetothelackofflavonoids.Cuticlebiomechanicalanalysesoftwoofthesemutants,non-ripening(nor)andcolorlessfruitepidermis(y),havebeenperformed[42,43].Thecuticleofnorwassignificantlylessstiffandweakeratmaturitycomparedtothewild-type[42].Thisresultsuggestedapossibleroleofflavonoidsintheincreaseofstiffnessobservedintomatoesduringripening[42].Cuticleoftheymutanthadalowerelasticphaseandconsiderablehigherviscoelasticonecomparedtothewild-typecuticle[43].Examinationofthebiomechanicaldif-ferencesfoundbetweenredripeandmaturegreentomatoshowedthatcuticleswerelessrigidandmoredeformableatmaturegreen,wherenoflavonoidshadaccumulatedyet[34].However,thispro-posedroleofflavonoidsincuticlestiffnesscouldalsobeattributedtootherchanges,suchaspolysaccharidesorchemicalmodificationofthecutinmatrix,observedbetweendevelopmentalstages,orbetweenthewild-typesandbothnorandymutantcuticles.Lately,tomatonaturalvariabilityhasbeenusedtostudythemechanicalroleofflavonoids[44].Genotypeswithflavonoidsinthecuticleatredripeshowedamarkedincreaseinstiffnessduringtheripeningperiod.Bycontrast,tomatoesthatdidnotaccumulateflavonoidsshowedacuticlerheologicalbehavioratredripesimilartomaturegreen,mostlyviscoelasticwithlowstiffness[44].Tosummarize,flavonoidsreinforcetheelasticcontributionofthepolysaccharidefractionand,togetherwithwaxes,playaroleasfillers,sincebothseemtoreducecutinmatrixmobilityandactascompoundsthatincreasecuticlerigidity.

5.Environmentalconditions

Asithasbeendiscussedinarecentandcomprehensivereview,environmentalconditionssuchashydrationandtemperaturearekeyfactorsinthebiophysicalbehaviorofplantcuticlesand,conse-quently,intheirbiomechanicalproperties[38].

5.1.Hydration

Studiesoncuticlewatersorptionhavebeenperformedonalimitednumberofplantspecies.Fruitandleafcuticleshaveawatersorptionbetween1and8%oftheinitialcuticledryweight[45–47].Waxremovaldidnotmodifythecuticlewatersorp-tion,butisolatedcutinhadadrasticallyreducedsorptioncapacity(around63%)incomparisontothecuticle[45].Thisindicatesthatpolysaccharidesareprimarilyresponsibleforcuticlewatersorption[45,46].Intomatofruitcuticle,waterclustering(accumulationofwaterinaliquidstate)above60%relativehumiditywaspredictedtogetherwiththeexistence,attheintramolecularlevel,ofwaterbindingsitesofvariablestrength[47].Watersorption–desorptionincuticleshasasignificantdegreeofhysteresis;thatis,theratesofwatersorptionanddesorptionaredifferent[15].Plantcuticlesreadilyabsorbwaterbutstronglyretainitinitsstruc-ture,makingwaterdesorptionaslowerprocessincomparisontosorption[15].

Theeffectofthewaterhydrationstatusoncuticlebiomechanicshasbeenstudiedinseveralleafandfruitcuticles.Watercausedageneraldecrease,between35and50%,intheelasticmodulusandanincreaseintotalextensibility(deformation)[33,34,36].Asimilareffectofwateronthesurfaceelasticmoduluswasobservedinnanomechanicalstudiesoftomatofruitcuticle[48].Hence,wateractsasaplasticizerincreasingtheviscouscomponentofthecuticleandmodifyingitsmacroscopicappearance.Theeffectofwateronthemechanicalpropertiesofeachcuticlecomponenthasrecentlybeenstudied[34].Waterhadahigh(seven-fold)softeningeffectonthecuticlebutalow(1.5-fold)effectonthecutinmatrix,the

E.Domínguezetal./PlantScience181(2011)77–84

81

maincuticlecomponent.Nosofteningeffectofwateronflavonoidswasrecorded,despitetheirsignificantcontributiontotheoverallcuticlestiffness[44].Flavonoidsintrinsichydrophobicity[49]andintramolecularlocalizationasisolatedclustersinthecutinmatrixmightwellexplainthisbehavior.

Takentogether,theaboveresultsindicatethatpolysaccharidesplayacrucialroleinthecuticlerheologicalbehavior.Theyareresponsible,alongwithflavonoids,fortheelasticbehavioratlowstressesand,atthesametime,theyarethecuticlecomponentthatmainlyinteractswithwater.Thus,atlowrelativehumidity,cuticleappearsasastiffcompositematerialsincedrycrystallinecelluloseandhemicellulosesareverystiff[50]and,athighrelativehumidityorwetconditions,polysaccharidessorbwater,swellandsoftenduetothewaterplasticizingeffect.

5.2.Temperature

Fruitandleafepidermisesarephysicallyexposedtoawiderangeoftemperaturesthathaveconsequencesonplantorgantranspira-tion,growthandbiochemicalmetabolism.Plantbiopolymersarestronglyinfluencedbytemperaturechanges,butonlyafewstud-iesonthistopiccanbefoundintheliteratureaboutplantcuticles.Atransitiontemperature,between25and30◦Chasbeenobservedintomatofruitcuticlethatcanbeattributedtocutin[20,51].Thistemperature,withinthephysiologicallysignificantrange,repre-sentsasecond-orderphasetransitionorglasstransitionthatmarkstheborderbetweenarigidmacromolecularstage,likeglass,atlowertemperaturesandaviscousstageabovethetransitiontem-perature,i.e.,athighertemperatures.Cuticlemechanicsshowedastrongdependenceofcuticlestrengthandstiffnessontempera-ture[20,36].Hence,anincreaseintemperaturewasaccompaniedbyadecreaseincuticleandcutinstrengthandstiffness.Unfortu-nately,themechanicalroleoftemperaturehasonlybeenanalyzedintomatofruitcuticleand,althoughthecutinmatrixseemstoberesponsibleforthissofteningeffect,theroleofothercuticlecom-ponentsneedstobetested.

Finally,theoverallrheologicalbehaviorofthecuticlecannotbeunderstoodwithouttakingintoaccountthecloserelation-shipbetweenwaterandtemperature:thehighertherelativehumidityandtemperature,thelowerthecuticlestrengthandstiffness[20,34,36].Thus,thesignificanceofadynamicplantouterenvelopethatmodifiesitsmechanicalpropertiesaccord-ingtochangesinenvironmentalconditions,seasonallyorevendaily,seemstobeclear.Asithasbeenthoroughlydiscussed,hydric,thermalandmechanicalpropertiesconstitutethebasisforunderstandingthebiophysicalbehaviorofisolatedplantcuticles[38].Abehavior,variablewithinlimits,whichdeservesfurtherresearch.

6.Cuticlemechanicsduringgrowth

Acorrelationbetweenthemechanicalbehaviorofcuticleandsomeanatomicalpropertiessuchascuticlethicknessandinvagi-nationhasbeenpostulated[29].Nevertheless,theredoesnotseemtobeaclearrelationshipbetweentheseparameterssincemoremechanicallyresistantcuticlesdonotalwayshavegreaterthick-nessesoraremoreinvaginated[44].Thisrelationshipisprobablymorecomplexandinvolvesnotonlytheseanatomicalfeaturesbutdifferencesincuticledensityaswellaschangesinsomecuticlecomponents.

Littleworkhasbeenfocusedontheevolutionofthemechanicalpropertiesofthecuticleandskinduringplantgrowth,andmostlydealswithfruitgrowthandripening,sincethereareseveraldis-ordersofeconomicalsignificancerelatedtofruitsurfaceintegrityduringgrowthand/orripening.Nosimilarresearchonthemodifi-cationofthecuticlemechanicalpropertiesduringgrowthhasbeen

performedonvegetativetissues.Similarly,studiesonthevariationofthechemicalcompositionofcuticleduringgrowthhavebeenperformedinalimitednumberofspecies,andmostlyfocusedinwaxes[52–55].Thesignificantchangesobservedinwaxchemi-calcompositionduringleafandfruitdevelopmentsuggestthisisatopicofgreatinterestthatneedsadeepanalysis,andshouldbeextendedtoothercuticlecomponents.Inaddition,thesechangescouldhaveaneffectofonthecuticlemechanicalpropertiesduringgrowtheitherdirectly(bymodifyingsomemechanicalparameter)orindirectly(byaffectingthehydricorthermalbehaviorofthecuticle).

Therheologicalpropertiesoftomatofruitcuticleandskinhavebeenstudiedatonlythreestagesofdevelopment(immaturegreen,maturegreenandredripe)[30].Nosignificantchangesinthemechanicalpropertiesduringgrowthwerefoundinthecuticleortheskin[30].Similarly,thenormutationdidnothaveanysignif-icanteffectoncuticlemechanicsduringgrowth,althoughEwasalwayslowerinthemutant[42].However,asignificantincreaseinstiffnessandadecreaseinstrainwasobservedduringripeninginboththecuticleandskin[30,34,42,44].Thisincreaseintheelasticmodulusduringripeningwasnotobservedinnorcuticles,whichhadasimilarEvalueduringgrowthandripening[42].Sweetcherryistheonlyotherspecieswhosecuticlemechanicalpropertieshavebeenanalyzedduringgrowth[56].Atearlystagesofgrowth,thecuticlewasmostlyplastic,withanirreversibledeformationandalowelasticphasethatincreasedduringgrowth.Althoughthemethodologyemployeddidnotallowthedetectionofaviscoelas-ticcomponent,thereprobablywasviscoelasticity,especiallyatearlystagesofdevelopment.Theseresultswithsweetcherryareinagreementwiththoseabovedescribedfortomato:atearlystagesthecuticleseemstobeeasilydeformabletoaccommodatesignif-icantgrowth;atlatestages,whenmostgrowthhasceased,thecuticleincreasesitsstiffness.

7.Theroleofcuticleinfruitquality:apracticalapproach

Anydefectsinthesurfaceappearanceoffruitshaveanegativerepercussiononshelf-life,consumer’sappreciationoftheproductandonitseconomicalvalue.Hence,theinabilityofthecuticletofullyprotectfromexcessivewaterlossoruptake,orpestattackwouldaffectyield,depreciatefruitsorevenrenderthemunmar-ketable.Cuticlemechanicalpropertiesareimportantforfungalpathogenpenetrationbyhighlylocalizedappressorialpressure[57]andalsoforovipositionsubstratechoicebyinsects[58].Recently,ithasbeensuggestedthatcuticlemechanicalpropertiescouldcon-tributetofruitfirmnessandshelf-life[59],atopicthatdeservesfurtherattention.Inaddition,chemicaldifferencesincomposi-tionorquantityofcutincanincreaseepidermalpermeabilityandfacilitateplantinfestationbyflylarvae[60].Cuticlemorphologi-calcharacteristicsalsoplayanimportantroleinfruitpreferenceforindustrialandfreshmarketpurposes.Forexample,thecanningindustrypreferstomatoeswithathickcuticle,whichfacilitatesfruitpeeling,whereasconsumersoffreshtomatoespreferathinnerskin,whichcontributestoincreasedpalatability[61].

Fruitcrackingisadisorderthatcausesanimportantreductionofthecommercialyieldinmanycrops,includingtomatoes[62],sweetpeppers[63],apples[],pears[65],grapes[66],sweetcher-ries[67],watermelons[68],nectarines[69],pomegranates[70],litchis[71]andotherfruits.Itcanoccuratallstagesoffruitgrowth,butmostlywhenfruitsareclosetoripeorduringripening.Cuti-clemechanicalpropertieshavebeenshowntoplayaprominentroleinthisdisorder[61].Thisrelationshipbetweencuticlebiome-chanicsandcrackinghasbeeninvestigatedmostlyintomatoesandsweetcherries.Intomato,acorrelationhasbeenobservedbetweenfruitsizeandcuticleaccumulationduringfruitontogeny

82

E.Domínguezetal./PlantScience181(2011)77–84

[72–74],whoserelationshipwithcrackinitiationwouldbeinter-estingtoinvestigate.Cuticlewasslowlyaccumulatedduringfruitgrowthuntilitreacheditsmaximumatripeninginmediumorlargetomatoes[72,73],whileincherrytomatoes,maximumaccu-mulationoccurredinthefirst15daysfollowedbyasteadystatethatmaintainedtheamountofcuticlereached[74].Sweetcherry,theonlyotherspecieswhosecuticleaccumulationduringfruitgrowthhasbeenstudied,showedanotherpatternofcuticlesynthe-sis[75].Therewasafastaccumulationofcuticleinthefirststagesofdevelopmentfollowedbycuticlesynthesiscessationandcuticlethinningduringtherestofthegrowingperiod[75].Interestingly,inmediumorlargetomatoeswherethecuticleisslowlyaccumulated,crackinitiationcantakeplacethroughouttheentireperiodoffruitdevelopmentandripening[76].Onthecontrary,incherrytomatoandsweetcherrywherecuticleissynthesizedatearlystages[76],cracksonlyoccurduringtheripeningprocess[76,77].

Sweetcherrycrackingismainlyduetowateruptakethroughtheskinattheendoftheripeningprocess,whichproducesafastvol-umetricincreasethattheskincannotwithstand[77].Differencesintheratioofcuticledepositionandfruitsurfaceexpansionduringgrowthresultinthedevelopmentofincreasingstressestoacon-tinuouslythinningcuticle,leadingtotheformationofmicrocracksthat,alongwithchangesinwaxconstituentsduringripening,facil-itatewaterpenetrationinthefruitand,subsequently,fruitcracking[77].

Incherrytomato,norelationshipbetweentheearlystagesofcuticleformationandfruitcrackingwasobserved,suggestingthattheeventsleadingtofruitcrackingprobablyhappenduringripen-ing[74].Inthisperiod,thereisadecreaseincuticlepolysaccharidesduetocellwalldegradationthatiscompensatedbyasignificantaccumulationofflavonoids,whichistranslatedtoanetincreaseincuticlestiffness.Cherrytomatoincreasesitsvolumeforatleasttwoweeksduringtheripeningperiod[Cuartero,unpublisheddata].Thus,therigidredripecuticlemaynoteasilyallowthenecessarycuticledeformationforthisfinalvolumetricincrease,especiallyinfastgrowingfruits,andthecuticlethencracks.

Fromtheaboveresults,thereseemstobeapossiblerelationshipbetweencuticlesynthesisandthestageofdevelopmentatwhichafruitismoresusceptibletocrack.Nevertheless,thepatternofcuti-cleaccumulationshouldbeinvestigatedinmorespeciesinordertoascertainthispossibility.Alternatively,putativecuticlevariationsamongfruitswithinaplantduetodifferentmicroenvironmentsorphysiologicalconditions,orevensubtlecuticlevariationswithinafruitshouldbeconsidered.Integrationofcuticlepropertieswiththeenvironment(waterandtemperature)andplantphysiologycouldallowtheidentificationoftraitssuitableforselectioninaplantbreedingprogram.

Theeffectofexogenouslyappliedcompoundsoncuticlebiome-chanicsisaninterestingsubjectwithimportantagriculturalapplications.Surfactantsarewidelyusedtoincreasecuticularper-meability[78,79]andfacilitatethepenetrationoffoliarappliedchemicals,suchaspesticides,intotheplant.Thisincreaseincuti-clepermeability,probablyaresultofchangesinthecutinpolymermatrix,couldalsoaffectcuticlemechanicalproperties.Thereisonlyonestudyintheliteraturereportingtheeffectofasur-factant,TritonX-100,oncuticlerheology[33].AlthoughresultsconcludedthatTritonX-100didnotaffectthemechanicalper-formanceofthecuticle,morestudieswithsurfactantsofdifferenthydrophilic–hydrophobicbalance(HLBindex),inthecaseofnon-ionicsurfactants,andwithionicsurfactantsofdifferentpolarityareneededbeforerulingoutitspotentialroleoncuticlemechan-ics.Theseanalyseswillallowustodiscernifthesorptionofanadjuvantcanmodifytheinteractionsbetweencutinmacromolec-ularchains,responsibleofthecuticleviscoelasticbehavior,and/orspecificinteractionsbetweenthesechainsandintracuticularwaxesandphenolics/flavonoids.

8.Futureandperspectives

Theabilityofaplantcuticletomodifyitsmechanicalbehaviorinresponsetoenvironmentalcuesaswellasinternalpressuresispivotalinunderstandingplantgrowthandadaptationtothesurroundingenvironment.Thus,cuticlemechanicsshouldideallybestudiedwithinthecontextoftissue,organandevenwholeplant.Unfortunately,littlehasbeendonetopursuethisapproachsincethecompositenatureofthecuticleitself,itsyetunknowninteractionwithepidermalcellwalls,aswellasthecomplexrela-tionshipbetweendifferenttissueswithinanorganandorganswithinaplant,hinderthisapproximation.Someanalyseshavebeenmadeonthecontributionofthecuticletoepidermalmechanics[29,30]butnottowholeorganmechanics,aparticularlyinterestingapproachforinvestigatingsomedisordersofagriculturalinterest.Anotherreasonthathashamperedthisapproachisthatcuticlesneedtobeenzymaticallyisolatedinordertostudythem.Althoughitisassumedthattheisolatedcuticleissimilartothecuticlethatisstillattachedtotheplant,thisisnotnecessarilytrue.Itsinti-mateinteractionwiththeepidermismostprobablymodifiescuticlemechanicsandexhibitssynergisticproperties.

Mechanicalanalyseshavebeenprimarilyperformedusingtomatofruitcuticleasamodel;atmostadozenotherplantspecieshavebeenstudied[33,35,36].Thesignificantdifferencesobservedbetweentomatogenotypesimplyanimportantsourceofintraspe-cificvariationthatneedstobeexploredandcorroboratedinotherspecies.Also,changesinthemechanicalpropertiesduringorgangrowthshouldbeanalyzedindepth,notonlyinfruitsbutalsoinleaves,wherealmostnoworkhasbeenperformed.Theeffectofenvironmentalconditionssuchaswaterandtemperatureshouldbeexaminedinconjunctionwithplantgrowthtounderstandhowtheyaffectnotonlythemechanicalbehaviorofanalreadyformedcuticlebutalsogeneexpressionlevelsduringgrowth.Itiswellknownthatwaterandtemperatureaffecttheexpressionofgenesinvolvedinwaxsynthesis[80,81]andthatlightaffectstheamountofflavonoidsaccumulated[82–84].Thus,itwouldbeimportanttoknowwhetherwaterandtemperaturealsoplayasimilarroleongenesinvolvedincutinsynthesisandhowthiscouldultimatelyaffectthemechanicalperformanceofcuticle.

Severalcuticlemutantshavebeencharacterizedinthelastfewdecades[7andreferencestherein]andthegenesresponsi-bleforthemutationshavebeenidentified.Thismaterialshouldprovideanexcellentsourceforunderstandingtheroleofspecificcomponentsormorphologicalarrangementsincuticlemechan-ics.Unfortunately,mostofthesemutantshavebeenidentifiedinArabidopsis,aspecieswithanextremelythincuticlethatisdif-ficulttoisolate.Therefore,rheologicalanalysesofthesecuticlemutantshavenotbeenperformed.AnorthologoftheArabidop-siscuticlegeneCER6hasbeenidentifiedandanalyzedintomato[85].Rheologicalcharacterizationofthemutantcuticles,identi-ficationandstudyofotherorthologsofknownArabidopsiscuticlegeneswouldallowthetransferofknowledgealreadyinArabidopsistospeciesthatcouldextendourcomprehensionoftheplantcuti-cle.Identificationofthemajorgenesinvolvedincuticlesynthesiswouldbebeneficialforbetterunderstandingthemechanicalroleofeachcuticlecomponent.Thankstotheavailabletechnology,genesofinterestcouldbesilencedinmodelplantswithwell-knowncuticlesandtheirmechanicalandbiophysicalrolecouldbestud-ied.Althoughcompletegenesilencingwouldbemostdesirableintheanalysisofthemechanicalroleplayedbyaspecificcuti-clecomponent,somecuticlegeneswouldpossiblyonlybetestedwithknock-downmutants,sincetheirknock-outcouldbelethal.Oncediscernedthemechanicalroleplayedbyaspecificcuticlecomponent,knock-downandover-expressionmutantscouldbeusefultoidentifytherangeofvariationbeneficialforplantperfor-mance.Inthelongrun,thisinformationwillallowbreedingnew

E.Domínguezetal./PlantScience181(2011)77–84

83

cultivarswitharationalcuticledesignabletowithstandcertainenvironmental,pest,ormechanicalpressuresandthusimprovetheiragriculturalvalue.

Themeasurementofcuticlemechanicsisdependentontheequipmentavailable.Mostoftheversatileequipmentofferedbycommercialcompanieshasbeendevelopedtoanalyzeindustrialmaterials,sothesizeofthesample,theattachmentofthesampletotheclampsandthesensitivityoftheequipmentdonotmatchtheneedsofcuticlemechanics.Isolatedcuticlessamplesareofsmallsize,verythinandfragile,thustheirhandlingformechanicalpur-posesiscomplicated.Therefore,researchgroupshaveinvestedincustom-designedequipmentsforstudyingtherheologicalproper-tiesofcuticles.Thisisalsotrueforstudyingmechanicsatthewholeorganorplantlevel.But,arethedataobtainedfromthesedifferentapparatusestotallycomparable?Tensiletestisthemostcommontypeofmechanicaltestperformedonthecuticleandmostcustom-builtequipmenthasbeendesignedtoperformit,butthereareotherteststhatcangiveimportantinformationonbiologicallyrelevantmechanicalpropertiessuchasload-unloadandstressrelaxation(materialisquicklystrainedtoafixedamountandthestressneededtomaintainthisstrainismeasuredasafunctionoftime).Itwouldbemostdesirabletoextendthemechanicalanalysesandincludethesetypesoftestsiftheequipmentallowsthemorcanbemodifiedtoperformthem.

Mostifnotallmechanicaltestsperformedonthecuticleareuni-axialtests:stressesappliedononlyoneaxis.Nevertheless,plantsorplantorgansaresubjectedinvivotostressesappliedonmorethanonedimension,evenwhengrowthpreferentiallyoccursinoneaxisduetodifferentgrowthratesorturgorpressures.Equip-mentallowingbiaxialteststhatapplythesameordifferentialstressesoneachaxisandareabletoworkwithbothcuticleandpeel(cuticleplusepidermalcells)wouldbedesirableforapproxi-matingtheinvivoconditionsofsomefruits,especiallybellpeppers,tomatoes,cherries,etc.,wheresurfacecracksproducesignificanteconomicallosses.Inthissense,two-dimensionalrheologicalprop-ertiesofgrapeberriesinvivohavebeenstudiedwiththeaidofaninjectiontesterthatusedwatertoincreaseinternalpressure,andallowedthecorrelationoffruitskinstrainwithsplittingsus-ceptibility[86].Morerecently,ahydraulic2Dtestingdevicewassetuptoanalyzemechanicalpropertiesofsweetcherryskinsub-jectedtohydraulicpressure[87].Suchapparatuswouldallowustobetterunderstandtheequilibriumofforcesafruitissubjectedto.Thesebiaxialtestingdevices,althoughusefulforspheroidfruits,didnotallowthesimulationofmechanicalstressesthatwouldoccurinnon-spheroidfruitsororgans.Clearly,informationfrombiax-ialmechanicalanalyses,thoughstillinitsinfancy,willbeastepforwardinthecomprehensionofinvivoplantcuticlemechanics.Additionally,thedevelopmentoftheoreticalmodelsthatintegratethemechanicalinformationofcuticleandepidermisintoanidealfruitwillalsoadvanceourknowledgeonthesubject.Littleprogresshasbeenmadeonthistopicandonlyrecentlyamathematicalmodelthatdescribestherheologicalbehaviorofisolatedtomatocuticlesfromexperimentallymeasuredpropertieswasformulated[88].

Thestudyofcuticleandplantmechanicsisnotonlylimitedbythedevelopmentofadequateequipment.Viscoelasticityandplas-ticityaremechanicalphenomenathatplayahighlysignificantroleinbiologicalsamples[].Nevertheless,atheoreticalcorpusthatfullyexplainsthesemechanicalbehaviorshasnotbeendevelopedyet.Thus,ourcomprehensionofthemislimitedtoaphenomeno-logicalapproach.

Tosummarize,thecurrentmechanicalmodelregardingthecuticlerheologicalbehaviorwouldbeaviscoelasticmatrix(cutin)containingfibrillarcomponentscapableofpassiverealignmentwhenplacedintension.Thesefibrilswouldbecellwallderivedsinceithasbeenobservedthatcellwallfibrilscanaligninthe

directionoftheappliedforcesuchthattheeffectiveYoung’smod-ulusincreases[90].Insidethismatrix,fillerssuchaswaxesandflavonoids,presentatlowconcentration,canmodulatethestiffnessandothermechanicalparameters.

Acknowledgements

TheauthorsaregratefulforfinancialsupportreceivedthroughgrantsAGL2006-12494,AGL2009-12134andTRA2009-0375fromthePlanNacionaldeI+D,MinistryofEducationandScience,Spain,andcollaborationswiththeFundaciónCajamarandRijkZwaanIberica(Almería,Spain).

References

[1]M.Reiner,TheDeborahnumber,Phys.Today17(19)62.

[2]M.Riederer,Introduction:biologyoftheplantcuticle,in:M.Riederer,C.Müller

(Eds.),BiologyofthePlantCuticle,BlackwellPublishing,Oxford,2006,pp.1–10.[3]G.Kerstiens,Signallingacrossthedivide:awiderperspectiveofcuticular

structure–functionrelationships,TrendsPlantSci.1(1996)125–129.

[4]T.J.Walton,Waxes,cutinandsuberin,Meth.PlantBiochem.4(1990)105–158.[5]A.Heredia,Biophysicalandbiochemicalcharacteristicsofcutin,aplantbarrier

biopolymer,Biochim,Biophys.Acta1620(2003)1–7.

[6]C.H.Jeffree,Thefinestructureoftheplantcuticle,in:M.Riederer,C.Müller

(Eds.),BiologyofthePlantCuticle,BlackwellPublishing,Oxford,2006,pp.11–125.

[7]M.Pollard,F.Beisson,Y.Li,J.B.Ohlrogge,Buildinglipidbarriers:biosynthesis

ofcutinandsuberin,TrendsPlantSci.13(2008)236–246.

[8]J.Grac

¸a,L.Schreiber,J.Rodrigues,H.Pereira,Glycerolandglycerylestersofomega-hydroxyacidsincutin,Phytochemistry61(2002)205–215.

[9]P.E.Kolattukudy,Biosyntheticpathwaysofcutinandwaxesandtheirsensitiv-itytoenvironmentalstresses,in:G.Kerstiens(Ed.),PlantCuticles:AnIntegratedFunctionalApproach,BIOSScientificPublishers,Oxford,1996,pp.83–108.[10]H.W.Schmidt,J.Schönherr,Developmentofplantcuticles—occurrenceand

roleofnon-esterbondsincutinofCliviaminiataReg.leaves,Planta156(1982)380–384.

[11]J.F.Villena,E.Domínguez,D.Stewart,A.Heredia,Characterizationandbiosyn-thesisofnon-degradablepolymersinplantcuticles,Planta208(1999)181–187.[12]M.Nip,E.W.Tegelaar,J.W.deLeeuw,P.A.Schenck,P.J.Holloway,Anew

non-saponifiablehighly-aliphaticandresistantbioploymerinplantcuticles.Evidencefrompyrolysisand13C-NMRanalysisofpresent-dayandfossilplants,Naturwissenschaften73(1986)579–585.

[13]E.Johnson,O.Dorot,J.Liu,B.Chefetz,B.Xing,Spectroscopiccharacterizationof

aliphaticmoietiesinfourplantcuticles,Comm.SoilSci.PlantAnal.38(2007)2461–2478.

[14]G.M.Hunt,E.A.Baker,Phenolicconstituentsoftomatofruitcuticles,Phyto-chemistry19(1980)1415–1419.

[15]J.J.Reina,E.Domínguez,A.Heredia,Watersorption–desorptioninconifercuti-cles:theroleoflignin,Physiol.Plantarum112(2001)372–378.

[16]K.J.Niklas,PlantBiomechanics:AnEngineeringApproachtoPlantformand

Function,TheUniversityofChicagoPress,Chicago,1992.

[17]J.W.Nicholson,TheChemistryofPolymers,RSC,Cambridge,1997.

[18]A.P.Deshpande,J.M.Krishnan,P.B.Sunil,Kumar(Eds.),RheologyofComplex

Fluids,Springer,NewYork,2010.

[19]D.J.Cosgrove,Wallextensibility:itsnature,measurementandrelationshipto

plantcellgrowth,NewPhytol.124(1993)1–23.

[20]A.JMatas,G.López-Casado,J.Cuartero,A.Heredia,Relativehumidityandtem-peraturemodifythemechanicalpropertiesofisolatedtomatofruitcuticles,Am.J.Bot.92(2005)462–468.

[21]U.Kutschera,Tissuestressesingrowingplantorgans,Physiol.Plantarum77

(19)157–163.

[22]U.Kutschera,K.J.Niklas,Theepidermal-growth-controltheoryofstemelonga-tion:anoldandnewperspective,J.PlantPhysiol.1(2007)1395–1409.

[23]S.Savaldi-Goldstein,C.Peto,J.Chory,Theepidermisbothdrivesandrestricts

plantshootgrowth,Nature446(2007)199–202.

[24]M.Javelle,V.Vernoud,P.M.Rogowsky,G.C.Ingram,Epidermis;theformation

andfunctionsofafundamentalplanttissue,NewPhytol.1(2011)17–39.[25]U.Kutschera,Thegrowingouterepidermalwall:designandphysiologicalrole

ofacompositestructure,Ann.Bot.101(2008)615–621.

[26]U.Kutschera,R.Bergfeld,P.Schopfer,Cooperationofepidermisandinner

tissuesinauxin-mediatedgrowthofmaizecoleoptiles,Planta170(1987)168–180.

[27]T.C.Pesacreta,V.I.Sullivan,K.H.Hasenstein,J.M.Durand,Thigmonasticityof

thistlestaminalfilamentsI.Involvementofacontractilecuticle,Protoplasma163(1991)174–180.

[28]K.H.Hasenstein,T.C.Pesacreta,V.I.Sullivan,Thigmonasticityofthistlestamina

filamentsII.Mechano-elasticproperties,Planta190(1993)58–.

[29]A.J.Matas,E.D.Cobb,J.A.Bartsch,D.J.Paolillo,K.J.Niklas,Biomechanicsand

anatomyofLycopersionesculentumfruitpeelsandenzymetreatedsamples,Am.J.Bot.91(2004)352–360.

84

E.Domínguezetal./PlantScience181(2011)77–84

[30]H.Bargel,C.Neinhuis,Tomato(LycopersiconesculentumMill.)fruitgrowthand

ripeningasrelatedtothebiomechanicalpropertiesoffruitskinandisolatedcuticle,J.Exp.Bot.56(2005)1049–1060.

[31]D.S.Thompson,Extensiometricdeterminationoftherheologicalpropertiesof

theepidermisofgrowingtomatofruit,J.Exp.Bot.52(2001)1291–1301.

[32]A.J.Matas,E.D.Cobb,D.J.Paolillo,K.J.Niklas,Crackresistanceincherrytomato

fruitcorrelateswithcuticularmembranethickness,Hortscience39(2004)13–1358.

[33]P.D.Petracek,M.J.Bukovac,Rheologicalpropertiesofenzymaticallyisolated

tomatofruitcuticle,PlantPhysiol.109(1995)675–679.

[34]G.López-Casado,A.J.Matas,E.Domínguez,J.Cuartero,A.Heredia,Biomechanics

ofisolatedtomato(SolanumlycopersicumL.)fruitcuticles:theroleofthecutinmatrixandpolysaccharides,J.Exp.Bot.58(2007)3875–3883.

[35]P.Wiedemann,C.Neinhuis,Biomechanicsofisolatedplantcuticles,Bot.Acta

111(1998)28–34.

[36]H.G.Edelmann,C.Neinhuis,H.Bargel,Influenceofhydrationandtemperature

ontherheologicalpropertiesofplantcuticlesandtheirimpactonplantorganintegrity,J.PlantGrowthRegul.24(2005)116–126.

[37]H.Bargel,K.Koch,Z.Cerman,C.Neinhuis,Structure–functionrelationshipsof

theplantcuticleandcuticularwaxes—asmartmaterial?Funct.PlantBiol.33(2006)3–910.

[38]E.Domínguez,J.A.Heredia-Guerrero,A.A.Heredia,Thebiophysicaldesignof

plantcuticles:anoverview,NewPhytol.1(2011)938–949.

[39]P.J.Holloway,Structureandhistochemistryofplantepicuticularmembranes:

anoverview,in:D.F.Cutler,K.L.Alvin(Eds.),Theplantcuticle,AcademicPress,London,1982,pp.1–32.

[40]F.Marga,T.C.Pesacreta,K.H.Hasenstein,Biochemicalanalysisofelasticand

rigidcuticlesofCirsiumhorriudulum,Planta213(2001)841–848.

[41]K.J.Niklas,Voigt,ReussmodelsforpredictingchangesinYoung’smodulusof

dehydratingplantorgans,Ann.Bot.70(1992)347–355.

[42]H.Bargel,C.Neinhuis,Alteredtomato(LycopersiconesculentumMill.)fruit

cuticlebiomechanicsofapleiotropicnonripeningmutant,J.PlantGrowthRegul.23(2004)61–75.

[43]A.Adato,T.Mandel,S.Mintz-Oron,I.Venger,D.Levy,M.Yativ,E.Domínguez,Z.

Wang,R.C.H.DeVos,R.Jetter,L.Schreiber,A.Heredia,I.Rogachev,A.Aharoni,Fruit-surfaceflavonoidaccumulationintomatoiscontrolledbyaSLMYB12-regulatedtranscriptionalnetwork,PLoSGenetics5(2009)e1000777.[44]E.Domínguez,L.Espa˜na,G.López-Casado,J.Cuartero,A.Heredia,Biomechanics

ofisolatedtomato(Solanumlycopersicum)fruitcuticlesduringripening:theroleofflavonoids,Funct.PlantBiol.36(2009)613–620.

[45]A.Chamel,M.Pineri,M.Escoubes,Quantitative-determinationofwatersorp-tionbyplantcuticles,PlantCellEnviron.14(1991)87–95.

[46]E.Domínguez,A.Heredia,Waterhydrationincutinizedcellwalls:aphysico-chemicalanalysis,Biochim.Biophys.Acta1426(1999)168–176.

[47]P.Luque,R.Gavara,A.Heredia,Astudyofthehydrationprocessofisolated

cuticularmembranes,NewPhytol.129(1995)283–288.

[48]A.N.Round,B.Yan,S.Dang,R.Estephan,R.E.Stark,J.D.Batteas,Theinfluence

ofwateronthenanomechanicalbehaviouroftheplantbiopolyestercutinasstudiedbyAFMandsolid-stateNMR,Biophys.J.79(2000)2761–2767.

[49]E.Domínguez,P.Luque,A.Heredia,Sorptionandinteractionoftheflavonoid

naringeninontomatofruitcuticles,J.Agric.FoodChem.57(2009)7560–75.[50]T.H.Courtney,Mechanicalbehaviorofmaterials,McGraw-Hill,NewYork,1990.[51]A.J.Matas,J.Cuartero,A.Heredia,Phasetransitionsinthebiopolyestercutin

isolatedfromtomatofruitcuticles,Thermochim.Acta409(2004)165–168.[52]R.Jetter,L.Kunst,A.L.Samuels,Compositionofplantcuticularwaxes,in:M.

Riederer,C.Müller(Eds.),Biologyoftheplantcuticle,BlackwellPublishing,Oxford,2006,pp.145–181.

[53]V.Hauke,L.Schreiber,Ontogeneticandseasonaldevelopmentofwaxcompo-sitionandcuticulartranspirationofivy(HederahelixL.)sunandshadeleaves,Planta207(1998)67–75.

[]R.Jetter,S.Schäffer,ChemicalcompositionofthePrunuslaurocerasusleafsur-face.Dynamicchangesoftheepicuticularwaxfilmduringleafdevelopment,PlantPhysiol.126(2001)1725–1737.

[55]S.Bauer,E.Schulte,H.P.Thier,Compositionofthesurfacewaxfromtomatoes.

II.Quantificationofthecomponentsattheriperedstageandduringripening,Eur.FoodRes.Technol.219(2004)487–491.

[56]M.Knoche,M.Beyer,S.Peschel,B.Oparlakov,M.J.Bulovac,Changesinstrain

anddepositionofcuticleindevelopingsweetcherryfruit,Physiol.Plantarum120(2004)667–677.

[57]K.Curvers,H.Seifi,G.Mouille,R.Rycke,B.Asselbergh,A.VanHecke,D.Van-derschaeghe,H.Höfte,N.Callewaert,F.VanBreusegem,M.Höfte,AbscisicaciddefiencycauseschangesincuticlepermeabilityandpectincompositionthatinfluencetomatoresistancetoBotrytiscinerea,PlantPhysiol.1(2010)847–860.

[58]N.Matushkina,S.Gorb,Mechanicalpropertiesofendophyticovopositorin

damselflies(Zygoptera,Odonata)andtheirovopositionsubstrates,Zoology110(2007)167–175.

[59]M.Saladié,A.J.Matas,T.Isaacson,M.A.Jenks,S.M.Goodwin,K.J.Niklas,R.

Xiaolin,J.M.Labavitch,K.A.Shackel,A.R.Fernie,A.Lytovchenko,M.A.O’Neill,

C.B.Watkins,J.K.C.Rose,Areevaluationofthekeyfactorsthatinfluencetomatofruitsofteningandintegrity,PlantPhysiol.144(2007)1012–1028.

[60]

D.K.Kosma,J.A.Nemacheck,M.A.Jenks,C.E.Williams,ChangesinpropertiesofwheatleafcuticleduringinteractionswithHessianfly,PlantJ.63(2010)31–43.[61]

A.Hetzroni,A.Vana,A.Mizrach,Biomechanicalcharacteristicsoftomatofruitpeels,PostharvestBiol.Technol.59(2011)80–84.

[62]

M.D.A.Dorais,W.Dermers,S.vanIeperen,A.P.Papadopoulus,Greenhousetomatofruitcuticlecracking,Hortic.Rev.30(2004)163–184.

[63]

B.Aloni,L.Karni,I.Rylski,Y.Cohen,Y.Lee,M.Fuchs,S.Moreshet,C.Yao,Cutic-ularcrackinginpepperfruit.I.Effectsofnighttemperatureandhumidity,J.Hortic.Sci.Biotechnol.73(1998)743–749.

[]

M.Knoche,E.Grimm,Surfacemoistureinducesmicrocracksinthecuticleof‘GoldenDelicious’apple,Hortscience43(2008)1929–1931.

[65]S.D.Dube,C.B.Ram,Controloffruit-crackinginpear,Curr.Sci.39(1970)446.[66]

T.Yamamoto,H.Satoh,Relationshipamongberrycrackingsusceptibility,berrymorphologyandskinstressdistributioninseveralgrapecultivars,J.Jpn.Soc.Hortic.Sci.63(1994)247–256.

[67]

L.Sekse,Fruitcrackinginsweetcherries(PrunusaviumL.).Somephysiologicalaspects-aminireview,Sci.Hortic.63(1995)135–141.

[68]

J.Haikun,Z.Quian,F.Lin,D.Yanxiang,Y.Congsheng,W.Mingxia,W.Yan,Y.Xihan,Evaluationofcrackresistanceofwatermelon(Citrulluslanatus),ActaHortic.871(2010)223–230.

[69]

C.Gibert,J.Chadoeuf,G.Vercambre,M.Génard,F.Lescourret,Cuticularcrackingonnectarinefruitsurface:spatialdistributionanddevelopmentinrelationtoirrigationandthinning,J.Am.Soc.Hortic.Sci.132(2007)583–591.

[70]

H.Pala,A.Tatli,C.Yilmaz,A.I.Ozgüven,ImportantdiseasesofpomegranatefruitandcontrolpossibilitiesinTurkey,ActaHortic.818(2009)285–290.

[71]

X.M.Huang,H.C.Wang,X.J.Lu,Cellwallmodificationsinthepericarpoflitchi(LitchichinensisSonn.)cultivarsthatdifferintheirresistancetocracking,J.Hortic.Sci.Biotechnol.81(2006)231–237.

[72]

E.A.Baker,M.J.Bukovac,G.M.Hunt,Compositionoftomatofruitcuticleasrelatedtofruitgrowthanddevelopment,in:D.F.Cutler,K.L.Alvin,C.E.Price(Eds.),ThePlantCuticle,AcademicPress,London,1982,pp.33–44.

[73]

P.Luque,A.Heredia,Glassystateinplantcuticlesduringgrowth,Z.Naturforsch.C49(1994)273–275.

[74]

E.Domínguez,G.López-Casado,J.Cuartero,A.Heredia,Developmentoffruitcuticleincherrytomato(Solanumlycopersicum),Funct.PlantBiol.35(2008)403–411.

[75]

S.Peschel,R.Franke,L.Schreiber,M.Knoche,Compositionofthecuticleofdevelopingsweetcherryfruit,Phytochemistry68(2007)1017–1025.

[76]C.L.W.Emmons,J.W.Scott,Environmentalandphysiologicaleffectsoncuticlecrackingintomato,J.Am.Soc.Hortic.Sci.122(1997)797–801.

[77]

J.A.Cline,L.Sekse,M.Meland,A.D.Webster,Rain-inducedfruitcrackingofsweetcherries.I.Influenceofcultivarandrootstockonfruitwaterabsorption,crackingandquality,ActaAgric.Scand.B45(1995)213–223.

[78]W.E.Shafer,M.J.Bukovac,Studiesonoctylphenoxysurfactants.III.SorptionofTritonX-100byisolatedtomatofruitcuticles,PlantPhysiol.85(1987)28–32.[79]

P.D.Petracek,M.Knoche,R.G.Fader,M.J.Bukovac,Octylphenoxysurfactant-enhancementofnaphthyleneaceticacid(NAA)andbenzyladenine(BA)penetrationthroughisolatedtomatofruitcuticles,Hortscience28(1993)456.[80]

D.K.Kosma,B.Bourdenx,A.Bernard,E.P.Parsons,S.Lü,J.Joubès,M.A.Jenks,TheimpactofwaterdeficiencyonleafcuticlelipidsofArabidopsis,PlantPhysiol.151(2009)1918–1929.

[81]

R.Jetter,L.Kunst,L.A.Samuels,Compositionofplantcuticularwaxes,in:M.Riederer,C.Müller(Eds.),BiologyofthePlantCuticle,BlackwellPublishing,Oxford,2006,pp.145–181.

[82]

M.K.Pelletier,B.W.Shirley,Analysisofflavanone3-hydroxylaseinArabidopsisseedlings,PlantPhysiol.111(1996)339–345.

[83]

G.I.Jenkins,J.C.Long,H.K.Wade,M.R.Shenton,T.N.Bibikova,UVandbluelightsignalling:pathwaysregulatingchalconesynthasegeneexpressioninArabidopsis,NewPhytol.151(2001)121–131.

[84]

G.Agati,T.Tattini,Multiplefunctionalrolesofflavonoidsinphotoprotection,NewPhytol.186(2010)786–793.

[85]

G.Vogg,S.Fischer,J.Leide,E.Emmanuel,R.Jetter,A.A.Levy,M.Riederer,Tomatofruitcuticularwaxesandtheireffectsontranspirationbarrierproperties:func-tionalcharacterizationofamutantdeficientinavery-long-chainfattyacid␤-ketoacyl-CoAsynthase,J.Exp.Bot.55(2004)1401–1410.

[86]

I.Lustig,Z.Bernstein,Determinationofthemechanicalpropertiesofthegrapeberryskinbyhydraulicmeasurements,Sci.Hortic.25(1985)279–286.

[87]

H.Bargel,H.C.Spatz,T.Speck,C.Neinhuis,Two-dimensionaltensiontestsinplantbiomechanics—sweetcherryfruitskinasamodelsystem,PlantBiol.6(2004)432–439.

[88]

G.López-Casado,A.Salamanca,A.Heredia,Viscoelasticnatureofisolatedtomato(Solanumlycopersicum)fruitcuticles:amathematicalmodel,Physiol.Plantarum140(2010)79–88.

[]

U.Kutschera,Cessationofcellelongationinryecoleoptilesisaccompaniedbyalossofcell-wallplasticity,J.Exp.Bot.47(1996)1387–1394.

[90]

L.Köhler,H.C.Spatz,Micromechanicsofplanttissuesbeyondthelinearelasticrange,Planta215(2002)33–40.

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- efsc.cn 版权所有 赣ICP备2024042792号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务