您好,欢迎来到筏尚旅游网。
搜索
您的当前位置:首页通信原理实验七

通信原理实验七

来源:筏尚旅游网


实验七 抽样定理实验

一、实验目的

1、 了解抽样定理在通信系统中的重要性。 2、 掌握自然抽样及平顶抽样的实现方法。 3、 理解低通采样定理的原理。 4、 理解实际的抽样系统。

5、 理解低通滤波器的幅频特性对抽样信号恢复的影响。6、 理解低通滤波器的相频特性对抽样信号恢复的影响。7、 理解带通采样定理的原理。

二、实验器材

1、 主控&信号源、3号模块 2、 双踪示波器 3、 连接线 三、实验原理

1、实验原理框图

各一块 一台 若干

music信号源A-out被抽样信号保持电路平顶抽样S1自然抽样抽样输出LPF-INLPFLPF-OUT抗混叠滤波器抽样脉冲抽样电路编码输入译码输出FIR/IIR3# 信源编译码模块FPGA数字滤波

图1-1 抽样定理实验框图

2、实验框图说明

抽样信号由抽样电路产生。将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样的信号经过保持电路得到平顶抽样信号。平顶抽样和自然抽样信号是通过开关S1切换输出的。

抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的信号。这里滤波器可以选用抗混叠滤波器(8阶的巴特沃斯低通滤波器)或FPGA数字滤波器(有FIR、IIR两种)。反sinc滤波器不是用来恢复抽样信号的,而是用来应对孔径失真现象。

要注意,这里的数字滤波器是借用的信源编译码部分的端口。在做本实验时与信源编译码的内容没有联系。

四、实验步骤

实验项目一 抽样信号观测及抽样定理验证

概述:通过不同频率的抽样时钟,从时域和频域两方面观测自然抽样和平顶抽样的输出波形,以及信号恢复的混叠情况,从而了解不同抽样方式的输出差异和联系,验证抽样定理。

1、关电,按表格所示进行连线。

源端口 信号源:MUSIC 信号源:A-OUT 目标端口 连线说明 模块3:TH1(被抽样信号) 将被抽样信号送入抽样单元 模块3:TH2(抽样脉冲) 提供抽样时钟 送入模拟低通滤波器 模块3:TH3(抽样输出) 模块3:TH5(LPF-IN) 2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】。调节主控模块的W1使A-out输出峰峰值为3V。

3、此时实验系统初始状态为:被抽样信号MUSIC为幅度4V、频率3K+1K正弦合成波。抽样脉冲A-OUT为幅度3V、频率9KHz、占空比20%的方波。

4、实验操作及波形观测。

(1)观测并记录自然抽样前后的信号波形:设置开关S1为“自然抽样”档位,用示波器分别观测MUSIC

主控&信号源

3#

和抽样输出。

3#

MUSIC

主控&信号源

抽样输出

3#

3#

(2)观测并记录平顶抽样前后的信号波形:设置开关S1为“平顶抽样”档位,用示波器分别观测MUSIC

主控&信号源

和抽样输出。

3#

MUSIC

主控&信号源

抽样输出

3#

3#

(3)观测并对比抽样恢复后信号与被抽样信号的波形:设置开关S1为“自然抽样”档位,用示波器观测MUSIC

主控&信号源

和LPF-OUT,以100Hz的步进减小A-OUT

3# 主控&信号源

的频率,

比较观测并思考在抽样脉冲频率多小的情况下恢复信号有失真。

(4)用频谱的角度验证抽样定理(选做):用示波器频谱功能观测并记录被抽样信号MUSIC和抽样输出频谱。以100Hz的步进减小抽样脉冲的频率,观测抽样输出以及恢复信号的频谱。(注意:示波器需要用250kSa/s采样率(即每秒采样点为250K),FFT缩放调节为×10)。

注:通过观测频谱可以看到当抽样脉冲小于2倍被抽样信号频率时,信号会产生混叠。

实验项目二 滤波器幅频特性对抽样信号恢复的影响

概述:该项目是通过改变不同抽样时钟频率,分别观测和绘制抗混叠低通滤波和fir数字滤波的幅频特性曲线,并比较抽样信号经这两种滤波器后的恢复效果,从而了解和探讨不同滤波器幅频特性对抽样信号恢复的影响。

1、测试抗混叠低通滤波器的幅频特性曲线。 (1)关电,按表格所示进行连线。

源端口 信号源:A-OUT 目标端口 连线说明 模块3:TH5(LPF-IN) 将信号送入模拟滤波器 (2)开电,设置主控模块,选择【信号源】→【输出波形】和【输出频率】,通过调节相应旋钮,使A-OUT

主控&信号源

输出频率5KHz、峰峰值为3V的正弦波。

(3)此时实验系统初始状态为:抗混叠低通滤波器的输入信号为频率5KHz、幅度3V的正弦波。

(4)实验操作及波形观测。

用示波器观测LPF-OUT。以100Hz步进减小A-OUTLPF-OUT的频谱。记入如下表格:

A-OUT频率/Hz 5K … … … 基频幅度/V 3#

3#

主控&信号源

输出频率,观测并记录

… 由上述表格数据,画出模拟低通滤波器幅频特性曲线。

思考:对于低通滤波器,为了更好的画出幅频特性曲线,我们可以如何调整信号源输入频率的步进值大小

2、测试fir数字滤波器的幅频特性曲线。 (1)关电,按表格所示进行连线。

源端口 信号源:A-OUT 目标端口 连线说明 模块3:TH13(编码输入) 将信号送入数字滤波器 (2)开电,设置主控菜单:选择【主菜单】→【通信原理】→【抽样定理】→【FIR滤波器】。调节【信号源】,使A-out输出频率5KHz、峰峰值为3V的正弦波。

(3)此时实验系统初始状态为:fir滤波器的输入信号为频率5KHz、幅度3V的正弦波。

(4)实验操作及波形观测。

用示波器观测译码输出,以100Hz的步进减小A-OUT码输出的频谱。记入如下表格:

A_out的频率/Hz 基频幅度/V 3#

3#

主控&信号源

的频率。观测并记录译

5K … 4K … 3K … 2K ... 由上述表格数据,画出fir低通滤波器幅频特性曲线。

思考:对于3KHz低通滤波器,为了更好的画出幅频特性曲线,我们可以如何调整信号源输入频率的步进值大小

3、分别利用上述两个滤波器对被抽样信号进行恢复,比较被抽样信号恢复效果。 (1)关电,按表格所示进行连线:

源端口 信号源:MUSIC 信号源:A-OUT 目标端口 连线说明 模块3:TH1(被抽样信号) 提供被抽样信号 模块3:TH2(抽样脉冲) 提供抽样时钟

模块3:TH3(抽样输出) 模块3:TH5(LPF-IN) 模块3:TH3(抽样输出) 模块3:TH13(编码输入) 送入模拟低通滤波器 送入FIR数字低通滤波器 (2)开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】→【FIR滤波器】。调节W1

主控&信号源

使信号A-OUT输出峰峰值为3V左右。

(3)此时实验系统初始状态为:待抽样信号MUSIC为3K+1K正弦合成波,抽样时钟信号A-OUT为频率9KHz、占空比20%的方波。

(4)实验操作及波形观测。对比观测不同滤波器的信号恢复效果:用示波器分别观测LPF-OUT和译码输出,以100Hz步进减小抽样时钟A-OUT的输出频率,对比观测模拟滤波器和FIR数字滤波器在不同抽样频率下信号恢复的效果。(频率步进可以根据实验需求自行设置。)思考:不同滤波器的幅频特性对抽样恢复有何影响

3#

3#

9HZ

8HZ

7HZ

实验项目三 滤波器相频特性对抽样信号恢复的影响。

概述:该项目是通过改变不同抽样时钟频率,从时域和频域两方面分别观测抽样信号经fir滤波和iir滤波后的恢复失真情况,从而了解和探讨不同滤波器相频特性对抽样信号恢复的影响。

1、观察被抽样信号经过fir低通滤波器与iir低通滤波器后,所恢复信号的频谱。 (1)关电,按表格所示进行连线。

源端口 信号源:MUSIC 信号源:A-OUT 目标端口 连线说明 模块3:TH1(被抽样信号) 提供被抽样信号 模块3:TH2(抽样脉冲) 提供抽样时钟 将信号送入数字滤波器 模块3:TH3(抽样输出) 模块3:TH13(编码输入) (2)开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】。调节W1

主控&信号源

使信号A-OUT输出峰峰值为3V左右。

(3)此时实验系统初始状态为:待抽样信号MUSIC为3K+1K正弦合成波,抽样时钟信号A-OUT为频率9KHz、占空比20%的方波。

(4)实验操作及波形观测。

a、观测信号经fir滤波后波形恢复效果:设置主控模块菜单,选择【抽样定理】→【FIR滤波器】;设置【信号源】使A-OUT输出的抽样时钟频率为;用示波器观测恢复信号译码输出的波形和频谱。

3#

b、观测信号经iir滤波后波形恢复效果:设置主控模块菜单,选择【抽样定理】→【IIR滤波器】;设置【信号源】使A-OUT输出的抽样时钟频率为;用示波器观测恢复信号译码输出的波形和频谱。

3#

c、探讨被抽样信号经不同滤波器恢复的频谱和时域波形:

被抽样信号与经过滤波器后恢复的信号之间的频谱是否一致如果一致,是否就是说原始信号能够不失真的恢复出来用示波器分别观测fir滤波恢复和iir滤波恢复情况下,译码输出3#的时域波形是否完全一致,如果波形不一致,是失真呢还是有相位的平移呢如果相位有平移,观测并计算相位移动时间。

注:实际系统中,失真的现象不一定是错误的,实际系统中有这样的应用。 2、观测相频特性

(1)关电,按表格所示进行连线。

源端口 信号源:A-OUT 目标端口 连线说明 模块3:TH13(编码输入) 使源信号进入数字滤波器 (2)开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】→【FIR滤波器】。

(3)此时系统初始实验状态为: A-OUT为频率9KHz、占空比20%的方波。 (4)实验操作及波形观测。

对比观测信号经fir滤波后的相频特性:设置【信号源】使A-OUT输出频率为5KHz、峰峰值为3V的正弦波;以100Hz步进减小A-OUT输出频率,用示波器对比观测A-OUT

信号源

3#

主控&

和译码输出的时域波形。相频特性测量就是改变信号的频率,测输出信号的延时(时

域上观测)。记入如下表格:

A-OUT的频率/Hz 被抽样信号与恢复信号的相位延时/ms ...

五、实验报告

1、分析电路的工作原理,叙述其工作过程。

2、绘出所做实验的电路、仪表连接调测图。并列出所测各点的波形、频率、电压等有关数据,对所测数据做简要分析说明。必要时借助于计算公式及推导。

3、分析以下问题:滤波器的幅频特性是如何影响抽样恢复信号的简述平顶抽样和自然抽样的原理及实现方法。

4、思考一下,实验步骤中采用3K+1K正弦合成波作为被抽样信号,而不是单一频率的正弦波,在实验过程中波形变化的观测上有什么区别对抽样定理理论和实际的研究有什么意义

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- efsc.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务