大小不同的量子点结构,其中大的量子点也被称为单电子晶体管(SET),被用作探测器读出旁边小量子点内的电荷状态。单电子晶体管多栅极的石墨烯串联双量子点器件,通过低温输运,双点的耦合强度可以从弱到强的调节。从而引起遂穿耦合能变化,表明这种高度可控的系统非常有望成为将来无核自旋的量子信息器件。科学家还测量了栅极的双层石墨烯并联双量子点,通过背栅和侧栅电极的可以将并联双点调节到不同的耦合区间.从双点耦合的蜂窝图抽取出了相关的耦合电容、耦合能等参数的高灵敏度,清楚地探测到量子点内的库仑阻塞信号和激发态能谱,甚至传统输运测量不到的微弱库仑充电信号也能被探测到。
石墨烯量子点(GQD)为基础的材料,可能会使OLED显示器和太阳能电池的生产成本更低。新的GQD不使用任何有毒金属(如:镉、铅等)。使用GQD为基础的材料,可能使未来OLED面板更轻、更灵活、成本更低。
在生物医药领域,石墨烯量子点极具应用前景。在生物成像方面,在理论和实验上都已证实,量子效应和边效应可诱导石墨烯量子点发出荧光。在生物医学研究领域中,常用荧光标记来标定研究对象,却会因为过长的激发时间使得荧光失效被称为光漂白(photo bleaching)使得一般荧光剂在生物医学上的应用受到。石墨烯量子点拥有稳定的荧光光源,石墨烯量子点在制作时产生的缺陷,当氮原子在石墨烯量子点生产中占据原先碳原
子的位置后又脱离,使其位置有一氮空缺(NitrogenVacancy, NV),而该缺陷在接受可见光激发后就会发出荧光。不同大小的石墨烯量子点有不同的荧光光谱,能为生物医学研究提供极为稳定的荧光物。与荧光体相比,石墨烯量子点的优势是发出的荧光更稳定,不会出现光漂白,因而不易出现光衰减失去其荧光性。这可能成为进一步探索生物成像的一个极有前景的途径。石墨烯量子点还是非常好的药物载体。具有良好的生物相容性和水溶液稳定性, 同时有利于化学功能化修饰, 以达到在不同领域应用的目的。利用含氧活性基团化学反应性不同, 可以与多种有特定化学和生物性能的化学基团和功能分子进行共价反应, 其中常见的共价修饰方法是通过酰化反应和酯化反应将生物分子或化学基团修饰在石墨烯上,还可以用π-π相互作用、离子键和氢键等非共价键作用, 对石墨烯进行表面功能化修饰。基于石墨烯的药物载体由于其超高的载药量、靶向输送和药物的可控释放, 而且石墨烯量子点作为药物载体可以突破血脑屏障,实现脑部直接给药,有望在临床上实现实际应用。
由于边缘状态和量子局限,石墨烯量子点的形状和大小将决定它们的电学、光学、磁性和化学特性。大量获取特定边缘形状和均匀尺寸的石墨烯量子点是个难题。目前自上而下的石墨烯量子点合成方式有平板印刷术、超声化学法、富勒烯开笼和碳纳米管释放化学分解或电子束蚀刻等技术获得。
量子效应(quantum confinement effect) 微结构材料三维尺度中至少有一个维度与电子德布罗意(deBroglie)波长相当,因此电子在此维度中的运动受到,电子态呈量子化分布,连续的能带将分解为离散的能级,即形成分立的能级和驻波形式的波函数。当能级间距大于某些特征能量(如热运动量KB;塞曼能hω,超导能隙Δ等)时,系统将表现出和大块样品不同的甚至是特有的性质,例如超晶格中由于能级离散引起的带隙展宽及吸收边的蓝移。
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- efsc.cn 版权所有 赣ICP备2024042792号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务