您好,欢迎来到筏尚旅游网。
搜索
您的当前位置:首页圆柱的体积教案

圆柱的体积教案

来源:筏尚旅游网

  教学目标:

  1、使学生能够运用公式正确地计算圆柱的体积和容积。

  2、初步学会用转化的数学思想和方法,解决实际问题的能力

  3、渗透转化思想,培养学生的自主探索意识。

  教学重点:

  掌握圆柱体积的计算公式。

  教学难点:

  灵活应用圆柱的体积公式解决实际问题。

  教学过程:

  一、复习

  1、复习圆柱体积的推导过程

  长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。

  长方体的体积=底面积×高,所以圆柱的体积=底面积×高,即V=Sh。

  2、复习长方体、正方体的.体积公式后,让学生完成练习三第6题求体积部分,并指名板演。

  二、解决实际问题

  1、练习三第4题。

  学生练习,强调选取有用信息,培养认真审题习惯。

  2、练习三第5题。

  (1)指导学生变换公式:因为V=Sh,所以h=V÷S。也可以列方程解答。

  (2)学生选择喜爱的方法解答这道题目。

  3、练习三第10题。

  指名说说解答第10题的思路:根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的底面积。利用这个底面积再求出另一个圆柱的体积。

  4、练习三第8题。

  (1)学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2米,高为0.25米的圆柱。

  (2)在充分理解题意后学生完成,集体订正。

  4、练习三第9题

  (1)学生审题后完成。

  评讲:要怎样才能判断出800ml的果汁够倒三杯吗?必须先求出什么?怎么求?(需先求出圆柱形玻璃杯的容积,用公式V=Sh)

  5、练习三第11题。

  此题既可以用外圆柱体积减内圆柱的体积,也可以用圆环的面积乘高。

  (3)三、布置作业

  完成练习中未做完的习题

  教学反思

  第五课时特别关注

  练习三第4题,在教学中必须应该特别关注。

  关注理由:

  1、有多余条件,是培养学生收集有用信息的契机。

  这道题中出现两个圆柱体的高,分别是花坛的高0.8米和花坛里面填土的高0 .5米。学生该如何合理做出选择呢,关键要通过问题来思考。因为问题是求“花坛需要填土多少方”,所以应该选用“填土的高度是0.5米”这条数学信息。

  在课堂中,我还要求学生思考,如果要用上“0.8米”这个条件下,可以怎么改变问题。有的学生说“可以问花坛的体积是多少立方米”,还有的同学说“可以求花坛中空间的体积是多少立方米”。通过这样的训练,能够有效培养学生收集、处理信息的能力,同时提升他们综合分析问题的能力。

  2、有容易忽视的条件,是培养学生认真审题的契机。

  一般习题中的数据是用阿拉伯数字呈现,可这道题的问题是求“两个花坛需要填土多少方”,这里隐含着一个极易被学生忽视的数据“两个”。其实,配套的插图中也明显绘制出了2个花坛,但在做题中许多学生仍旧会出错。所以,应抓住此题,培养学生良好审题的习惯。如在做这类习题时,建议首先将单位圈出来,以确保列式时单位统一。还可以将问题划横线,以提醒自己将生活问题转化为数学问题等。

  学生巧解

  ——巧求削去部分的体积

  今天,全班同学做这样一题:一块长方体木块体积是20立方分米,它的底面为正方形,边长为2分米。现在,将它削成一个的圆柱体,求削去的部分是多少立方分米?

  我因为做得既对又快,最终获得全班第一名的成绩。通过对比,我发现自己的方法比同学们巧妙。

  同学们的解法是先求长方体的高(即圆柱体的高),用20÷(2×2)=5分米,然后求圆柱体的体积,列式为3.14×(2÷2)2×5=15.7立方分米,最后求削去部分的体积是20—15.7=4.3平方分米。

  而我在做这一题时,想起上学期在正方形中画的圆,圆的面积占正方形面积的157/200的结论。因为直柱体的体积都可以写成底面直径乘高,而长方体和削成的圆柱体高相等,所以削成的圆柱体体积也应该是长方体体积的157/200。所以直接用20×(1—157/200)也等于4.3立方分米。

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- efsc.cn 版权所有 赣ICP备2024042792号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务