您好,欢迎来到筏尚旅游网。
搜索
您的当前位置:首页Object detection in a noisy scene

Object detection in a noisy scene

来源:筏尚旅游网
OBJECTDETECTIONINANOISYSCENE*

AlbertJ.Ahumada,Jr.

NASAAmesResearchCenter,HumanandSystemsTechnologiesBranch

MoffettField,California,94035-1000

BettinaL.Beard

UniversityofCalifornia,SchoolofOptometry

Berkeley,California,94720-2020

Abstract

Observersviewedasimulatedairportrunwaylandingscenewithanobstructingaircraftontherunwayandratedthevisibilityoftheobstructingobjectinvaryinglevelsofwhitefixed-patternnoise.Theeffectofthenoisewascomparedwiththepredictionsofsingleandmultiplechanneldiscriminationmodels.Withoutacontrastmaskingcorrection,bothmodelspredictalmostnoeffectofthefixed-patternnoise.Aglobalcontrastmaskingcorrectionimprovesbothmodels’predictions,butthepredictionsarebestwhenthemaskingcorrectionisbasedonlyonthenoisecontrast(doesnotincludethebackgroundimagecontrast).Keywords:imagequality,targetdetection,noise,visionmodels,contrastsensitivity

1.Introduction

Objectdetectiontypicallyinvolvessearchandpatternrecognitioninarangeofbackgrounds.Visualobjectdetectionisfundamentallylimitedbybackground-inducedcontrastmasking.Whentheobjectispresentorabsentinaconstantbackground,contrastmaskingcanbemeasuredasthediscriminabilitybetweentwoimages.Weareevaluatingtheabilityofimagediscriminationmodelstopredictobjectvisibilitywithafixedbackgroundimage.Ifthemodelsaresuccessful,theypredicttheupperlimitofobserverperformanceinanobjectdetectiontask.

Ahumada,Rohaly,andWatson(SPIE1995)1applieddiscriminationmodelstoobjectdetectioninnaturalbackgrounds.Wereportedthatthedetectabilityoftanktargetswasbetterpredictedbyamultiplechannelmodelthanbyasinglechannelmodel.Wethenaddedasimplecorrectionformaskingbasedonvisiblecontrastenergy.Itimprovedthepredictionsforbothmodelsandequalizedtheirperformance.2,3,4

󰁨󰁨󰁨󰁨󰁨󰁨󰁨󰁨󰁨󰁨󰁨󰁨󰁨󰁨󰁨

*PublishedinB.RogowitzandJ.Allebach,eds.,HumanVision,VisualProcessing,andDigitalDisplayVII,SPIEProceedingsVolume2657,SPIE,Bellingham,WA,Paper23.

AhumadaandBeardObjectDetectioninaNoisyScene-2-

Someobjectdetectionsituationsinvolvenoisydisplays.Herewemeasureobjectdetectabilityinacompleximagemaskedbyfixed-patternnoise.Wecomparethese

measurementswithdiscriminationmodelpredictions.Withoutthemaskingcorrection,thesinglechannelmodelpredictsnoeffectofnoiseandthemultiplechannelmodelpredicts

maskingonlybythenoiseinthechannelsaffectedbytheobject.So,neithermodelcorrectlypredictstheeffectofthefixed-patternnoise.Withthemaskingcorrection,bothmodels’predictionsareimproved.Thepredictionsareevenbetterwhenthemaskingcorrectionisbasedonlyonthenoisecontrastanddoesnotincludethebackgroundimagecontrast.

2.Experiment

2.1Methods

2.1.1Stimuli.Twodigitalimagesofasimulatedairportsceneweregenerated.ImageI1,shownatthetopofFigure1,hasanobstructingaircraftontherunway.ImageI0,showninthemiddleofFigure1,isthesameimagewithouttheobstructingaircraft.Weusedasinglefixed-patternwhitenoisemaskNwithuniformlydistributedpixelvalues.Imagesfortheexperimentwereconstructedfromtheseimagesbyaddingthebackgroundimage,afractionpofthedifferencebetweenthebackgroundandtheobjectimages,andafractionqofthenoiseimage,

󰁤.Ip,q=I0+p(I1−I0)+qN+(1−q)N

(1)

󰁤isthemeanofthenoiseimage.AfractionofN󰁤isaddedtokeepthemeanluminanceN

constant.Imagesweregeneratedforthesixpvalues0,0.05,0.10,0.20,0.40,and1,andfortheqvalues0,0.25,0.50,and1.0.TheimageatthebottomofFigure1illustratesthecaseofp=1andq=0.5.The128×128pixelgray-scaleimageswerepresentedona15inchSonycolormonitorwhoseluminanceincd/m2wascloselyapproximatedby

L=0.05+(0.024d)2.4,

(2)

wheredisthedigitalimagepixelvalue.Themeanluminanceoftheimagesandsurroundingscreenregionwasabout10cd/m2.Theviewingdistanceof127.5cmandtheimagesizeof6.0cmgiveaviewingresolutionof47.5pixelsperdegreeofvisualangle.Theplane/runwayscenethussubtended2.7degvisualangle,theplanealonefitinarectangle0.78degby0.17degofvisualangle(37horizontaland8verticalpixels).Itaffectedatotalof96pixels.Whenanimagewasnotpresent,thescreenwasfilledwithrandom,uniformlydistributed,grayscalepixels.Becausethedisplayhadonly32differentlevelsofgrayscale(IBM-PCcompatibleVGAdisplaymode)theno-noiseconditionwasrunattwicethedigitalimagecontrasttoallowmoredynamicrange.Theimagedurationwas1.0second.

2.1.2Observers.Fourfemaleobservers,aged18to37years,withcorrectedacuityof20/20orbetterweretested.

2.1.3Procedure.Theobserverswereaskedtorateeachimageona4pointratingscaleaccordingtothefollowinginterpretation:1-Definitelydidnothaveaplane.2-Probablydidnothaveaplane.3-Probablydidhaveaplane.

AhumadaandBeardObjectDetectioninaNoisyScene-3-

4-Definitelydidhaveaplane.Inaddition,theobserverswereaskedtotrytousethe4responsecategorieswithroughlyequalfrequency.

Withinablockof60trials,themasknoiselevelqwasheldconstant,whilethefourobject/backgroundplevelsoccurredrandomly(withprobability0.25).Table1showsthefourvaluesofpusedateachqvalue(thecoefficientdeterminingthenoiselevel).

󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩Table1-Signallevelvaluespusedateachnoiselevelvalueqqp’s󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩00.050.10.2000.050.10.20.250.500.10.20.4󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩100.20.41.0󰁩Groupsoffourrepetitionsofthefournoiselevelswereindependentlysequencedusing4×4

Latinsquares.Observers1and2completed16repetitionsofeachnoiselevel,Observer3completed8repetitions,andObserver4completed10repetitionsin5×5Latinsquares,includingano-noiseconditionatthesamecontrastasthenoiseconditions.

2.2Dataanalysis

2.2.1Method.Foragivennoiselevel,thedistanced′indiscriminabilityunitsfromeachobjectimagetoitsnon-objectimagewasmeasuredinthecontextofaone-dimensionalThurstonescalingmodel.5Thescalingmodelhasthefollowingassumptions:

1.Thepresentationofanimagegeneratesaninternalvaluethatisasamplefromanormaldistributionwithunitvariance.

2a.ThemeanofthedistributiongeneratedbyabackgroundimageI0iszero.2b.ThemeanofthedistributiongeneratedbyanoriginalobjectimageI1isd′.2c.ThemeanofthedistributiongeneratedbyanimageIpispd′.

3.Theobserverhas3fixedcriteriathatareusedtocategorizeaninternalvaluetooneofthe4responses.

Thescalingmodelforthisexperimenthas4d′parametersand3categoryboundariesforeachobserver.Parameterswereestimatedbythemethodofmaximumlikelihoodseparatelyforeachblock.

2.2.2Experimentalresults.Mediand′estimatesforeachobserverandforthe4noiselevelsaregiveninTable2.

AhumadaandBeardObjectDetectioninaNoisyScene-4-

󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩Table2-Medianexperimentaldiscriminabilityindicesd′󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩noiselevelq00.250.51󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩18.511.96.63.3Observer111.68.84.1Observer224.9

Observer39.58.85.824.4󰁩Observer428.415.49.05.2󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩24.8Geometricmean11.98.24.5󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩

Thestandarddeviationofanindividualscoreindecibels(dB=20×thelogofthescore)is

estimatedtobe1.3dB,basedontheobserverbynoiselevelinteraction,whichhas9degreesoffreedom.Thisleadsto95%confidenceintervalsof±1.4dBforthemeansforeachnoiselevel.Figure2plotsthedataofTable2withtheconfidenceintervalsaboutthemeans.Observer4hadamediand′of18.4fortheno-noiseconditionatthesamecontrastasthenoiseconditions,onlyslightlyhigherthanherd′valueof15.4fortheq=0.25condition.Thelargedifferencefromtheq=0andtheq=0.25conditionsisseentobemainlyaneffectofthelowersignallevelinthenoiseconditions.

3.Models

3.1Algorithms

3.1.1Multiplechannelmodel.ThemultiplechannelmodelisbasedontheCortextransformofWatson.6Itissimilarinspirittohisoriginalmultiplechannelmodel,7andissimilarindetailtoothersbasedontheCortextransform.8,9,10

Themultiplechannelmodelcalculationforapairofimages(I0andI1)hasthe

followingsteps.TheimagesI1andI0areconvertedtoluminanceimagesbythecalibrationfunctionofEquation(2).Theimagesareconvertedtoluminancecontrastbysubtractingand

󰁤0,thendividingbythebackgroundimagemeanluminanceL

󰁤0)/L󰁤0.Ij←(Ij−L

Theoperationsontheimageindicatetheoperationappliedseparatelytoeachpixel.A

contrastsensitivityfunction(CSF)filterSisthenappliedtothetwocontrastimages.

Ij←F−1[SF[Ij]],

(4)

whereFandF−1aretheforwardandinverseFouriertransforms.NexttheCortextransformisappliedtotheimagesresultingincoefficientsCj,k,wheretheindexkrangesoverspatialfrequency,orientation,andspatiallocation.Thedetectabilitydkcontributedbythekthspatialfrequency,orientation,andpositionisthencomputedastheabsolutevalueofthedifferenceintheCortextransformcoefficients,maskedbythebackgroundcoefficientifitisabovethreshold.

dk=C1,k−C0,k,

ifC0,k≤1.0,

0.7,

(3)

dk=C1,k−C0,k/C0,kifC0,k>1.0.

(5)

Finally,d′isgivenbyaMinkowskisumoftheindividualcontributionswithsummation

AhumadaandBeardObjectDetectioninaNoisyScene-5-

exponentβ,

d′=(Σdkβ)1/β.

k

(6)

Forthecasethatβ=∞,theresultisthelargestofthedk.

3.1.2Singlechannelmodel.Forthesinglechannelmodel,thestepsarethesamethroughtheimagefiltering,thenthefilteredimagevaluesareusedtocompute

dk=I1,k−I0,k,

(7)

wheretheindexknowreferstoimagepixels.Equation(6)isthenusedtoobtaind′.

3.1.3Contrastnormalization.Withoutthecorrectionfactor,thesinglechannelmodelpredictsnocontrastmaskingatallandthemultiplechannelmodelonlypredictsmaskingwithinthechannelsaffectedbythesignal.Recentworkdemonstratesmaskingbycontrastenergyinchannelsnotcontainingthesignal.11Newversionsofthemultiplechannelmodelsincorporatinglateralinteractionsamongcorticalunitchannelstoaccountforbetween-channelmaskinghavebeendeveloped.12−15AmodelsimilartotheirswouldresultbyreplacingEquation(5)with

c0

󰁨󰁨󰁨󰁨󰁨󰁨󰁨󰁨󰁨󰁨󰁨󰁨󰁨󰁨󰁨󰁨󰁨󰁨󰁨󰁨󰁨󰁨󰁨󰁨dk=C1,k−C0,k󰁨,(8)a0a1/a(c0+Σck,k′C0,k′k,k′)0

k′

wherec0anda0areconstants,ck,k′representstheweightofthemaskingofchannelk′onchannelk,andak,k′representsthegrowthofthatmaskingwiththeactivityinchannelk′.Ifwemakethesimplifyingassumptionsthattheck,k′areallequalandsumtounity,thattheak,k′=2,anda0=2,theresultisthatthefactormultiplyingthedifferencetermisnolongerafunctionofkandcanbefactoredoutoftheMinkowskimetricEquation(6).Also,theCortextransformhasthepropertythatthesumofsquaresofthecoefficientsequalsthesumofsquaresoftheimagevalues,sothesimplificationassumptionsresultinthed′predictionformula,

c0󰁨󰁨󰁨󰁨󰁨󰁨󰁨󰁨󰁨d′=d′unmasked,(9)

22󰁤0󰁤󰁤󰁤󰁤+c√cwhered′unmaskediscomputedfromtheunmaskeddifferences,cistheRMSbackgroundimage

contrastpassedbytheCSFfilter,andc0isaparameterrepresentingthecontrastlevelatwhichthemaskingbecomeseffective.Tocomputec,theCSFisnormalizedtounityatitspeakvalue.InsteadofdealingwiththeadditionalcomputationalcomplexityandparameterestimationproblemsofEquation(8),wewillsimplyuseEquation(9)tocorrectthepredictionsofthesingleandmultiplechannelmodels.

3.2Modelparameters

Themodelparametersusedarethosethatprovedtobebestinpreviousstudies.1−4TheCSFfilterswerecalibratedtoagreewiththeCSFformuladevelopedbyBarten.16ThefiltershaveadifferenceofGaussianform,

AhumadaandBeardObjectDetectioninaNoisyScene

−(f/fc)2

−(f/fs)2

-6-

S(f)=acexp−asexp

,(10)

whereacandasarethecenterandsurroundamplitudeparametersandfcandfsarethe

centerandsurroundfrequencycutoffparameters.Table3givestheCSFandβparametersforthemultiplechannelandthesinglechannelmodels.TheamplitudeparametershavethedimensionsofJND’sperunitcontrastandthecutoffparametershavethedimensionsofcyclesperdegreeofvisualangle.

󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩Table3-Modelparameters󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩channelsβafcas/acfc/fs󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩c20.80.775.6multiple415.5󰁩single418.516.40.687.9󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩3.3Modelpredictionsandresults

3.3.1Predictionswithoutacontrastmaskingcorrection.Themodelpredictionsford′withoutacontrastmaskingcorrectiongiveninTable4foreachofthefournoiselevels.

󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩Table4-Modeld′’swithoutacontrastmaskingcorrection󰁩

noiselevelq00.250.51󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩4.02.32.21.9multiplechannel󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩singlechannel11.511.511.8󰁩24.5Figure3showsthepredictionsofTable4plottedwiththemeanobserverresults.Both

modelscorrectlypredictthedifferencebetweenq=0andq=0.25causedbyscalingthedowntheaircraftimagetomakeroomforthenoise.Thesinglechannelmodelpredictsnomaskingbythenoise.Themultiplechannelmodelpredictsverylittlemaskingbythenoise.Table5showsthesensitivityscalefactorsneededtoequalizetheaveragelogpredictionsofthe

modelsandtheobservers.ItalsoshowstheaverageerrorofpredictionindecibelsusingthescalefactorandanFstatisticrepresentingthestatisticalgoodness-of-fitoftheerror.Themultiplechannelmodelaveragesafactorof4tooinsensitive,whilethesinglechannelaveragesensitivityiswithintherangeofthatoftheobservers.Theunderpredictionofthemaskingeffectscausestheerrorstobelarge.BothF’sarehighlysignificant,sincethe99.9percentileoftheFdistributionwith3and9degreesoffreedomis13.9.

󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩Table5-Modelfitswithoutcontrastmaskingcorrectionscalefactormodelerror,dBF󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩4.13.530.5multiplechannelsinglechannel0.724.038.5󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩3.3.2Withcontrastmaskingcorrection.RMScontrastvaluesfornormalizingthed′

valuesareshowninTable6foreachofthe4noiseplusbackgroundimages,filteredbytheCSFforeachmodel.

AhumadaandBeardObjectDetectioninaNoisyScene-7-

󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩Table6-RMSimagecontrast󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩noiselevelq00.250.51󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩0.0760.0980.158multiplechannel0.136

󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩singlechannel0.0790.0930.136󰁩0.150

Figure4showsthepredictionsofFigure3correctedwithac0of0.04andtheRMScontrast

valuesofTable6.Nowbothmodelspredicttheeffectofthenoisebetterwhenthenoiseispresent,buttheypredicttoomuchmaskingofthetargetbytheimagealone.Table7showsthegoodness-of-fitmeasuresasinTable5.Thescalefactorsshowthatnowbothmodelspredicttoomuchmasking.

󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩Table7-Modelfitswithcontrastmaskingcorrection󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩scalefactormodelerror,dBF󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩12.23.325.3multiplechannel󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩singlechannel2.13.834.7󰁩3.3.3Contrastmaskingcorrectionbasedonnoisealone.Thepoorfitaboveiswhat

onemightexpectfromusinganimage-wideestimateforimagemaskingwhiletherunwayregionhaslittlecontrastvariation.ThevaluesofTable6canbedecomposedtoshowthattheRMSvisiblecontrastfromthefull(q=1)noisealoneis0.144forthemultiplechannelmodeland0.114forthesinglechannelmodel.Figure5showsthepredictionsofFigure3correctedwithac0of0.04andthenoisecomponentoftheRMSvisiblecontrast.Nowbothmodelsfitwell,withaslighterrorinthedirectionthatwouldresultfromasmallimage

maskingeffect.Table8showsthegoodness-of-fitmeasuresasinTable5.Nowbothmodelshavescalefactorsclosetounityandthesinglechannelmodelfitsthenoiseeffectquitewell.ThemultiplechannelFnowbarelyexceedsthe99thpercentileoftheFdistribution(6.99),andthesinglechannelFisjustabovethe90thpercentile(2.81).

󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩Table8-Modelfitsusingonlynoiseinthecontrastmaskingcorrection󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩modelscalefactorerror,dBF󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩multiplechannel1.301.77.02singlechannel1.161.12.84󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩󰁩4.Discussion

Theimprovementinthemodelpredictionsresultingfromlimitingthecontrastmaskingcorrectiontothenoise,suggeststhatthecontrastmaskingcorrectionshouldbebasedonthecontrastinasmallerregioncontainingthetargetobject.Wehadsuccessbefore2−4withthecorrectionbasedonthesamesizedimage,andexperimentsmeasuringcontrasteffectsonperceivedcontrastindicateconsiderablespatialspread.19−22Currentmodels12−15extendthemaskinginteractionsonlytochannelsdifferinginorientationatthesamelocationandspatialfrequency.Alsorecentattemptstomeasurecontrastmaskingbyasurroundmaskerfoundnone.23,24Wecurrentlyrecommendthatthecontrastmaskingcorrectionbebasedonanestimateoftheimagecontrastintheimmediateregionofthetargetobject.

AhumadaandBeardObjectDetectioninaNoisyScene-8-

Theresultsdemonstratethatthesinglechannelmodelwithanappropriatecontrast

maskingcorrectioncanoutperformthemultiplechannelmodelwithorwithoutageneralgaincontrol.Althoughamultiplechannelmodelwithinter-channelinteractionsmightdobetterinthissituation,itprobablywouldrequiremorestronglyorientedsignalsandmaskerstoobtainabenefitfortheextracalculations.Oneproblemwiththecontrastmaskingcorrectionandthemultiplechannelmodelisthatcontrastinthesignalchannelscontributestomaskingtwice.Themultiplechannelmodelmightbethebetterofthetwowiththecorrectionif,forexample,thewithin-channelmaskingexponentandthecorrectionexponentwerebothlowered.Theresultshereshowthateventhoughthesinglechannelmodeldoesnotpredictthedetailsoforientedcontrastmasking,suchastheresultsofFoley,11itcanbeausefulalternativetomorecomplicatedmodels.

5.Acknowledgments

Ren-ShengHorngwrotetheexperimentaldisplayandresponsecollectionprogram.AndrewWatsonwrotethebasicMathematicaroutinesthatgeneratedthemodelandmetricpredictionsandmadehelpfulsuggestions.WearealsogratefulforthehelpofAnnMarieRohaly,CynthiaNull,JeffreyMulligan,andRobertEriksson.ThisworkwassupportedinpartbyNASAGrant199-06-39toAndrewWatsonandNASAAeronauticsRTOP#505--53.

6.References

1.A.J.Ahumada,Jr.,A.B.Watson,A.M.Rohaly(1995)Modelsofhumanimage

discriminationpredictobjectdetectioninnaturalbackgrounds,inB.RogowitzandJ.

Allebach,eds.,HumanVision,VisualProcessing,andDigitalDisplayIV,Proc.Vol.2411,SPIE,Bellingham,WA,pp.355-362.

2.A.J.Ahumada,Jr.,A.M.Rohaly,A.B.Watson(1995)Imagediscriminationmodelspredictobjectdetectioninnaturalbackgrounds,InvestigativeOphthalmologyandVisualScience,vol.36(ARVOSuppl.),p.S439(abstract).

3.A.M.Rohaly,A.J.Ahumada,Jr.,andA.B.Watson(1995)AComparisonofImageQualityModelsandMetricsPredictingObjectDetection,SIDDigest,26,45-48.

4.A.J.Ahumada,Jr.,A.B.Watson,A.M.Rohaly(1995)Objectdetectioninnatural

backgroundspredictedbydiscriminationperformanceandmodelsPerception,Vol.24,ECVPSuppl.,p.7(abstract).

5.W.S.Torgerson(1958)TheoryandMethodsofScaling,Wiley,NewYork.

6.A.B.Watson(1987)TheCortextransform:rapidcomputationofsimulatedneuralimages,ComputerVision,Graphics,andImageProcessing,39,311-327.

7.A.B.Watson(1983)Detectionandrecognitionofsimplespatialforms,inO.J.BraddickandA.C.Sleigh,eds.,Physicalandbiologicalprocessingofimages,Springer-Verlag,Berlin.

8.A.B.Watson(1987)Efficiencyofanimagecodebasedonhumanvision.JOSAA,4,2401-2417.

9.S.Daly(1993)Thevisibledifferencespredictor:analgorithmfortheassessmentofimage

AhumadaandBeardObjectDetectioninaNoisyScene-9-

fidelity,inWatson,ed.DigitalImagesandHumanVision.MITPress,Cambridge,MA.10.J.Lubin(1993)Theuseofpsychophysicaldataandmodelsintheanalysisofdisplaysystemperformance,inWatson,ed.DigitalImagesandHumanVision.MITPress,Cambridge,MA.

11.J.M.Foley(1994)Humanluminancepattern-visionmechanisms:maskingexperimentsrequireanewmodel,JournaloftheOpticalSocietyofAmericaA,vol.11,pp.1710-1719.12.P.C.Teo,D.J.Heeger(1994)Perceptualimagedistortion,inB.RogowitzandJ.Allebach,eds.,HumanVision,VisualProcessing,andDigitalDisplayV,ProceedingsVolume2179,SPIE,Bellingham,WA,pp.127-141.

13.P.C.Teo,D.J.Heeger(1994)Perceptualimagedistortion,ProceedingsofICIP-94,VolumeII,IEEEComputerSocietyPress,LosAlamitos,California,pp.982-986.

14.P.C.Teo,D.J.Heeger(1995)Ageneralmechanisticmodelofspatialpatterndetection,InvestigativeOphthalmologyandVisualScience,vol.36,no.4(ARVOSuppl.),p.S438(abstract).

15.A.B.Watson,J.A.Solomon(1995)Contrastgaincontrolmodelfitsmaskingdata,

InvestigativeOphthalmologyandVisualScience,vol.36,no.4(ARVOSuppl.),p.S438(abstract).

16.P.G.J.Barten(1993)Spatiotemporalmodelforthecontrastsensitivityofthehumaneyeanditstemporalaspects,inB.RogowitzandJ.Allebach,eds.,HumanVision,VisualProcessing,andDigitalDisplayIV,Proc.Vol.1913,SPIE,Bellingham,WA,pp.2-14.19.M.W.Cannon,S.C.Fullenkamp(1991)Spatialinteractionsinapparentcontrast:inhibitoryeffectsamonggratingpatternsofdifferentspatialfrequencies,spatialpositionsandorientations,VisionResearch,vol.31,pp.1985-1998.

20.J.S.DeBonet,Q.Zaidi(1994)Weightedspatialintegrationofinducedcontrast-contrast,

InvestigativeOphthalmologyandVisualScience,vol.35(ARVOSuppl.),p.1667.21.B.Singer,M.D’Zmura(1994)Colorcontrastinduction,VisionResearch,vol.34,pp.3111-3126.22.M.D’Zmura,B.Singer,L.Dinh,J.Kim,J.Lewis(1994)Spatialsensitivityofcontrastinductionmechanisms,OpticsandPhotonicsNews,vol.5,no.8(suppl),p.48(abstract).

23.R.J.Snowden,S.T.Hammett(1995)Theeffectofcontrastsurroundsoncontrastcentres,InvestigativeOphthalmologyandVisualScience,vol.36,no.4(ARVOSuppl.),p.S438(abstract).

24.J.A.Solomon,A.B.Watson(1995)Spatialandspatialfrequencyspreadsofmasking:

Measurementsandacontrast-gain-controlmodel,Perception,Vol.24,ECVPSuppl.,p.37(abstract).

Figure 1. (Top) Airport scene with an obstacle aircraft on the runway.

(Middle) The same scene without the aircraft.

(Bottom) The aircraft scene (p=1) masked by the noise at q=0.5.

Figure 2. Object detectability data from 4 observers for 4 noise levels.

3020

individualsgeometric mean

d’10

30.0

0.25

0.5

0.75

1.0

Noise proportion

Figure 3. Predictions of scaled models without contrast masking correction.

3020

multiple channelsingle channelobservers’ mean

d’10

30.0

0.25

0.5

0.75

1.0

Noise proportion

Figure 4. Predictions of scaled models with the contrast masking correction.

3020

multiple channelsingle channelobservers’ mean

d’10

30.0

0.25

0.5

0.75

1.0

Noise proportion

Figure 5. Predictions of scaled models with the contrast masking correction󰀀 based only on the noise.

3020

multiple channelsingle channelobservers’ mean

d’10

30.0

0.25

0.5

0.75

1.0

Noise proportion

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- efsc.cn 版权所有 赣ICP备2024042792号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务