您好,欢迎来到筏尚旅游网。
搜索
您的当前位置:首页塑料简介

塑料简介

来源:筏尚旅游网


近年来,工程塑料以其优异的性能获得了越亚广泛的应用。据不完全统计,近5年来,国内通用的聚碳酸酯、聚甲醛、聚酰胺、热塑料性聚酯、改性聚苯醚等五大工程塑料市场需求保持30.3%的速度增长。有关专家预测,到2010年,工程塑料的总需求量将达到 167万吨。业内人士预计,未来数年内工程塑料市场需求量还将持续快速地增长,我国的工程塑料产业将步入产需两旺的佳境。

国内市场蓬勃发展

目前,工程塑料制品主要是用于家电、电子、汽车、通信等待业的配套件,正是相关制造业的蓬勃发展,带动了我国工程塑料制品需求量的大幅度上升。今年1至5月,国内各类改性塑料的产量同比增长40%。据预测,今年全国五大工程塑料的市场需求将达到80万吨,其中尼龙将达16.5万吨,聚碳酸酯达40.5万吨,聚甲醛14万吨,PET和PBT 合计达6.8万吨,而性聚苯醚的市场需求将达2.2万吨。以家电行业来说,今后仅以冰箱、冷柜、洗衣机、空调及各类小家电产品每年的工程塑料需求量将达60万吨左右。另外,预计到2005年我国汽车产量将达到310万辆,其中轿车将占40%左右,需要各种工程塑料配件约40万吨。用于通信基础设施建设以及铁路、公路建设等方面的工程塑料用量则更为惊人,预计今后数年内总需求量将达到450万吨以上。此外,工程塑料还在航天、电子等领域获得了普遍应用,经济效益极为显著。

据专家介绍,工程塑料在轴承上也具有广阔的应用前景。这是因为工程塑料具有优异的自润滑性、耐磨性、低摩擦因数和特殊的抗咬合性等特点,即使在润滑条件不良的情况下也能正常工作,用作轴承材料可谓适得其所。目前,国外的塑料轴承发展非常快,应用也比较广泛,而我国尚处于起步阶段,发展空间还很大。

国内旺盛的市场需求引来了众多的巨头,从上世纪90年代中期起,以美国GE、

杜邦公司为首的一大批公司就纷纷进入中国投资建厂,韩国LG化学等则是选择合资方式进入中国市场。这些巨头的到来,客观上刺激了国内工程塑料产业的发展,便也对国内工程塑料生产企业造成了极大的压力。

结构规模有待调整

有关专家指出,尽管前景诱人,但目前我国工程塑料待业的发展仍存在种种不尽人如人意之处,其中最突出的一点是,我国工程塑料的品种结构并不合理,基本上都有是通用工程塑料,高附加值特种工程塑料树脂几乎是空白。而在通用工程塑料的产品中,大部分企业均生产工程塑料改性树脂,从事基础树脂生产的企业所占比例甚少。从整体上来看,由于缺乏大型龙头企业作为行业支撑,导致国内企业市场占有率偏低,竞争能力不强。

就经营规模而言,我国工程塑料企业多为千吨级生产装置或工业化试验装置,而国外企业的年生产能力多是万吨级以上。规模和工艺水平上的巨大差异,使得国产工程塑料难以满足国内市场的需求,产品性能和价格都无法与进口产品竞争,我国已连续多年成为世界最大的工程塑料进口国。

未来发展科技为本

我国工程塑料业的发展现状引起了国家相关部门的高度重视。在工程塑料工业“十五”发展规划中明确提出,要尽快提高我国工程塑料的产业化水平,并根据不同品种的产业化程度高低采取不同的策略。业内专家分析认为,今后我国工程塑料产业的发展,将呈现出如下几大趋势:

环境因素将成为未来新产品开发的关键问题之一。出于可持续发展战略的考虑,今后

开发产品必须以节能、省料和有利环保为前提。基于同样的理由,塑料废弃物的有效回收利用也将成为今后的一大重要课题,尤其是工程塑料的回收利用将成为未来一大热点。

今后我国的工程塑料的发展,一方面要靠自己的力量,另一方面也要利用国外的技术与资金,关键是把各方面的力量集中起来,形成一股力量,才能形成较大规模的工业化生产,尽快形成产业化。聚合物改性中,纳米材料的应用、液晶材料的原位复合都会给塑料待业带来极大的影响。今后纳米技术的研究是不可缺少的部分,可能会给工程塑料行业发展带来意想不到的结果。通用塑料的工程化以及工程塑料高性能化和低成本化,将是未来工程发展的最重要趋势。

此外,我国工程塑料企业还必须提高产品功能,通过各种方法满足各工业部门对材料性能的多样化要求,提高技术含量,降低产品成本,尽快提升全行业的核心竞争能力。惟有如此,我国的工程塑料企业才能在激烈的市场竞争中立足,并赢得进一步发展壮大的时间和空间。

通用塑料

一般是指产量大、用途广、成型性好、价格便宜的塑料,如聚乙烯、聚丙烯、酚醛等。

通用塑料有五大品种,即聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯及ABS。它们都是热塑性塑料。

聚乙烯(PE)

聚乙烯是塑料工业中产量最高的品种。聚乙烯是不透明或半透明、质轻的结晶性塑料,

具有优良的耐低温性能(最低使用温度可达-70 ~ -100℃),电绝缘性、化学稳定性好,能耐大多数酸碱的侵蚀,但不耐热。聚乙烯适宜采用注塑、吹塑、挤塑等方法加工。 PE根据密度不同可分为:低密度聚乙烯LDPE;高密度聚乙烯HDPE;线性低密度聚乙烯LLDPE。

聚丙烯(PP)

聚丙烯是由丙烯聚合而得的热塑性塑料,通常为无色、半透明固体,无臭无毒,密度为0.90 ~ 0.919克/厘米,是最轻的通用塑料,其突出优点是具有在水中耐蒸煮的特性,耐腐蚀,强度、刚性和透明性都比聚乙烯好,缺点是耐低温冲击性差,易老化,但可分别通过改性和添加助剂来加以改进。聚丙烯的生产方法有淤浆法、液相本体法和气相法3种。

聚氯乙烯(PVC)

聚氯乙烯是由氯乙烯聚合而得的塑料,通过加入增塑剂,其硬度可大幅度改变。它制成的硬制品以至软制品都有广泛的用途。聚氯乙烯的生产方法有悬浮聚合法、乳液聚合法和本体聚合法,以悬浮聚合法为主。

聚苯乙烯(PS)

通用的聚苯乙烯是苯乙烯的聚合物,外观透明,但有发脆的缺点,因此,通过加入聚丁二烯可制成耐冲击性聚苯乙烯(HTPS)。聚苯乙烯的主要生产方法有本体聚合、悬浮聚合和溶液聚合。

ABS

ABS树脂是丙烯腈-丁二烯-苯乙烯三种单体共同聚合的产物,简称ABS三元共聚物。这种塑料由于其组分A(丙烯腈)、B(丁二烯)和S(苯乙烯)在组成中比例不同,以及制造方法的差异,其性质也有很大的差别。 ABS适合注塑和挤压加工,故其用途也主要是生产这两类制品。

工程塑料

是指一类可以作为结构材料,在较宽的温度范围内承受机械应力,在较为苛刻的化学物理环境中使用的高性能的高分子材料。:-般指能承受一定的外力作用,并有良好的机械性能和尺寸稳定性,在高、低温下仍能保持其优良性能,可以作为工程结构件的塑料。如ABS、尼龙、聚矾等。

被当做通用性塑胶者包括聚碳酸酯(Polycarbonate, PC)、聚醯胺(尼龙, Polyamide, PA)、聚缩醛(Polyacetal, Polyoxy Methylene, POM)、变性聚苯醚(Poly Phenylene Oxide, 变性PPE)、聚酯(PETP,PBTP)、聚苯硫醚(Polyphenylene Sulfide, PPS)、聚芳基酯,而热硬化性塑胶则有不饱和聚酯、酚塑胶、环氧塑胶等。拉伸强度均超过50MPa,抗拉强度在500kg/cm2以上,耐冲击性超过50J/m,弯曲弹性率在24000kg/cm2,负载挠曲温度超过100℃,其硬度、老化性优。聚丙烯若改善硬度及耐寒性,则亦可列入工程塑胶的范围。此外,较特殊者为强度弱、耐热、耐药品性优的氟素塑胶,耐热性优的矽溶融化合物、聚醯胺醯亚胺、聚醯亚胺、Polybismaleimide、Polysufone(PSF)、PES、丙烯塑胶、变性蜜胺塑胶、BT Resin、PEEK、PEI、液晶塑胶等。因为化学构造不同,故耐药品性、摩擦特性、电机特性等也有若干差异。且因成形性的不同,故有适用于任何成形方式者,亦有只能以某种成形方式加工者,造成应用上的受限。热硬化型的工程塑胶,其耐冲击性较差,因此大多添加玻璃纤维。工程塑胶除了聚碳酸酯等耐冲击性大者外,通常具有延伸率小、硬、脆的性质,但若添加20~30%的玻璃纤维,则可有所改善。

五大工程塑料的的应用

聚酰胺(PA)由于它独特的低比重、高抗拉强度、耐磨、自润滑性好、冲击韧性优异、具有刚柔兼备的性能而赢得人们的重视,加之其加工简便、效率高、比重轻(只有金属的1/7)、可以加工成各种制品来代替金属,广泛用于汽车及交通运输业。典型的制品有泵叶轮、风扇叶片、阀座、衬套、轴承、各种仪表板、汽车电器仪表、冷热空气调节阀等零部件,大约每辆汽车消耗尼龙制品达3.6~4千克。聚酰胺在汽车工业的消费比例最大,其次是电子电气。

聚碳酸酯(PC)既具有类似有色金属的强度,同时又兼备延展性及强韧性,它的冲击强度极高,用铁锤敲击不能被破坏,能经受住电视机荧光屏的爆炸。聚碳酸酯的透明度又极好,并可施以任何着色。由于聚碳酸酯的上述优良性能,已被广泛用于各种安全灯罩、信号灯,体育馆、体育场的透明防护板,采光玻璃,高层建筑玻璃,汽车反射镜、挡风玻璃板,飞机座舱玻璃,摩托车驾驶安全帽。用量最大的市场是计算机、办公设备、汽车、替代玻璃和片材,CD和DVD光盘是最有潜力的市场之一。

聚甲醛(POM)被誉为“超钢”,这是由于它具有优越的机械性能和化学性能,因此它可用作许多金属和非金属材料所不能胜任的材料,主要用作各种精密度高的小模数齿轮、几何面复杂的仪表精密件、自来水龙头及爆气管道阀门。我国使用聚甲醛用于农业喷灌机械上,可以节省大量铜材。

聚对苯二甲酸丁二醇酯(PBT)是一种热塑性聚酯,非增强型的PBT与其它热塑性工程塑料相比,加工性能和电性能较好。PBT玻璃化温度低,模具温度在50℃时即可迅速结晶,加工周期短。聚对苯二甲酸丁二醇酯(PBT)被广泛应用于电子、电气和汽车工业中。由于PBT的高绝缘性及耐温性可用作电视机的回扫变压器、汽车分电盘和点火线圈、办公

设备壳体和底座、各种汽车外装部件、空调机风扇、电子炉灶底座、办公设备壳件。

聚苯醚(PPO)树脂具有优良的物理机械性能、耐热性和电气绝缘性,且吸湿性低,强度高,尺寸稳定性好,高温下耐蠕变性是所有热塑性工程塑料中最优异的。可应用于洗衣机压缩机盖、吸尘器机壳、咖啡器具、头发定型器、按摩器、微波炉器皿等小型家电器具方面。改性聚苯醚还用于电视机部件、电传终点设备的连接器等方面。

程塑料是指被用做工业零件或外壳材料的工业用塑料,是强度、耐冲击性、耐热性、硬度及抗老化性均优的塑料。日本业界将它定义为“可以做为构造用及机械零件用的高性能塑料,耐热性在100℃ 以上,主要运用在工业上”,其性能包括:

1. 热性质:玻璃转移温度(Tg)及熔点(Tm);热变形温度(HDT)高;长期使用温度高(UL-746B);使用温度范围大;热膨胀系数小。

2. 机械性质:高强度、高机械模数、低潜变性、强耐磨损及耐疲劳性。

3. 其它:耐化学药品性、抗电性、耐燃性、耐候性、尺寸安定性佳。

被当做通用性工程塑料者包括聚碳酸酯(PC)、聚酰胺(尼龙)、聚缩醛(POM)、变性聚苯醚(变性PPE)、聚酯(PETP,PBTP)、聚苯硫醚(PPS)、聚芳基酯,热硬化性塑料则有不饱和聚酯、酚塑料、环氧塑料等。它们的基本特性为拉伸强度均超过50Mpa,抗拉强度在500kg/cm ,耐冲击性超过50J/m,弯曲弹性率在24000kg/cm ,负载绕曲温度超过100℃,硬度、老化性优。聚丙烯若改善其硬度和耐寒性,也可列入工程塑料的范围。此外,还包括较特殊者的强度弱、耐热耐药品性优的氟素塑料,耐热性优的硅溶融化合物,以及聚酰胺酰亚胺、聚酰亚胺、Polybismaleimide、Polysufone(PSF)、PES、丙烯塑料、

变性蜜胺塑料、BTResin、PEEK、PEI、液晶塑料等。

各工程塑料的化学构造不同,所以它们的耐药品性、摩擦特性、电机特性等有所差异。由于各工程塑料的成型性不同,因此有的适用于任何成型方式,有的只能以某种成型方式进行加工,这样就造成了应用上的局限。热硬化型工程塑料的耐冲击性较差,因此大多添加玻璃纤维。工程塑料除了聚碳酸酯等耐冲击性大外,通常具有硬、脆、延伸率小的性质,但如果添加20—30%的玻璃纤维,则它的耐冲击性将有所改善。

各种塑料的耐热温度是多少?如PE\\PVC\\PP\\PS\\ABS\\聚甲基丙烯酸甲酯(缩写?)\\PC\\三聚氰胺

树脂耐热大致上是

PE(最高80度),PP(70℃左右,有高的到120℃),聚苯(PS长期使用60-80左右),PVC增塑剂少的话可以到120度,平常的PVC鞋底,你可以试一下估计也就80度。

PA是工程塑料使用温度很高长期使用可以到100℃,一般都在150℃以上,或者左右。

PMMA(有机玻璃)60-80℃,

ABS-40℃到100℃

PC -60~120℃

三聚氰胺 Melamine MF使用温度高,但是具体的数不是很确定,可能在300度才分解

8

光学高分子材料种类繁多,应用也不尽相同,但一般都包含三大类技术指标:光学性能、机械性能、热学性能。

光学性能主要包括折射率和色散、透过率、黄色指数及光学稳定性。

折射率和色散是光学材料的最基本性能。在透镜设计中,为使透镜超薄和低曲率必须寻求高折射率的光学材料,而校正色差要求有两组阿贝数不同的材料,即冕牌系列(低色散,阿贝数>50)和火石系列(高色散,阿贝数<40)。光学玻璃的折射率和色散有较大的选择余地,而光学塑料的选择范围却十分有限,尤其是冕牌系列光学塑料。透明塑料折射率的测定最常用的方法是折射仪法。阿贝折射仪是最广泛用于测定折射率的折射仪。

透过率是表征树脂透明程度的一个重要性能指标,一种树脂的透过率越高,其透光性就越好。透过率的定义为:透过材料的光通量(T2)占入射到材料表面上的光通量(T1)的百分率。任何一种透明材料的透光率都达不到100%,即使是透明性最好的光学玻璃的透光率一般也难以超过95%。

聚合物光学材料在紫外和可见光区的透光性和光学玻璃相近,在近红外以上区域不可避免的出现碳氢振动所引起的吸收。通常,光学塑料在可见光区透光率的损失主要由以下三个因素造成:光的反射;光的散射;光的吸收。

黄色指数是无色透明材料质量和老化程度的一项性能指标,由分光光度计的读数计算而得,描述了试样从无色透明或白色到黄色的颜色变化。这一实验最常用于评价一种材料在真实或模拟的日照下的颜色变化。而对于透明塑料材料来说,由于原料纯度或加工条件

等因素的影响,可能自身带有一定颜色。

光学树脂如同多数有机物质一样存在着耐候和耐老化问题,因此树脂的结构和加工工艺以及使用环境对树脂的光学性能有较大的影响。在一定使用期限内,光学参数的稳定性尤为关键,这个指标直接决定产品的使用性能。采用人工加速老化中的全紫外线老化的方法检测树脂的光学稳定性。全紫外线老化法主要模拟阳光中的紫外线.全紫外线强度比相应太阳紫外强度高几倍。正是短波紫外线对有机材料老化起了主要作用,这样会大大地提高了老化加速率,也是全紫外老化的最突出优点。同时可以进行温度、湿度、雨淋等环境因素的模拟。这一老化方法其紫外强度等参数可以监控,试验重复性好。

韧性(耐冲击性能)和表面硬度(耐磨性)是光学高分子材料的重要机械性能。

冲击强度是衡量材料韧性的一种强度指标。冲击强度是使材料在冲击力的作用下折断,通常把折断时截面吸收的能量定义为材料的冲击韧性。冲击实验主要有弯曲梁式(摆锤式)冲击、落锤式冲击和高速拉伸试验三类。

无定型聚合物的韧性主要与其分子结构有关。主链上酯键、醚键、碳-碳键可以自由旋转,因而材料具有较好的韧性,如PC是光学塑料中抗冲击性能最好的材料;带有较大侧基的聚合物(如PVC, PMMA, PS等),因主链上可以自由旋转的基团较少或旋转时不对称,因而韧性相对较差[44] 。

硬度是衡量材料表面抵抗机械压力的能力,可定义为:材料对形变(特别是永久形变)、压痕或刻痕的抵抗能力。对于透明塑料材料,特别是光学树脂的硬度通常可以采用铅笔硬度。

耐磨性与结构关系密切。交联树脂比未交联树脂耐磨性显著提高,如用于制造眼镜片的CR-39树脂、KT-153树脂都是交联树脂。光学树脂硬度较低、表面易被擦伤这一缺点现在已经很容易克服,采用表面增强技术(如涂覆耐磨材料、真空镀膜等),可以使树脂的表面硬度和光学玻璃一样优良。

高聚物的耐热性主要是指聚合物受热下的变形,高聚物的耐热性主要指玻璃化温度、软化温度等。有机玻璃在玻璃态下使用,而超过这个温度将变为高弹态或黏流态,此时即使受到较小的力也会产生较大的形变而不能保持其外形尺寸。玻璃化转变温度是在恒定的较小负荷下测得的温度形变曲线上发生玻璃化转变较窄温度范围的中间值。在实际使用中,高聚物总是处于受力的情况下,因此不是以静态的玻璃化温度作为耐热温度,而是测量高聚物在一定外力下达到一定形变值时的温度作为耐热温度,常用的有马丁耐热温度、维卡软化温度及热变形温度。

玻璃化转变温度是聚合物材料的一种普遍现象,它是一种聚合物材料使用的上限温度,因此玻璃化转变温度是聚合物的一个非常重要的性能指标。玻璃化转变的实质是链段运动随温度的降低被冻结或随温度的升高被激发的结果。在玻璃化转变前后分子的运动模式有很大的差异。因此,当聚合物发生玻璃化转变时,其物理和力学性能必然有急剧的变化。除形变和模量外,聚合物的比热容、比容积、热膨胀系数、折射率和介电常数等都表现出突变或不连续的变化。因此,根据这些性质上的变化,可以对聚合物的玻璃化转变进行实验测量。常用的测定聚合物玻璃化转变的方法有静态热机械法 TMA(如膨胀计法、温度形变曲线法等)、动态力学测量法DMA(如扭辫法和扭摆法等)、热力学方法(如示差扫描量热法DSC或差热分析法DTA)等。

玻璃化转变温度(Tg)可直接反映出聚合物耐热性的高低,Tg的高低与聚合物的分子结构有关。在聚合物材料中,链的刚性越大,Tg越高;使体系交联也可提高耐热性。

聚合物的热稳定性是其实际应用中的一个重要性质。通常随着温度的升高,聚合物都会发生从玻璃态、高弹态到黏流态的力学变化,最后聚合物会在温度达到一定程度分解,从而破坏聚合物。聚合物的分解温度就是其热稳定性的重要指标之一。热失重法(TG)是目前最常用的一种表征聚合物分解温度的方法,即在程序升温的环境中(空气或氮气氛围),测试试样的质量对温度的依赖关系。热失重法的基本原理:聚合物在温度的作用下,随温度的升高,会发生相应的变化,如水分蒸发,失去结晶水,低分子易挥发物的逸出,物质的分解和氧化等。若将物质的质量变化和温度变化的信息记录下来,就可得到物质的质量温度的关系曲线,即热失重曲线。用热失重法可求得质量和质量变化与温度的关系,求质量变化速率与温度的关系,则需将质量对温度求导,即微商热重法(DTG),描述质量变化速率的曲线即为微商热重曲线。

不同的应用要求光学高分子材料的其他特性要求,如耐化学品性能、电性能等等,这里就不一一叙述。总之,高分子材料正在光学领域发挥着越来越重要的作用。同时由于与国际水平的较大差距,值得各位同仁共同努力,提高基础开发及应用的水平。

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- efsc.cn 版权所有 赣ICP备2024042792号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务