Citethis:Chem.Commun.,2011,47,2580–2582www.rsc.org/chemcomm
Dynamic Article Links
View Online
COMMUNICATION
Facilepreparationandupconversionluminescenceofgraphenequantumdotsw
JianhuaShen,YihuaZhu,*ChengChen,XiaolingYangandChunzhongLi*
Downloaded by Charles Darwin University on 27 May 2011Published on 21 December 2010 on http://pubs.rsc.org | doi:10.1039/C0CC04812GReceived5thNovember2010,Accepted1stDecember2010DOI:10.1039/c0cc04812g
Afacilehydrazinehydratereductionofgrapheneoxide(GO)withsurface-passivatedbyapolyethyleneglycol(PEG)methodforthefabricationofgraphenequantumdots(GQDs)withfrequencyupconvertedemissionispresented.Andwespeculateontheupconversionluminescenceduetotheanti-Stokesphotoluminescence(ASPL),wherethedEbetweenthepandrorbitalsisnear1.1eV.
Recently,carbonquantumdots(CQDs)orcarbondots(C-Dots)havereceivedmuchattention,astheymaygraduallyreplacetraditionalsemiconductorquantumdotsduetosuperiorityinchemicalinertness,biocompatibilityandlowtoxicity.1–9CQDsareusuallysurface-passivatedbypolymers,suchasPEG,andexhibitstrongphotoluminescence(PL).2,10,11Thesurfacepassivationismosteffectivefollowingfunctionalizationwithbiomoleculesinbioimaging,diseasedetectionanddrugdelivery.ButthedisadvantageisthatCQDspossesssizeeffects,thediameteroftheCQDswiththevisiblelightemissionislessthan10nm.10,12,13Inaddition,theCQDswereusuallypreparedbylaserablationofgraphite,electrochemicaloxidationofgraphite,electrochemicalsoakingofcarbonnanotubes,thermaloxidationofcarbonprecursors,vapordepositionofsoot,proton-beamirradiationofnano-diamonds,microwavesynthesis,andbottom-upmethods.14–21Wehavereportedasimplebottom-upsynthesismethodfortheC-Dotsbyusingamesoporoussilicamicrospherestemplate.22Thesecomplexprocessesaredifficultformassproduction.
Veryrecently,Panandcolleagues23havedevelopedasimplehydrothermalrouteforcuttingpreoxidizedmicrometre-sizedrippledgraphenesheetsintoultrafineGQDswithdiametersmainlydistributedinthe5–13nmrange.TheseGQDswerefoundtoexhibitbrightbluePL(quantumyieldca.6.9%),whichhasneverbeenpreviouslyobservedamongtheCQDsbecauseoftheirlargelateraldimensions.However,theproducedGQDsemitstronglyunderalkalineconditionsbut
KeyLaboratoryforUltrafineMaterialsofMinistryofEducation,SchoolofMaterialsScienceandEngineering,EastChinaUniversityofScienceandTechnology,Shanghai200237,China.E-mail:yhzhu@ecust.edu.cn,czli@ecust.edu.cn;Fax:+8621250624;Tel:+8621252022
wElectronicSupplementaryInformation(ESI)available:Experimentaldetailsandinstrumentation,quantumyieldmeasurements.SeeDOI:10.1039/c0cc04812g/
arealmostcompletelyquenchedinacidicmedia.Herein,wepresentanewfacilemethodtoprepareGQDssurface-passivatedbyPEG.TheyexhibitbrightPLinawatersolutionofneutralpH.Mostinterestingly,theyalsopossessupconversionPLproperties.
Inthiswork,wereportGQDspreparedbyhydrazinehydratereductionofGOwiththeirsurfacepassivatedbyPEG.Firstly,GOwasfurtheroxidisedbyHNO3,andcutintosmallGOsheets.Then,thepreparationofaGQDsprecursoroftreatedGOwithanoligomericPEGdiamine(PEG1500N)asthesurfacepassivationagent(Fig.1)wasbasedonthepreviouslyreportedprocedure.2,3,10TheprecursorwasfinallyreducedbyhydrazinehydrationtofabricateGQDs.StrongbluePLwasclearlyshownunder365nmandthegreenfluorescencewasobservedundera980nmlaser.ThePLquantumyieldmeasuredusingrhodamineBasareferenceis7.4%(TableS1inESIw),comparablewiththoseofreportedluminescentcarbonnanoparticles.10Interestingly,thefluorescenceresultsofGQDsresembledthoseofband-gaptransitionswhiletheupconvertedPLpropertiesofGQDsweresimilartotheASPL,andthereisaconstantenergydifferencebetweentheexcitationandemissionlight.24Fig.2showsatransmissionelectronmicroscope(TEM)imageofGQDs.Theirdiametersaremainlydistributedintherangeof5–19nm(13.3nmaveragediameter,similartothatreportedbyPanetal.),23suggestingthattheas-preparedmonodisperseGQDsareuniformlyarranged.Bythepresentmethod,GQDsconsistedofamixtureofdifferentsizedgraphenesheets.Fig.2bshowsahigh-resolutionTEM(HRTEM)imageofanindividualGQD.Tofurtherexploretheopticalpropertiesofas-synthesizedGQDs,adetailedPLstudywascarriedoutbyusingdifferentexcitationwave-lengths.Fig.3showstheUV-visabsorptionandnormalPLspectraofGQDs.FortheUV-visabsorption,therewasno
Fig.1RepresentationofGQDscontaininganoligomericPEGdiaminosurfacepassivatingagent.
2580Chem.Commun.,2011,47,2580–2582ThisjournaliscTheRoyalSocietyofChemistry2011View Online
Downloaded by Charles Darwin University on 27 May 2011Published on 21 December 2010 on http://pubs.rsc.org | doi:10.1039/C0CC04812GFig.2(a)TEMimageoftheGQDs;(b)high-resolutionimageofanindividualGQD;(c)diameterdistributionoftheGQDs.
Fig.3UV-visabsorption(Abs)andPLspectraoftheGQDsatdifferentexcitationwavelengths.Inset:photographoftheGQDaqueoussolutiontakenundervisiblelightand365nmUVlight,fromlefttoright,respectively.
Fig.4(a)PLspectrumexcitedat980nmlaser.Inset:photographoftheGQDaqueoussolutiontakenundera980nmlaser;(b)UpconvertedPLpropertiesofGQDs,insetistheenergyoftheexcitationlightasafunctionoftheemission,andthefunctionofthefitlineisEm=1.00Ex+dE(R2=0.9983)withdE=1.1eV.
clearabsorptionpeak,butalongabsorptionedge.ThePLspectraaregenerallybroadanddependentonexcitationwavelength,thePLpeaksshiftedtolongerwavelengthswithamaximumintensityastheexcitationwavelengthwaschangedfrom300to470nm,andthestrongestpeakexcitedat360nm,consistentwithpreviousfluorescenceanalyses.12,23ThepH-dependentPLspectra(Fig.S1inESIw)showsthattheGQDswiththeirsurfacepassivatedbyPEG1500NexhibitedbrightPLinawatersolutionofneutralpH.AndtheintensityofPLpeaksdecreasedbyabout25%underbothacidicandalkalineconditions,whichwasmorestablethanthatreportedunderacidicconditions.23ThesynthesizedGQDswereshowntopossesstheupconversionPLproperties.Fig.4ashowsthePLspectrumofGQDsexcitedbya980nmlaserwiththeupconvertedemissionslocatedatabout525nm,whichisconsistentwithourobservation.TheseresultsrevealthattheGQDshavetheupconversionproperty,soweconductedfurtherstudiesontheupconversionperformance.AsshowninFig.4b,theexcitationwavelengthchangedfrom600to800nm,theupconvertedemissionspeaksshiftedfrom390to468nm,respectively.Remarkably,theshiftingbetweentheenergyofupconvertedemissionlight(Em)andexcitationlight(Ex)wasalmostunchanged,about1.1eV.Theinsetshowsthelinearrelation-shipbetweenEmandEx,andthefunctionofthefitlineisEm=1.00Ex+dE(R2=0.9983)withdE=1.1eV.ManyreportsindicatedthattheupconvertedPLpropertyofCQDsshouldbeattributedtothemultiphotonactiveprocess.2,12However,webelievethatthisexplanationisnotsufficient.
ThisjournaliscAllthesechangesshowthatthesurfacepassivationbyPEG1500Nexertsastronginfluenceontheformation,micro-structure,andopticalpropertiesoftheGQDs.Tofurtherconfirmandexplainhowthesechangescomefromthequantum-sizedGQDs,weestablishedanenergylevelstructuralmodeloftheGQDstoinvestigatethefluorescenceproperties(Fig.3)andtheupconversionPLproperties(Fig.4).Fig.5showsaschematicillustrationofvarioustypicalelectronictransitionsprocessesofGQDs.ThePLspectrumcanbeconsideredasatransitionfromthelowestunoccupiedmole-cularorbital(LUMO)tothehighestoccupiedmolecularorbital(HOMO),asdemonstratedinFig.5(a)and(b).Theenergygapdependsonthesizeofthegrapheneandthebiggestgapwas4.9eV.25SincethegapdecreasesgraduallyasthesizeofGQDsincreases,thesamplemixtureofdifferentparticle-sizedGQDshavedifferentexcitationandemissionspectra,whichisinagreementwithpreviousreports.12,25,26TheupconvertedPLspectrumcanberegardedasananti-Stokes
Fig.5Aschematicillustrationofvarioustypicalelectronictransi-tionsprocessesofGQDs.NormalPLmechanismsinGQDsforsmallsize(a)andlargesize(b);UpconvertedPLmechanismsinGQDsforlargesize(c)andsmallsize(d).
TheRoyalSocietyofChemistry2011Chem.Commun.,2011,47,2580–25822581View Online
transitionasdemonstratedinFig.5(c)and(d).Theenergylevelsofpandsorbitalswereprovidedbythecarbeneground-statemultiplicity.23,27–29Thecarbeneground-statemultiplicityisrelatedtotheenergydifference(dE)betweenthepandsorbitals.HoffmanndetermineddEshouldbebelow1.5eV.30,31Intheworkhere,theenergybetweentheexcitationlightandtheemissionlightintheupconversionprocesswascloseto1.1eV(o1.5eV).MostscholarsindicatedtheupconvertedPLpropertyofCQDsshouldbeattributedtothemultiphotonactiveprocess.2,12ButwespeculatethattheGQDsweremoreliketheASPL.24,32Whenabunchoflow-energyphotonsexcitetheelectronsoftheporbital,thepelectronswouldtransitiontoahigh-energystatesuchastheLUMO,andthentheelectronstransitionbacktoalow-energystate.Thus,anupconvertedPLisemittedwhentheelectronstransitionbacktothesorbital.Althoughtheelectronsofthesorbitalcanalsobetransitioned,itonlycanemitnormalPL(Fig.5).Thisalsoexplainswhytheupconversionexcitationandemissionlightisaconstantenergydifference.24,32,33Inconclusion,wehavedevelopedhydrazinehydratereductionGOwithsurfacepassivationbyPEG1500NintoultrafineGQDswithstrongblueemissionandhighupconvertedPL.ThesurfacepassivationcanproduceGQDswithhigherfluorescenceperformanceandupconversionproperties.TheenergylevelstructuralmodelsofGQDsexplainedtheprocessoftheformationoffluorescenceandupconverted.GQDsmayprovideanewtypeoffluorescenceandupconversionmaterialforapplicationsinbioscienceandenergytechnology,andtheymayexpandtheapplicationofgraphene-basedmaterialstootherfields.
ThisworkwassupportedbytheNationalNaturalScienceFoundationofChina(20925621,209760),theKeyProjectofScienceandTechnologyforMinistryofEducation(107045),theInnovationProgramofShanghaiMunicipalEducationCommission(09ZZ58),theProgramofShanghaiSubjectChiefScientist(08XD1401500),theShuguangScholar-TrackingFoundationofShanghai(08GG09),theFundamentalResearchFundsfortheCentralUniversities,andtheProgramforChangjiangScholarsandInnovativeResearchTeaminUniversity(IRT0825).
Notesandreferences
1K.Welsher,Z.Liu,D.DaranciangandH.Dai,NanoLett.,2008,8,586.
2L.Cao,X.Wang,M.J.Meziani,F.Lu,H.Wang,P.G.Luo,Y.Lin,B.A.Harruff,L.M.Veca,D.Murray,S.-Y.XieandY.P.Sun,J.Am.Chem.Soc.,2007,129,11318.
3R.Liu,D.Wu,S.Liu,K.Koynov,W.KnollandQ.Li,Angew.Chem.,2009,121,4668;R.Liu,D.Wu,S.Liu,K.Koynov,W.KnollandQ.Li,Angew.Chem.,Int.Ed.,2009,48,4598.
4D.R.Larson,W.R.Zipfel,R.M.Williams,S.W.Clark,M.P.Bruchez,F.W.WiseandW.W.Webb,Science,2003,300,1434.
5H.PengandJ.Travas-Sejdic,Chem.Mater.,2009,21,5563.
6H.Zhu,X.Wang,Y.Li,Z.Wang,F.YangandX.Yang,Chem.Commun.,2009,5118.
7S.-L.Hu,K.-Y.Niu,J.Sun,J.Yang,N.-Q.ZhaoandX.-W.Du,J.Mater.Chem.,2009,19,484.
8Q.-L.Zhao,Z.-L.Zhang,B.-H.Huang,J.Peng,M.ZhangandD.-W.Pang,Chem.Commun.,2008,5116.
9S.-T.Yang,X.Wang,H.F.Wang,F.S.Lu,P.J.G.Luo,L.Cao,M.J.Meziani,J.-H.Liu,Y.Liu,M.Chen,Y.HuangandY.-P.Sun,J.Phys.Chem.C,2009,113,18110.
10Y.-P.Sun,B.Zhou,Y.Lin,W.Wang,K.A.S.Fernando,P.Pathak,M.J.Meziani,B.A.Harruff,X.Wang,H.F.Wang,P.J.G.Luo,H.Yang,M.E.Kose,B.Chen,L.M.VecaandS.-Y.Xie,J.Am.Chem.Soc.,2006,128,7756.
11L.Y.Zheng,Y.W.Chi,Y.Q.Dong,J.P.LinandB.B.Wang,J.Am.Chem.Soc.,2009,131,45.
12H.T.Li,X.D.He,Z.H.Kang,H.Huang,Y.Liu,J.L.Liu,S.Y.Lian,C.H.A.Tsang,X.BaoandS.T.Lee,Angew.Chem.,Int.Ed.,2010,49,4430.
13X.Li,X.Wang,L.Zhang,S.LeeandH.Dai,Science,2008,319,1229.
14X.Wang,L.Cao,S.-T.Yang,F.S.Lu,M.J.Meziani,L.L.Tian,K.W.Sun,M.A.BloodgoodandY.-P.Sun,Angew.Chem.,Int.Ed.,2010,49,5310.
15S.L.Hu,K.Y.Niu,J.Sun,J.Yang,N.Q.ZhaoandX.W.Du,J.Mater.Chem.,2009,19,484.
16J.Lu,J.X.Yang,J.Z.Wang,A.Lim,S.WangandK.P.Loh,ACSNano,2009,3,2367.
17X.Xu,R.Ray,Y.Gu,H.J.Ploehn,L.Gearheart,K.RakerandW.A.Scrivens,J.Am.Chem.Soc.,2004,126,12736.
18S.-J.Yu,M.-W.Kang,H.-C.Chang,K.-M.ChenandY.-C.Yu,J.Am.Chem.Soc.,2005,127,17604.
19L.Y.Zheng,Y.W.Chi,Y.Q.Dong,J.P.LinandB.B.Wang,J.Am.Chem.Soc.,2009,131,45.
20H.Liu,T.YeandC.Mao,Angew.Chem.,2007,119,6593;H.Liu,T.YeandC.Mao,Angew.Chem.,Int.Ed.,2007,46,73.
21A.B.Bourlinos,A.Stassinopoulos,D.Anglos,R.Zboril,M.KarakassidesandE.P.Giannelis,Small,2008,4,455.
22J.Zong,Y.H.Zhu,X.L.Yang,J.H.ShenandC.Z.Li,Chem.Commun.,2010,DOI:10.1039/c0cc03092a,inpress.
23D.Pan,J.C.Zhang,Z.LiandM.H.Wu,Adv.Mater.,2010,22,734.
24J.R.Santos,M.I.VasilevskiyandS.A.Filonovich,Phys.Rev.B:Condens.MatterMater.Phys.,2008,78,2422.
25Z.Z.ZhangandKaiChang,Phys.Rev.B:Condens.MatterMater.Phys.,2008,77,2311.
26R.Q.Zhang,E.BertranandS.T.Lee,DiamondRelat.Mater.,1998,7,1663.
27L.R.RadovicandB.Bockrath,J.Am.Chem.Soc.,2005,127,5917.
28A.Mehta,E.J.Nelson,S.M.WebbandJ.K.Holt,Adv.Mater.,2009,21,102.
29A.M.TrozzoloandW.A.Gibbons,J.Am.Chem.Soc.,1967,,239.
30D.Bourissou,O.Guerret,F.P.GabbaandG.Bertrand,Chem.Rev.,2000,100,39.
31R.Hoffmann,J.Am.Chem.Soc.,1968,90,1475.
32X.Y.Wang,W.W.Yu,J.Y.Zhang,J.Aldana,X.GPengandM.Xiao,Phys.Rev.B:Condens.Matter,2003,68,125318.
Downloaded by Charles Darwin University on 27 May 2011Published on 21 December 2010 on http://pubs.rsc.org | doi:10.1039/C0CC04812G2582Chem.Commun.,2011,47,2580–2582ThisjournaliscTheRoyalSocietyofChemistry2011
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- efsc.cn 版权所有 赣ICP备2024042792号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务