您好,欢迎来到筏尚旅游网。
搜索
您的当前位置:首页Quantum Mechanics without Waves a Generalization of Classical Statistical Mechanics

Quantum Mechanics without Waves a Generalization of Classical Statistical Mechanics

来源:筏尚旅游网
91 lJu 1 1v10070/hp-tnau:qviXraQuantumMechanicswithoutWaves:

aGeneralizationofClassical

StatisticalMechanics

MarcelloCini

DipartimentodiFisica-Universit`aLaSapienza-Roma

INFMSezionediRoma-LaSapienza

February1,2008

Abstract

Wegeneralizeclassicalstatisticalmechanicstodescribethekyne-maticsandthedynamicsofsystemswhosevariablesareconstrainedbyasinglequantumpostulate(discretenessofthespectrumofvaluesofatleastonevariableofthetheory).ThisispossibleprovidedweadoptFeynman’ssuggestionofdroppingtheassumptionthattheprobabilityforaneventmustalwaysbeapositivenumber.Thisapproachhastheadvantageofallowingareformulationofquantumtheoryinphasespacewithoutintroducingtheunphysicalconceptofprobabilityam-plitudes,togetherwithalltheproblemsconcerningtheirambiguousproperties.

(1)

Postaladdress:PiazzaA.Moro,2,00185Roma,Italy.E-mail:mar-cello.cini@roma1.infn.it.

1

1Introduction

AfterseventyyearsofQuantumMechanicswehavelearnedtolivewithcom-plexprobabilityamplitudeswithoutworryingabouttheirlackofanyreason-ablephysicalmeaning.Oneshouldnotignore,however,thatthe“wavelike”propertiesofquantumobjectsstillraiseconceptualproblemsonwhosesolu-tionsageneralconsensusisfarfromhavingbeenreached(1)(2).

ApossiblewayoutofthisdifficultyhasbeenimplicitlysuggestedbyFeynman(3),whohasshownthat,bydroppingtheassumptionthattheprob-abilityforaneventmustalwaysbeanonnegativenumber,onecanavoidtheuseofprobabilityamplitudesinquantummechanics.Thisproposal,whichgoesbacktotheworkofWigner(4)whofirstintroducednonpositivepseu-doprobabilitiestorepresentQuantumMechanicsinphasespace,doesnot,however,eliminate“waves”,becauseitsstartingpointistheconventionalmathematicalframeworkofQuantumMechanics.

Wetryinsteadtoreformulatequantummechanicsbyeliminatingfromthebeginningtheconceptofprobability“waves”.Thisprogramiscarriedonbygeneralizingtheformalismofclassicalstatisticalmechanicsinphasespacewiththeintroductionofasinglequantumpostulate(discretenessofthespectrumofvaluesofatleastonevariableofthetheory),whichintroducesmathematicalconstraintsonthevariablesintermsofwhichanyphysicalquantitycanbeexpressed(characteristicvariables).Theseconstraints,how-ever,cannotbefulfilledbyordinaryrandomc-numbers,butaresatisfied

1

byq-numbers.Theintroductionofq-numbersinquantumtheoryisthere-forenotassumedasapostulatefromthebeginning,butisaconsequenceofawelldefinedphysicalrequirement.Theequationsderivedfromtheseconstraintsallowthedeterminationoftheexpectationvalueofthecharac-teristicvariablesforanygivendispersion-freeensembletogetherwiththevalueofthephysicalquantitywhichdefinesit.Thisleadstotheidentifi-cationofthecharacteristicvariableswiththeWeyloperatorsofstandardQuantumMechanics.ThewholestructureofQuantumMechanicsinphasespace,includingtheidentificationoftheWignerfunctionasthepseudoprob-abilitydensityofanyquantumstate,derivedbyMoyalinhispioneerworkof1949(5),isthereforededucedfromasinglequantumpostulatewithouteverintroducingwavefunctionsorprobabilityamplitudes.

2Classicalstatisticalmechanicsinphasespace

Consideraclassicalstatisticalensembleofsystemswhosestatemaybede-finedbythevaluesofacoupleofconjugatedvariables,q,p,whichcantakethevaluesq,p,respectively.Thestandardformofthejointprobabilitydensityis1

P(q,p)=<δ(q−q)δ(p−p)>=(2πh¯)−2

󰀁󰀁

h)(kq+yp)h)(kq+yp)

dydke(−i/¯

(1)

where<.>representstheensembleaverage.Similarly,anyphysicalquan-tityA(q,p)(forshortA)canbeexpressedintermsofthesamevariables

h)(kq+yp)

e(i/¯(hereafterindicatedascharacteristicvariables),as

A=

󰀁󰀁

h)(kq+yp)

dydka(k,y)e(i/¯

(2)

ItisusefulforourlatergeneralizationtointroducethenotationC(k,y)

h)(kq+yp)

forthecharacteristicvariablese(i/¯.Letusconsideranensemblein

whichallthesystemshavethesamevalueαofthephysicalquantityA.Thenitmustbe

α=α2

where

α=α=

󰀁󰀁

(3)

dqdpA(q,p)Pα(q,p).(4)

Inordertosatisfyeqs.(3)thefunctionαofk,y(indicatedinthefollowingascharacteristicfunctionoftheensemble)givenbytheFourierinversionofeq.(1)mustobeytherelation

󰀁󰀁

αα=dxdha(h−k,x−y)α

3

(5)

foranygivenvalueαofA.Toderive(5)itiscrucialtousetheproperty

C(k,y)C(k′,y′)=C(k+k′,y+y′)

(6)

Eq.(5)isanhomogeneousintegralequationforthedeterminationoftheeigenvaluesαofAandthecorrespondingeigenfunctionsα.ItssolutionscanbeimmediatelyobtainedfromitsinverseFouriertransform.IntermsofA(q,p)(theinverseFouriertransformofa(k,y))andofPα(q,p)eq.(5)showstobenolongeranintegralequationbutasimplealgebraicequation:

A(q,p)Pα(q,p)=αPα(q,p)

whichhasthesolutions

(7)

α=A(q,p)(8)

Pα(q,p)=fα(Π(q,p))δ(A(q,p)−α)(9)

withf(Π)anarbitraryfunctionofthevariableΠconjugatedtoA.InfactanyotherdependenceoffαonqandpcouldbeexpressedasadependenceonA(q,p)whichwouldbeeliminatedbyreplacingA(q,p)withα.Thisarbi-trarinessreflectsthefactthattheremaybeaninfinityofclassicalensemblesinwhichthevariableAhasthevalueα.Eq.(7)impliesthat,givenacouple

4

ofvaluesq,pofthevariablesq,p,thevariableAhasnecessarilythevalue(8).Thisseemsatrivialstatementbutitwillturnouttobeessentiallater.Itshouldbenotedthat(9)holdsforanydynamicalvariable,functionofq,p.Thecaseoftheenergyisnoexception,inspiteofthequestionableroleofthetimeasitsconjugatevariable,sincetheHamiltonianH=H(q,p)canbeexpressed,bymeansofasuitablecanonicaltransformationQ=Q(q,p),P=P(q,p),asafunctionE(P)ofthenewmomentumnotdependingonthenewcoordinateQ.ThereforeagivenvaluePofPyieldsauniquelydeterminedvalueE(P)oftheenergy.WecantakethereforeΠ=Q.ForclosedsystemsPistheactionvariableJ=J(q,p),andE(J)isindependentoftheconjugatedanglevariableΘ=QofJ.

Thelimitingcasef=constantisthemostinterestingforthegeneralizationwehaveinmind,becauseinthisparticularclassicalensemblethevariableΠiscompletelyundetermined.

Inthiscaseandonlyinthiscasetheensembleacquiresaveryimportantproperty.Infact,byindicatingwith{.,.}PBthePoissonBracketofAwithanarbitraryvariableB,onehas

󰀁󰀁

<{A,B}PB>α=−

=−

namely

󰀁󰀁

dpdqPα(p,q)[(∂A/∂q)(∂B/∂p)−(∂A/∂p)(∂B/∂q)]=dpdqB(p,q)[(∂A/∂q)(∂Pα/∂p)−(∂A/∂p)(∂Pα/∂q)]

(10)

5

<{A,B}PB>α=0

becausewhenPαdependsonlyonAwehave(∂Pα/∂Π)=0.

(11)

Eq.(11)impliesthatbotheqs.(3)and(11)areinvariantunderarbitraryinfinitesimalcanonicaltransformations

A′=A+ε{A,B}PB

(12)

Fromeq.(11)itfollowsthereforethat,forthedispersionfreeensembleinwhichAhasthevalueαandΠiscompletelyundetermined,thecharacteristicfunctionsatisfies,inadditionto(5),alsotheequation

󰀁󰀁

dxdha(h−k,x−y)(1/h¯2)(kx−hy)α=0.

(13)

Eq.(13)representsa“classicaluncertaintyprinciple”expressingthecon-ditiontobefulfilledbyclassicalensembleshavingthepropertythatwhenagivenvariableAhasthevalueαtheconjugatevariableΠisundetermined.Conversely,ifweimposethatthecharacteristicfunctionofanensemblesat-isfieseqs.(5)and(13)weselectonlytheensemblesinwhichthe“uncertaintyprinciple”issatisfied.

3Quantumpostulate

Ourreformulationofquantumtheorywillbebasedontheassumptionthateqs.(3)and(11)shouldholdforanyvariableA.Thiswillimposeautomat-6

icallyforallthepossibleensemblesthevalidityoftheuncertaintyprinciple.Howevertheexplicitformoftheseequationsintermsofαgivenby(5)and(13)willhavetobemodified,becauseeqs.(8)and(9)arenolongervalidinquantumtheory.

Inadditiontothisfirstassumption,therefore,wewillimposethefulfil-mentofanextrapostulate,basedontheconvinctionthat,insteadofpos-tulatingtheconventionalrepresentationofphysicalquantitiesbymeansofoperatorsinHilbertspace,itismoresatisfactorytoassumeasafoundingstoneofquantumtheorytheexperimentalfactthatphysicalquantitiesexist(e.g.angularmomentum)whosepossiblevaluesformadiscreteset,invariantundercanonicaltransformations,characteristicofeachvariableinquestion.Anequallycompellingphysicalstartingpointfortheadoptionofthispostulatemightbethestabilityofmatter.InfactthisrequirementimpliesthenecessaryexistenceofaminimumvalueE0belowwhichnolowervaluecanbeassumedbytheenergyofanelectron-nucleusboundstate.

Inanycaseweneedonlyassume(QuantumPostulate)thatatleastonevariableLexistswhichhasfinitegapsinthecontinuousrangeL(q,p)impliedbyitsfunctionaldependenceL(q,p)onqandp(whichcanbothassumeanyvalueinthecontinuousrange−∞,+∞)inwhichitcannotassumevaluesexceptforoneormorediscretevaluesλi.Thisinfactmeansthat,sinceLcannothavevaluesintherangebetweenλiandλi−ε,and/orbetweenλiandλi+η,(withε,η,finite)eqs.(8)(9)donotholdintheseranges.

7

AsaconsequenceweconcludethatL(q,p)cannotbeexpressedintheform(2),namelythatthequantumcharacteristicvariablesC(k,y)cannotsatisfythecrucialproperty(6).

Therefore,sincebydefinitionallvariablesshouldbeexpressedintermsofauniquesetofcharacteristicvariables,weconcludethatforallthevariables2ˆ,eq.(2)shouldbereplacedbyA

󰀁󰀁

ˆ=Aˆ(k,y)dydka(k,y)C

(14)

ˆ(k,y)obeyinganewruleofmultipli-withasetofcharacteristicvariablesCcationreplacingeq.(6).

Inordertofindtherequiredmodificationofeq.(6)westartbyaskinghowtheeigenvalueequation(5)shouldbemodifiedinordertoallow,besides(insteadorinadditionto)acontinuousrangeofpossiblevalues,alsoforˆ.ThisamountstosaythatitstheexistenceofdiscreteeigenvaluesλiofL

Fouriertransformshouldnolongerreducetothealgebraicrelation(7)butshouldbecomeatrueFredholmhomogeneousintegralequation,which,asiswellknown,hastheproperty,undersuitableconditions,ofallowingfortheexistenceofdiscreteeigenvalues.

ˆwillactuallyhaveeigenvaluesbelongingtoaWhetheragivenvariableA

discreteoracontinuous(orevenboth)spectrumwilldependonitsfunctionaldependenceonpˆandqˆ.Thereareinanycasesomestringentrequirements

thatthemodifiedkernelshouldsatisfytoattainthisgoal,namely:ˆonpa)thebasicinformationonthefunctionaldependenceofAˆandqˆcontainedinthekernela(h-k,x-y)shouldremainunaltered;

b)thecorrelationbetweenthecoupleofvariablesh,xandk,ywhichisnecessaryinordertotransformeq.(5)intoatrueFredholmintegralequationshouldbeuniversal,namelyindependentofthevariablechosenandofthestateconsidered;

c)theclassicalkernelshouldberecoveredwhenk=y=0becauseeq.(5)ˆ(0,0)>α=1shouldgiveeq.(4)whichmuststillbevalid;ford)theclassicalkernelshouldberecoveredalsoforh=x=0becausetherelation(6)shouldstillbevalidwhenk=handx=y.

Thesimplest(andfromthispointofviewunique)waytosatisfya)andb)istomultiplytheclassicalkernela(h−k,x−y)byafactorg(kx−hy)whoseargumentisunambiguouslyfixedbytherequirementthat,fordimensionalreasons,xshouldbecorrelatedtokandhtoy.Furthermoreinorderthatc)andd)arefulfilled,itmustbeg(0)=1.Themodifiedintegralequationreplacingeq.(5)shouldthereforereadˆ(k,y)>i=αi󰀁󰀁

ˆ(h,x)>idxdha(h−k,x−y)g(kx−hy)(15)

Eq.(15)hasafirstimportantconsequence.Infactthecondition(3),ˆ(k,y)intheformwhichmayberewrittenintermsofthenewvariablesC

9

󰀁󰀁

dydka(k,y)

󰀁󰀁

󰀁󰀁

ˆ(k,y)Cˆ(k′,y′)>idy′dk′a(k′,y′)=αi

ˆ(k,y)>idydka(k,y)(16)

leadstoeq.(15)onlyifeq.(6)isreplacedby

ˆ(k,y)Cˆ(k′,y′)+Cˆ(k′,y′)Cˆ(k,y)]=g(ky′−k′y)Cˆ[(k+k′),(y+y′)](1/2)[C

(17)

Thisequation,however,cannotbesatisfiedbyordinaryc-numbers.Thismeansthat,ifwewanttoallowfortheexistenceofdiscretevaluesofatleastˆweareforcedtorepresentallonevariableL

ˆshouldbeInordertofulfilltheconditionthattheeigenvaluesαiofA

invariantunderthecanonicaltransformations(12)onemustinfactimposethateq.(11)shouldhold.However,ifweuseforthenewcharacteristicˆ(k,y)theclassicalPBsoftheoldvariablesvariablesC

h)(kq+yp)(i/¯h)[(k+k)q+(y+y)p]

{e(i/¯,eh)(kq+yp)}PB=[(k′y−ky′)/h¯2]e(i/¯

(18)

weimmediatelyseethateq.(17)isnolongerinvariantunder(12)whichhasthereforetobereplacedby

ˆ′=Aˆ+ε{Aˆ,Bˆ}QPBA

(19)

WehavethereforetoderivethecorrespondingquantumPoissonBracketsˆ(k,y),Cˆ(k′,y′)fromtheconditionofinvariance(QPB)ofthetwovariablesC

of(17)under(19).HereagainweneednotintroduceexplicitlythestandarddefinitionofthePB’softheseq-numbersintermsofoperators.Onthecontrary,theirformwillbeobtainedasaconsequenceofourformalism.WewillonlyneedtodefineQPB’s,forconsistencywitheq.(17),bymeansofthefollowinggeneralizationoftheclassicalPBs

ˆ(k,y),Cˆ(k′,y′)}QPB=f(ky′−k′y)Cˆ[(k+k′),(y+y′)]{C

(20)

wheref(λ)isanoddfunctionofitsargumentsatisfying,forconsistencywitheq.(18),theconditionlimλ→0f(λ)=−λ/h¯2

From(17)and(20)wenowobtainimmediately

󰀁󰀁

ˆ(h,x)>i=0dxdha(h−k,x−y)f(kx−hy)11

(21)

Thisistherequiredgeneralizationofeq.(13).

Thefurthersteprequiredtocompleteourformalismisthedeterminationofthefunctionsf(.)andg(.).Theknowledgeofthesefunctionswillthenal-ˆ(k,y)>iandthelowtheexplicitderivationofthecharacteristicfunctionˆforanystate<>ibysolvingeqs.(15)andcorrespondingeigenvalueαiofA

(21).Thisgoaliseasilyattainedbyimposingtheconditionthatbothrela-tions(16)and(20)shouldbeinvariantunderthecanonicaltransformations(19).Thisconditionleadsinfacttothetwoequationsf(λ)f(µ−ν)+f(µ)f(ν−λ)+f(ν)f(λ−µ)=0

(Jacobiidentity)

(22)

g(λ)f(µ+ν)=g(λ+µ)f(ν)+g(λ−ν)f(µ)

Theseequationshavethefollowingsolutionsg(ky′−k′y)=cos[b(ky′−k′y)/h¯];

(23)

f(ky′−k′y)=(1/bh¯)sin[b(k′y−ky′)/h¯]

(24)

withbaparameterwhichisstillundetermined.Itshouldbestressedthattheclassicalstatisticaltheoryisnotrecuperatedbymakingh¯→0,butbylettingtheadimensionalparameterb→0(absenceofcorrelations).However,althoughb→0isavalidmathematicallimitfortheexpressions(25),b=0andb=0yieldtworadicallydifferenttheories,becauseinthefirstcasethevariablesarec-numberswhileinthesecondonetheyareq-numbers.

12

ˆ(k,y)>iofeqs.(15)(21)willnowyieldeasilythecorre-ThesolutionspondingexpressionforPi(q,p)bymeansof

Pi(q,p)=(2πh¯)

−2

󰀁󰀁

h)(kq+yp)

dydke(−i/¯i

(25)

Beforediscussingthepropertiesofthis(pseudo)probabilitydensitywewillhoweverworkouttheresultsofourtheoryinsomesimplecases.

4Simpleexamples

Wewillfirstsolvethetwoequations(15)(21)forthevariablesqˆ,pˆandsuc-ˆ=(1/2)pcessivelyfortheenergyHˆ2+(1/2)ω2qˆ2oftheharmonicoscillator.Thiswillshowexplicitlyhowtheformalismleadsbothtotheexistenceofvariableswhoseeigenvaluesbelongtoacontinuousrangeaswellasofotheroneswithadiscretespectrum.

1.Variableqˆ.Fromtheclassicalexpression(2)oneobtains

aq(k,y)=

󰀁󰀁

dqdpqexp[−i(py+qk)/h¯]=ih¯δ(y)[∂δ(k)/∂k](26)

Theeigenvalueequation(15)readsˆ(k,y)>qo=ih¯qo󰀁󰀁

ˆ(k,y)>qo=dxdhδ(x−y)[∂δ(h−k)/∂h]g(kx−hy)(27)

ˆ(k,y)>qo/∂k]=−ih¯[∂becauseg(0)=1and[∂g(λ)/∂λ]λ=0=0,whereq0isthevalueofqˆwhichlabelsthestate.Thesolutionof(27)is

ˆ(k,y)>qo=exp[ikqo/h¯]φ(y)13

(28)

withφ(y)anarbitraryfunction.Ontheotherhandeq.(21)reads0=ih¯

󰀁󰀁

ˆ(k,y)>qoˆ(h,x)>qo=y(29)

becausef(0)=0and[∂f(λ)/∂λ]λ=0=1/h¯2.Eq.(29)givesimmediately

φ(y)=δ(y)

Byintroducing(28)(30)ineq.(25)oneobtains

¯)−1δ(q−qo)Pqo(q,p)=(2πh

(31)(30)

whichcoincideswiththeclassicalprobabilitydensityoftheensembleinwhichthevariableqˆhasthevalueqo.

Thisshowsthatthepossiblevaluesofthequantumvariableqˆspanthesamecontinuousrangefrom−∞to+∞oftheclassicalvariableqˆ.Thisisbecausethesolutionof(27)and(29)involvesonlytheclassicallimitsofg(.)andf(.)anddoesnotdependontheactualvalueofb.InthiscasetheQPB’scoincidewiththeclassicalPB’s.

2.Variablepˆ.Thecompletesymmetrybetweenqˆandqˆallowsustowrite

ˆ(k,y)>po=exp[iypo/h¯]δ(k)namely

¯)−1δ(p−po)Ppo(q,p)=(2πh

(33)(32)

14

ˆ=(1/2)p3.VariableHˆ2+(1/2)ω2qˆ2.Fromtheclassicalexpressionweobtain

h(k,y)=

󰀁󰀁

dqdp(1/2)[p2+ω2q2]exp[−i(py+qk)/h¯]=

(34)

=−(¯h2/2)[δ(k)∂2δ(y)/∂y2+ω2δ(y)∂2δ(k)/∂k2]

Eq.(15)readsˆ(k,y)>Eo=Eo2

󰀁󰀁

ˆ(h,x)>Eo]dxdhδ(x−y)δ(h−k)[∂2/∂x2+ω2∂2/∂h2][g(kx−hy)(35)

Since,from(24)wehave

[∂2g(hy−kx)/∂x2]x=y;h=k=−k2b2/h¯2[∂2g(hy−kx)/∂h2]x=y;h=k=−y2b2/h¯

weobtain

ˆ(k,y)>Eoˆ(k,y)>Eo=(1/2)[k2b2−h¯2ω2∂2/∂k2+ω2y2b2−h¯2∂2/∂k2](37)

Fromeq.(21)weobtain

ˆ(k,y)>Eo=0[k∂/∂y−ω2y∂/∂k]Eq.(38)canbesolvedbysetting

ˆ(k,y)>Eo=F(k)G(y)leadingto

F(k)=exp[µk2/ω2]

15

G(y)=exp[µy2]

(40)(39)(38)

2

(36)

ˆ(0,0)>=1)Introducing(39)and(40)in(37)weeasilyfind(sinceEo=bh¯ω

(41)

ˆ(k,y)>Eo=exp[−bk2/2¯hω]exp[−by2ω/2¯h]Byintroducing(42)in(25)weobtain

¯b)exp[−p2/2¯hωb]exp[−q2ω/2¯hb]PEo(q,p)=(1/2πh

(42)

(43)

Fortheexcitedstatestheseparabilitycondition(39)doesnothold.Eqs.(37)and(38)arehoweversufficienttodeterminecompletelythecorrespond-ingcharacteristicfunctionsandeigenvalues(10).

5Theuncertaintyprinciple

Wewillfinallydiscussthepropertiesofthe(pseudo)probabilitydensitiesPi(q,p)givenby(25).Thiswillalsoallowustodeterminetheparameterb.ˆ(k,y)>iandjforWestartbywritingeq.(21)forbothˆ(−k,−y)>jandthesecondonebyi=j;wemultiplythefirstonebyˆ(−k,−y)>iandfinallyintegrateoverk,y.Bysubtractingthesecondequationfromthefirstoneweobtain

0=(αi−αj)

󰀁󰀁

ˆ(−k,−y)>ijdydk(44)

16

Thisamountstowriting3

󰀁󰀁

dydkˆ(−k,−y)>ij=Nδij(45)

whereNisanormalizationconstant,havingthedimensionsofanaction,independentofthevariableAˆandofthestate<>i.From(25)and(45)weobtain

󰀁󰀁

dqdp[(2πh¯)2Pi(q,p)/N]Pj(q,p)=δij

(46)

Atthisstagewehavetofixourunitofaction2πh¯.Tothispurposewecompare(46)withitssemiclassicallimitgivenbytheoldtheoryofquantaofPlanckandBohrwherethevolumeoftheregionofphasespaceinwhichtheclassicalA(q,p)hasthevalueαiandallthepointsq,phaveequalconstantprobabilityKiinsideitandzeroprobabilityoutside,isassumedtobeequaltoPlanck’sconstant(2πh¯).Theninthissemiclassicaltheory,wehave,forthenormalizationofprobability

2πh¯Ki=1

(48)

andfor(46)

(2πh¯)3Ki2/N=1

(49)

fromwhichwegetN=2πh¯.Eq.(46)becomestherefore

󰀁󰀁

dqdpPi(q,p)Pi(q,p)=(2πh¯)−1≡Pav

(50)

Thelaststepofourworkisnowthedeterminationoftheparameterb.Infactitisimmediatetoseethat,introducingintoeq.(50)theexpression(43)forPEo(q,p)oftheharmonicoscillatorgroundstate,oneobtainsb=1/2.Sincethisvalueisindependentofthevariableandofthestatechosen,thisresultiswhollygeneralandconsequentlyourreformulationofquantumtheoryiscomplete.

Eq.(50)expressesanewformoftheuncertaintyprincipleforpositionandmomentum.Infact,byintroducinginthenormalizationconditionthemeanvaluePavdefinedbythisequation,weobtain

󰀁󰀁

dqdpP(q,p)=Pavδqδp=1(51)

whereδqδpisthevolumeofphasespaceinwhichP(q,p)isreplacedbyPavandiszerooutside.Wethenimmediatelyobtain

δqδp=2πh¯.

(52)

Itisimportanttostressthat(52)doesnothavetheformoftheconven-tionalHeisenberginequality,whichgivesnoupperlimittothepossiblevalueoftheuncertaintyproduct∆q∆pofthemeansquarevaluesofqandp,butinvolvesonlyitsminimumvalue.Wewillreturnontheimplicationsofthisdifferenceinthediscussion.

18

6Thedynamicalevolution

WefinallyindicatehowthedynamicalevolutionofthepseudoprobabilitydistributionP(q,p)inanygivenstategivenby(25)canbeworkedout.ItisˆsufficienttousetheHamiltonianH

ˆ=H

󰀁󰀁

ˆ(k,y)dydkh(k,y)C

(53)

asthegeneratoroftheinfinitesimaldisplacementintimeˆ(k,y)/dt={Cˆ(k,y),Hˆ}QPB=dC

󰀁󰀁

ˆ(j,x)dxdjh(j−k,z−y)f(jy−kx)C

()

Eq.()yieldsaChapman-KolmogorovequationforthetimedependenceofthepseudoprobabilitydensityP(q,p;t):

(d/dt)P(q,p;t)=

󰀁󰀁

dq′dp′K(q,p;q′,p′)P(q′,p′;t)

(55)

Intheclassicallimiteq.(55)reducestotheLiouvilleequation.

Wehavethereforeattainedourgoal,namelytheconstructionofaformalprobabilistictheory(withthegeneralizationofprobabilitiestonegativevaluesaccordingtoFeynman’sinterpretation)ofthequantumworldinphasespacebymeansofastraightforwardgeneralizationofclassicalstatisticalmechanics.

7

Comparisonwiththeconventionalformu-lationofQuantumMechanics

Thepresentformulationofquantumtheoryisclearlyidenticaltothecon-ventionalformalismofQuantumMechanics.InfactifweconsidertheWeyl

19

operator

C

andq

,p

(k,y)

(57)

y+kq

Therefore,if|ψ>isthestatevectorcorrespondingtoourstate<.>wehaveˆ(k,y)Cˆ(k′,y′)+Cˆ(k′,y′)Cˆ(k,y)>=2Re<ψ|Cˆ(k,y),Cˆ(k′,y′)}QPB>=(2/h<{C¯)Im<ψ|CFrom(57)(58)itfollowsalsothat

P(q,p)=W(q,p)

(60)

(k′,y′)|ψ>(58)(k′,y′)|ψ>

(59)

whereW(q,p)istheWignerfunction(4)ofthestate|ψ>.Eq.(55)coincidesthereforewiththestandardequationforthetimeevolutionoftheWignerfunction.Thisresultshowsthatthisfunctionhasaprivilegedstatusamongotherfunctions

(6)

usedintheliteraturetodescribeQuantumMechanicsin

phasespace,becauseitcanbederiveddirectlyfromourquantumpostulate.

8Discussion

ThephysicalmeaningofnegativeprobabilitiesiswellclarifiedbyFeynman’sownwords:“Itisthatasituationforwhichanegativeprobabilityiscalculated

20

isimpossible,notinthesensethatthechanceforitshappeningiszero,butratherinthesensethattheassumedconditionsofpreparationorverificationareexperimentallyunattainable.”Admittedly,asherecognizes,a“strongmentalblock”againstthisextentionoftheprobabilityconceptiswidespread.Oncethishasbeenovercome,however,thepresentformulationofquantumtheoryhasseveraladvantages.

Firstofall,asalreadyanticipatedintheintroduction,manyparadoxestypicalofthewave-particledualitydisappear.Ontheonehandinfact,asalreadyshownbyFeynman,itbecomespossibletoexpressthecorrelationsbetweentwodistantparticlesintermsoftheproductoftwoprobabilitiesindependentfromeachother(3)(7).Allthespeculationsonthenatureofanhypotheticalsuperluminalsignalbetweenthembecomesthereforemeaning-less.Ontheotherhandthelongtimedebatedquestionaboutthemeaningofthesuperpositionofstatevectorsformacroscopicobjects(Schr¨odinger’scats)mayalsobesetasideasequallybaseless,togetherwiththemanyproposalsofdetectionof“emptywaves”.ItisnotthepracticaluseoftheformalismofQuantumMecanics,ofcourse,whichisputinquestion.However,fromaconceptualpointofview,theeliminationofthewavesfromquantumtheoryisinlinewiththeprocedureinauguratedbyEinsteinwiththeeliminationoftheaetherinthetheoryofelectromagnetism.

Secondly,thisapproacheliminatestheconventionalhybridprocedureofdescribingthedynamicalevolutionofasystem,whichconsistsofafirststage

21

inwhichthetheoryprovidesadeterministicevolutionofthewavefunction,followedbyahandmadeconstructionofthephysicallymeaningfulprobabil-itydistributions.Iftheprobabilisticnatureofthemicroscopicphenomenaisfundamental,andnotsimplyduetoourignoranceasinclassicalstatisti-calmechanics,whyshoulditbeimpossibletodescribetheminprobabilistictermsfromtheverybeginning?

ThethirdadvantageisconnectedwiththepossibilityofdissipatingtheambiguityoftheconventionaltheoryabouttwophysicallydifferentaspectsofthequantumuncertaintiesinherenttotheHeisenberginequality.Ithasbeenrecognizedinfactthatthisinequalitycontainstwocontributionsofdifferentorigin(8).Itsminimumvalueisinfactanontologicaluncertainty,ofquantumnature,whilethecontributionexceedingthisminimumisofepistemicnature,namelyexpressesastatisticaleffectduetoimperfectknowledgeofreality.Infact,whiletheirreduciblequantumcontributionrequiresthatareductionof∆xshouldnecessarilyimplyasimultaneousincreaseof∆p(orviceversa),forthestatisticalcontributionbothuncertaintiescanbereducedatthesametimebymoreaccuratemeasurementsuntiltheminimumvalueisreached.Inthepresentformulationofquantumtheory,however,onlythequantumontologicaluncertaintiesarepresent,withoutanyspuriousstatisticalcon-tribution.Thisisbecausetheuncertaintyprincipleinourtheoryisgivenbytheequality(52),involvingonlytheminimumvalueoftheHeisenberginequality.

22

Thelast,butnotleast,appealofthisapproachisthatitmaybecosideredasaconceptual“Gestaltswitch”ofthetypesuggestedbyThomasKuhn(9)concerningthestatusofthe“LawsofNature”.Aswitchfromthe“au-tocratic”rulethattheLawsprescribeeverythingthatmusthappentothe“democratic”principlethatanythingwhichisnotforbiddenbytheLawsmayhappen.Ifchancehasanirreducibleoriginthefundamentallawscannotpre-scribeeverything:theycanonlyexpressconstraintsfollowingfromstabilityrequirementsofmatter,orprohibitionsderivingfromsymmetrypropertiesoftheUniverse,orgeneralprincipleswarrantingtheexistenceofpatternsoforder.Inotherwordstheyshouldallowfortheoccurrenceofdifferenteventsunderequalconditions.Ifthisistrue,itbecomesmeaninglesstoask:howcanthiseventhappen?Theanswercanonlybe:ithappensbecauseitisnotforbidden.Thelanguageofprobability,suitablyadaptedtotakeintoaccountalltherelevantconstraints,seemsthereforetobetheonlylanguagecapableofexpressingthisfundamentalroleofchance.

Acknowledgement

ThecontributionofmyfriendandcolleagueGianniJona-Lasiniohasbeencrucialinclarifyingthemathematicalnatureofthecharacteristicvariablesandingivingtotheformulationofthetheoryatightlogicalstructure.Iwishthereforetoexpressmygratitudeforhisconstructivecriticism,withoutwhichthispaperwouldnothavebeenaccomplished.Illuminatingdiscussions

23

withFrancescoGuerraandMaurizioServaarealsogratefullyacknowledged.

24

References

[1]A.Einstein,B.Podolsky,N.Rosen,Phys.Rev.47,777(1935);J.S.Bell,

Physics,1,195(19).

[2]E.Schr¨odinger,Naturwissenshaften,49,53(1935);M.Cini,NuovoCim.

73B,27(1983).

[3]R.Feynman,in:QuantumImplications(B.J.HileyandF.D.Peatsed.),

Routledge&Kegan,London1987,pag.235.[4]E.P.Wigner,Phys.Rev.40,749(1932).

[5]J.E.Moyal,Proc.Camb.Phil.Soc.45(1949)99.

[6]K.E.CahillandR.J.Glauber,Phys.Rev.177,1857(1969);177,

1882,(1969).

[7]M.O.Scully,H.WaltherandW.Schleich,Phys.Rev.A,49,182(1994).[8]M.CiniandM.Serva,Found.ofPhys.Lett.3,129(1990);M.Ciniand

M.Serva,PhysicsLettersA167,319,(1992).[9]T.S.Kuhn-ThestructureofScientificRevolutions,

[10]M.Hillery,R.F.OConnell,M.O.Scully.E.P.Wigner,Phys.Reports,

106,121,(1984)

25

Copyright © 2019- efsc.cn 版权所有 赣ICP备2024042792号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务