AComplementarityModelforClosed-Loop
PowerConverters
ValentinaSessa,Member,IEEE,LuigiIannelli,SeniorMember,IEEE,andFrancescoVasca,SeniorMember,IEEE
Abstract—Atacertainlevelofabstraction,powerconverterscanberepresentedaslinearcircuitsconnectedtodiodesandcontrolledelectronicswitches.Theevolutionsoftheelectricalvariablesaredeterminedbythestate-dependentswitchings,whichcomplicatethemathematicalmodelingofcontrolledpowerconverters.Dif-ferentlyfromthecomplementaritymodelspreviouslypresentedintheliterature,themodelproposedinthispaperallowstorepre-sentasalinearcomplementaritysystemalsoclosed-looppowerconverters,withoutrequiringtheaprioriknowledgeofthecon-vertermodes.Amodelconstructionprocedure,notdependentonthespecificconvertertopology,ispresented.Thediscretizationofthecontinuous-timemodelallowstoformulatemixedlinearcomplementarityproblemsforthecomputationofthecontrol-to-outputfrequencyresponseandtheevolutionsofbothtransientandsteady-statecurrentsandvoltages.Asillustrativeexamples,Z-source,boost,andbuckdc–dcpowerconvertersundervoltage-modecontrolandcurrent-modecontroloperatingbothincontin-uousanddiscontinuousconductionmodesareconsidered.IndexTerms—Circuitmodeling,closed-loopsystems,dc–dcpowerconversion,discretetimesystems,switchingcircuits.
I.INTRODUCTION
T
HEtypicalaveragedandswitchedmodelsofpowercon-vertersdependonthesequenceofmodesandoperatingconditions[1]–[4]whicharedeterminedbythespecificswitch-ingfunctions[5]andcontrolrequirements[6].Consequently,theuseoftheseclassicalmodelsfortheanalysisoftheclosed-looppowerconvertersrequirestheintroductionofsuitablesimplify-ingassumptions,[7],[8].
Complementaritymodels[9]representanattractivesolutiontoovercomesomeofthesedrawbacks.Recently,theyhavebeenproposedasanusefulframeworkformodelinglinearcircuitswithdiodesandidealswitches[10],[11].Indeed,thecomple-mentarityframeworkcanbeusedtomodelawideclassofnon-smoothdynamicalsystems,suchasmechanicalsystemswithCoulombfriction[12]andpiecewiselinearLur’esystems[13].Suchideahasbeenmorespecificallyappliedtopowerconvertersin[14].Linearcomplementarity(LC)mod-elshavebeenproposedformodelingspecificopen-looppowerconverterstopologies:single-phasediodebridges[15],
ManuscriptreceivedAugust1,2013;revisedNovember15,2013andJanuary15,2014;acceptedFebruary8,2014.DateofpublicationFebruary20,2014;dateofcurrentversionAugust13,2014.RecommendedforpublicationbyAssociateEditorC.K.Tse.
TheauthorsarewiththeDepartmentofEngineering,UniversityofSannio,PiazzaRoma21,82100Benevento,Italy(e-mail:valentina.sessa;luigi.iannelli,vasca@unisannio.it).
DigitalObjectIdentifier10.1109/TPEL.2014.2306975
three-phaserectifiers[16],switchedcapacitors[17],andres-onantconverters[18].Dealingwithmoregeneralclassesofpowerconverters,thecomplementaritymodelsproposedin[19]and[20]areconstructedbyconsideringthespecificswitchesstatesandbyassumingtheaprioriknowledgeofthepowerconverterconfigurationateachswitchingtimeinstant.Astronglimitationofthemodelsproposedin[10],[14],and[21]isthattheyrequireswitchingofthesets(cones)ofthecomplemen-tarityvariables.Unfortunately,thispropertydoesnotallowtoobtainthemodelsofcontrolledpowerconvertersinamanage-ableclosedform.Analternativeapproachwithfixedconesandcharacteristicsdependingonsomeexternalforcingvariableispresentedin[22]:theswitchmodelisasignumcharacteristichavingtheswitchcurrentastheargumentandwhoseamplitudeisapiecewiselinearfunctionofanexternalcontrolvoltage.In[23],transistorsaremodeledwithinthecomplementarityframework,buttheanalysisislimitedtostaticcircuits.In[15],theswitchesaremodeledbymeansofequivalentfiniteresistorsrepresentingtheON(conducting)andOFF(blocking)statesde-terminedbythesignumofanexternalvoltagesignal.Thatmodelcannotbeeasilygeneralizedtothecaseofzeroconductingandinfiniteblockingequivalentresistances.
ThemodelproposedinthispaperisabletorepresentinanLCexplicitformthelargesignaldynamicsofclosed-looppowerconverters.Thecomplementaritymodelissimpletobebuiltandcapturesallmodesoftheconverter,withoutenumeratingthem,norassumingtheaprioriknowledgeofthesequenceofmodesandoftheswitchingtimeinstants.SuchLCmodelisshowntobeusefulforthecomputationofthecontrol-to-outputfrequencyresponse,whichisacrucialissueforcontrolledpowerconverterssoasanalyzedin[18],[24],andthereferencestherein.Moreover,theproposedLCmodelofclosed-looppowerconvertersallowstoobtaindirectlytheclosed-loopsteady-statebehavior,whichisoftenanontrivialtasksoasinthecaseofLCCresonantconverters[25],[26]andmodularmultilevelconverters[27],[28].
Therestofthepaperisorganizedasfollows.InSectionII,thestaticLCmodelscorrespondingtotheidealdiodeandthecon-trolledswitchescharacteristicsarepresented.TheprocedurefortheconstructionofthedynamicLCmodelofapowerconverter,bothinopen-loopandclosed-loop,isdescribedinSectionIII.SectionIVshowshowthisrepresentationallowstocomputethesteady-stateperiodicoscillationasasolutionofamixedLCproblemderivedfromthediscretizedclosed-loopsystem.InSectionV,theapproachusedforthesteady-statesolutionisappliedforthecomputationofthecontrol-to-outputfrequencyresponseforaZ-sourceconverter[29],whereastheunique-nessofthesteady-statesolutionisguaranteedbythepassivity
0885-93©2014IEEE.Personaluseispermitted,butrepublication/redistributionrequiresIEEEpermission.
Seehttp://www.ieee.org/publicationsstandards/publications/rights/index.htmlformoreinformation.
6822IEEETRANSACTIONSONPOWERELECTRONICS,VOL.29,NO.12,DECEMBER2014
hypothesis.InSectionVI,theusefulnessoftheproposedtech-niqueforthecomputationoftransientandsteady-statesolutionsofclosed-looppowerconvertersisnumericallydemonstratedbyconsideringcurrent-controlledandvoltage-controlledboostdc–dcpowerconverterswithstableandunstableperiodicsolu-tions[4],[30]andaclosed-loopbuckdc–dcconverterwhichexhibitsmultiplesolutions[31].SectionVIIconcludesthepaper.
II.COMPLEMENTARITYMODELSOFELECTRONICDEVICESTheidealizedvoltage–currentcharacteristicsofelectronicde-vicescanberepresentedbymeansofstaticLCmodels.Toshowthis,letusintroducethedefinitionofamixedLCproblem,[32].Givenavectorq∈Rr,amatrixM∈Rr×randlowerandupperboundsl,u∈Rr∪{−∞,+∞}r,amixedLCproblemconsistsoffindingz∈Rrsuchthat
w−v=Mz+q
(1a)0≤w⊥(z−l)≥0(1b)0≤v⊥(u−z)≥0
(1c)
where“⊥”representstheorthogonalitysymbol,i.e.,w⊥(z−l)standsforw(z−l)=0,andinequalitiesamongvec-torsaremeantcomponentwise.Inthecasel=u,theuniquesolutionof(1)isz=l=u.Forl=u,thenonnegativevari-ableswandvarecomplementarymeaningthatcomponentwiseatleastoneofthetwomustbezero.ThemixedLCproblemiswell-knowninthemathematicalprogrammingtheory,infact,itprovidesanaturalsettingfortheKarush–Kuhn–Tuckercondi-tionsofaquadraticprogramwithgeneralequalityandinequalityconstraints,[9].
Whenthelowerboundliszeroandtheupperbounduisinfinity,wegetv=0andthemixedLCproblembecomesaclassicalLCproblemwithwandzbeingtheusualcomple-mentarityvariables.Then,givenavectorq∈RrandamatrixM∈Rr×r,aLCproblemconsistsoffindingzsuchthat
w=Mz+q(2a)0≤w⊥z≥0.
(2b)
Itiswell-knownthatanLCproblemintheform(2)hasauniquesolutionforallqifandonlyifMisaP-matrix,[9].AmatrixMiscalledaP-matrixifallitsprincipalminorsarepositive.Accordingtothedefinition,everypositivedefinitematrixisaP-matrix,buttheconverseisnottrue.IfthematrixMisonlypositivesemidefinite,thentheuniquenessoftheLCproblemsolutioncannotbeproved,butitispossibletoprovethatamongallsolutionsoftheLCproblemtheleast-normoneisunique,[33].
TheLCframeworkcanbeusedtorepresentidealizedvoltage–currentcharacteristicsofelectronicdevices.Tothisaim,letusassociateto(2)an‘output’equationintheform
ϕ=Nz
(3)
whereNisarealmatrixofsuitabledimensions.Theexpressions(2)–(3)canrepresentanLCmodelfora(ϕ,λ)electronicdevicecharacteristic:thevariableλcanbeinterpretedastheinputof
Fig.1.Idealdiode:(a)symbol,(b)idealizedvoltage–currentcharacteristic,(c)idealizedcurrent–voltagecharacteristic,(d)characteristic(ϕandoutputd,λd)withinputλd=−vDandoutputϕd=iDorwithinputλd=iDϕ−vd=D.
thecharacteristicandentersintotheLCproblemifthevectorqdependslinearlyonit,andϕcanbeseenasthecorrespondingoutput.Asanexample,letusconsidertheidealizedpiecewiselineardiodecharacteristicshowninFigs.1(b),1(c)andassumethattheoppositeofthediodevoltage,sayλd=−vD,isthegiveninput.Then,theoutputvariableofthediodemodelcanbechosenasthediodecurrentϕd=iD.ByconsideringtheresultingcharacteristicinFig.1(d),thediodecharacteristiccanberepresentedwiththefollowingLCmodel
ϕd=zd(4a)wd=λd
(4b)0≤wd⊥zd≥0.
(4c)
Theequation(4a)isintheform(3)withN=1and(4b)–(4c)areintheform(2a)–(2b)withM=0andq=λd.SinceMiszero,thecurrentzdwhichsatisfies(4)foragivenvoltageλdisnotnecessarilyunique,whiletheleast-normsolutionmustbeunique.Indeed,ifλd=0,thenanyzd≥0satisfies(4),buttheleast-normsolution(zd=0)isunique.Obviously,(4)representstheidealcharacteristicofadiodealsoifλd=ivDandϕd=−D,i.e.,whentheproblemconsistsoffindingadiodevoltageϕdgiventhediodecurrentλd,seeFigs.1(b)and1(c).
AnothertypicalpiecewiselinearrepresentationforthediodecharacteristicisthatshowninFig.2.Thevoltage–currentchar-acteristicinFig.2(c)canberepresentedbythefollowingLCmodel:
ϕ=zd
(5a)wd=λ+rDzd+VF(5b)0≤wd⊥zd≥0
(5c)
SESSAetal.:COMPLEMENTARITYMODELFORCLOSED-LOOPPOWERCONVERTERS6823
Fig.2.Piecewiselinearcharacteristicsofadiode:(a)voltage–currentchar-acteristic,(b)current–voltagecharacteristic,(c)(ϕ,λ)characteristicwithinputλoutput=−vϕand=−outputv.
ϕ=i,and(d)(ϕ,λ)characteristicwithinputλ=iandwhiletheLCmodelofthecurrent–voltagecharacteristicinFig.2(d)isgivenby
ϕ=zd−VF−rDλ(6a)wd=λ
(6b)0≤wd⊥zd≥0.
(6c)
ItisnowpossibletoconstructanLCmodelforanelectronicswitchcharacteristic,seeFig.3.Byconsideringabipolarjunc-tiontransistor,theswitchvariableshavethefollowingmeanings:iSisthecollectorcurrent,vSisthecollector-emittervoltage,imaxisthemaximumcollectorcurrentthatthetransistorcanprovidewithoutdamage,σ∈[0,1]isthenormalizedswitchcontrolsignalproportionaltothebasecurrent,-analogousin-terpretationsofthephysicalmeaningsforiS,vS,imax,andσarepossibleforotherelectronicswitches.Then,forσ=0(OFF),theswitchingisblockingandtheswitchcurrentiSisidenti-callyzeroforanyswitchvoltagevS.Forσ=1,theswitchisconducting(ON).Themodelalsocapturestheswitchoperatingconditionintheso-calledsaturationregionwherethedevicecanprovideanycurrentbetween0andimaxσ.
Letusassumethattheoppositeofthediodevoltage,sayλc=−vSandthecontrolsignalσaregiven.Then,theoutputvariableoftheswitchmodelischosenastheswitchcurrentϕc=iS.Thesubscript“c”isusedtoindicatethatthevariableϕinthiscaseisacurrent.Then,thevoltage–currentcharacteristicinFig.3(d)canberepresentedwiththefollowingLCmodel:
ϕc=zc1
(7a)wc1=zc2+λc(7b)wc2=−zc1+imaxσ(7c)0≤wc⊥zc≥0
(7d)
wherewc=col(wc1,wc2),zc=col(zc1,zc2),andcol(·)indi-catesavectorobtainedbystackinginauniquecolumnthe
Fig.3.Electronicswitch:(a)symbol,(b)idealizedvoltage–currentchar-acteristic,(c)idealizedcurrent–voltagecharacteristic,(d)characteristicwithλc=−vWithoutlossSandϕc=iofgenerality,S,and(e)characteristicwithλv=iitisassumedthattheswitchisSandϕv=−vabletoblockalsoS.negativevoltages.
columnvectorsinitsargument.Themodel(7)isintheform(2)–(3)withN=[10],q=col(λc,imaxσ)and
M=01
−10.(8)
Expressions(7)canbeexplainedbylookingatthepossiblevaluesassumedbyλc.Thefollowingcasesarepossible,seeFig.3(d):
λc>0⇒wc1>0⇒zc1=0⇒ϕc=0
(9a)λc<0⇒zc2>0⇒wc2=0⇒ϕc=zc1=imaxσ
(9b)
λc=0⇒{wc1≥0,zc2≥0}⇒ϕc=zc1∈[0,imaxσ].
(9c)
Forσ∈[0,1],themodel(7)describesthesetofpossiblevoltage–currentcharacteristicsobtainedbyvaryingσbetween0and1.Thematrix(8)ispositivesemidefinite(andnotP-matrix)andforλc=0thesolutionzcof(7)isnotunique,see(9c).Ontheotherhand,amongallpossiblesolutionsof(7),thefollowingleast-normsolution:
λc>0⇒zc=col(0,0)(10a)λc<0⇒zc=col(imaxσ,−λc)
(10b)
6824IEEETRANSACTIONSONPOWERELECTRONICS,VOL.29,NO.12,DECEMBER2014
λc=0⇒zc=col(0,0)
(10c)
isunique.
AnanalysissimilartothatpresentedabovecanbedoneiftheswitchcurrentiSandtheswitchcommandσaregivenandthecorrespondingswitchvoltagemustbefound.Indeed,onecanconsiderthecurrent–voltagecharacteristicshowninFig.3(e),whereϕv=−vSistheswitchvoltageandλv=iSistheswitchcurrent.ApossibleLCmodelcanbewrittenas
ϕv=zv1−zv2(11a)wv1=λv
(11b)wv2=−λv+imaxσ(11c)0≤wv⊥zv≥0
(11d)
wherewv=col(wv1,wv2)andzv=col(zv1,zv2).Themodel(11)isintheform(2)–(3)withN=[1−1],q=col(λv,−λv+imaxσ)andMbeingthezeromatrix.Theex-pressions(11)canbeexplainedbyconsideringthedifferentrangesforλv.Thefollowingcasesarepossible:
λv=0⇒{wv1=0,wv2=imaxσ}
⇒
0<σ≤1⇒zv2=0⇒ϕv=zv1≥0
σ=0⎧⇒ϕ−z(12a)v=zv1v2∈R
⎪⎨0<σ≤1⇒wv1>0⇒zv1=0
λv=imaxσ⇒⎪⎩
⇒ϕv=−zv2≤0
(12b)σ=0⇒see(12a)0<λv switchandadiode.Assumethatλistheoppositeofthevoltageacrosstheparallel,thatisequaltothevoltageacrosstheswitchandiisthetotalcurrentthroughtheparallel,thatisthedifferencebetweentheswitchandthediodecurrents.Bycombiningthevoltage–currentcharacteristic(ϕc,λc)oftheelectronicswitchinFig.3(d)withthevoltage–currentcharacteristic(ϕd,λd)ofthediodeinFig.1(d),onegetsthevoltage–currentpiecewiselinearcharacteristicoftheantiparallelconnectioninFig.4(b).TheresultingcharacteristichasonebreakingpointanditcanbemodelledbytheLCmodel ϕ=−z+imaxσ(13a)w=−λ(13b)0≤w⊥z≥0. (13c) Thesamereasoningcanberepeatedalsowhenthevoltageoftheantiparallelconnectionisconsideredastheoutputandthecurrentastheinput,seeFig.4(c).ThecorrespondingLCmodelcanbewrittenas ϕ=−z(14a)w=−λ+imaxσ(14b)0≤w⊥z≥0. (14c) Remark1:TheLCmodelsofdiodesandcontrolledswitchesarethebasicelementsfromwhichmorecomplexpiecewise Fig.4.Antiparallelconnectionofanelectronicswitchandadiode:(a)symbol,(b)idealizedvoltage-currentcharacteristic,and(c)idealizedcurrent–voltagecharacteristic. linearcharacteristicsofelectronicdevicescanberepresentedinthecomplementarityform.Forthesakeofsimplicityinthesequel,onlytheLCmodels(4),(7),and(11)willbeconsidered,thoughthemodelingapproachproposedinthispapercanbeextendedtothecaseofmoreinvolvedpiecewiselinearcharac-teristicsofelectronicdevices. TheLCmodelsoftheelectronicdevicescanbesuitablycol-lectedintoacompactcomplementarityrepresentationwhichisusefulfortheformulationoftheentirepowerconvertercom-plementaritymodel.LetusassumethatthepowerconverterunderinvestigationhasNddiodes,NcswitcheswithcurrentsasoutputvariablesandNvswitcheswithvoltagesasoutputvari-ables.Withsomeabuseofnotation,letusredefinethefollowingvariables:ϕdandλdarethecolumnvectorswhosecomponentsarethevoltagesandcurrentsthroughtheNddiodes,ϕcisthecolumnvectoroftheNcswitchescurrentsandλcarethecorre-spondingvoltages,ϕvisthecolumnvectoroftheNvswitchesvoltagesandλvarethecorrespondingcurrents.Bydefiningthecolumnvectors ϕ=col(ϕd,ϕc,ϕv)(15a)λ=col(λd,λc,λv)(15b)wo=col(wd,wc,wv)(15c)zo=col(zd,zc,zv)(15d)σ=col(σc,σv) (15e) SESSAetal.:COMPLEMENTARITYMODELFORCLOSED-LOOPPOWERCONVERTERS6825 Fig.5.BlockdiagramoftheLCmodelforaclosed-looppowerconverter. theLCmodelobtainedbycollectingalldevicescharacteristicscanbewrittenas ϕ=Bϕzo (16a)wo=Cϕλ+Dϕzo+Gϕσ(16b)0≤wo⊥zo≥0, (16c) whereBϕ,Cϕ,Dϕ,andGϕcanbeeasilyobtained. Themodel(16)isintheform(2)–(3)withN=Bλ+Gϕ,q=CϕϕσandM=Dϕ.Then,theidealizedcharacteristicofelectronicdevicescommonlypresentinagenericpowercon-vertercanberepresentedinthecompactLCform(16). III.COMPLEMENTARITYDYNAMICMODEL Inthissection,itisshownthatthemodelofawideclassofclosed-looppowerconverterscanbewritteninthefollowingdynamicLCform: x˙=Ax+Bz+Ee(17a)w=Cx+Dz+Fe(17b)0≤w⊥z≥0 (17c) wherexisthestatevector,wandzarecomplementarityvari-ables,eisthevectoroftheexogenousinputs,andA,B,C,D, E,Fareconstantmatricesofsuitabledimensions. Theconstructionofthecomplementaritymodelismodularinthesensethatitdirectlyfollowsbyassociatingtheconverterdynamicmodel—derivedbystandardmethodsanddependingonlyonitstopology—withtheelectronicdevicescharacteris-tics.Ablockschemerepresentation,correspondingtothemodel(17)decomposedintoitsmajorsubsystems,isshowninFig.5.Themodelconstructionprocedureisappliedstep-by-steptoaboostdc–dcconverterwithvoltage-modepulse-widthmodula-tion(PWM)control,seeFigs.6and7.A.Open-LoopLCModel Asapreliminarystep,itisshownthatadynamicmodelofopen-looppowerconverterscanbewrittenintheform(17).Atypicalapproachforderivingapowerconverterdynamical Fig.6.Boostdc–dcconverter. Fig.7.Blockdiagramofaproportional–integralcontroller:eσfortheoutputvariabley;misthemodulationsignal;1istherefer-encesignaleσthecontrollerstatevariable(theintegraloftheerror);2isthecarriersignal;xσiskpandkiaretheproportionalandintegralgains,respectively;σistheswitchingsignal. modelconsistsofextractingthediodesandswitchestotheports andapplyingtheKirchhofflawstothebranches(andnodes)ofapropertreeofthegraphassociatedtothecircuit,[34].Inparticular,supposethatthecapacitorsdonotformaloop(withorwithoutvoltagesources)andinductorsdonotformacutset(withorwithoutcurrentsources).Then,byapplyingtheKirchhofflaws,astate-spacemodelinthefollowingformcanbeobtained: x˙o=Aoxo+Boϕ+Eoeo(18a)λ=Coxo+Doϕ+Foeo (18b) wherexo∈RNoisthestatevectoroftheopen-loopsystem, eodenotesthevectoroftheexternalsourcesfortheopen-loopsystem,and(ϕ,λ)arethevoltage–currentorcurrent–voltagepairsoftheelectronicdevices. Byusing(16)with(18),themodelofanopen-looppowerconvertercanbewritteninthefollowingLCformx˙o=Aoxo+BoBϕzo+Eoeo(19a)wo=CϕCoxo+(CϕDoBϕ+Dϕ)zo+CϕFoeo+Gϕσ(19b) 0≤wo⊥zo≥0. (19c) Themodel(19)correspondstothedashedboxedblockinFig.5,withwoandzobeing‘internal’complementarityvari-ables,xothestatevector,eotheexogenousinputandσthecontrolinput,i.e.,thevectorofthecommandstotheelectronicswitches.Foropen-loopcontrolledconverters,thevectorσcanbeincludedintotheexogenousvectoreo,then,themodel(19)isintheform(17). Asanillustrativeexample,considertheboostdc–dcconverterdepictedinFig.6.Denoteeoastheinputvoltage,xo1astheinductorcurrent,xo2asthecapacitorvoltage,(ϕc,λc)asthecurrent–voltagepairoftheelectronicswitch,and(ϕd,λd)asthevoltage–currentpairofthediode.ByapplyingtheKirchhoff 6826IEEETRANSACTIONSONPOWERELECTRONICS,VOL.29,NO.12,DECEMBER2014 laws,thecircuitmodelcanbewrittenasfollows: x˙Ro11=−Lx111 o1−Lxo2+ϕd+e(20a)11L1L1ox˙o2 =1Cx11o1−xo2−ϕc (20b)1R2C1C1 λd=xo1−ϕc(20c)λc=−xo2+ϕd (20d) whichisintheform(18)withxo=col(xo1,xo2),ϕ=col(ϕd,ϕc)andλ=col(λd,λc). Byusing(4)and(7),orequivalentlybyconsidering(16)withNd=Nc=1andNv=0,thedevicescharacteristicscanberepresentedasfollows: ϕd=zd(21a)ϕc=zc1(21b)wd=λd(21c)wc1=λc+zc2 (21d)wc2=−zc1+imaxσ(21e)0≤wo⊥zo≥0 (21f) whichareintheform(16)withϕ=col(ϕλ=col(λd,ϕc), d,λc), zo=col(zd,zc1,zc2),andwo=col(wd,wc1,wc2).Then,bycombining(20)and(21),theopen-loopLCmodeltakestheform(17)withe=col(eo,σ).B.Closed-LoopLCModel Theclosed-loopLCmodelofpowerconverterscanbeob-tainedbyspecifyingthedependencesoftheNs=Nc+Nvswitchingsignalsσonthestateandontheexogenousinputs.Asanexample,considerthattheswitchesarecontrolledbymeansofaPWMtechnique.Then,defineλσasthedifferencebetweenthemodulationsignalmandthecarriersignaleσ2,andσasastepfunctionwhoseargumentisλσ,seeFig.7.AscalarswitchingsignalσcanberepresentedbymeansofthefollowingLCmodel: σ=zσ1 (22a)wσ1=zσ2−λσ(22b)wσ2=−zσ1+1(22c)0≤wσ⊥zσ≥0 (22d) wherewσ=col(wσ1,wσ2),zσ=col(zσ1,zσ2).Themodel(22)canbeexplainedbyconsideringthesignofλσ.Ifλσ<0,sincezσ2isnonnegative,from(22b),itwillbewσ1strictlypos-itiveandbytheusingcomplementarityconstraint(22d),from(22a),wegetσ=zσ1=0,i.e.,theswitchisOFF.Ifλσ>0from(22b),itmustbezσ2strictlypositiveandthen,byusingthecomplementarityconstraint(22d),itwillbewσ2=0,and(22c)with(22a)leadstoσ=zσ1=1,i.e.,theswitchisON.Fi-nally,ifλσ=0,the(22b)doesnotimposeanyconstraintonzσ2andthen(22b)withthenonnegativeconstraintonwσ1impliesthatσ=zσ1cantakeanyvaluewithintheinterval[0,1]. Byusing(22),theNsswitchingsignalscanberepresented alltogetherinthefollowingcompactcomplementarityform: σ=Bσzσ (23a)wσ=Cσλσ+Dσzσ+γσ(23b)0≤wσ⊥zσ≥0 (23c) wherezσ∈R2Nsisthevectorofallcomplementarityvariablesrequiredtorepresenttheswitchingsignals,andthematricescanbesimplyobtained. Inordertocompletetheclosed-loopLCmodelofapowerconverter,amodelofthecontrollermustbeconstructed,seeFig.5.Inparticular,forawideclassofpracticalcontrollers,thecontrolsignalcanberepresentedastheoutputofalineardynamicmodelthatcomputesitscontrolactionbyusinginfor-mationonthepowerconverterstatexoand,possibly,onotherexogenoussignals x˙σ=Aσxσ+Aσoxo+Eσoeo+Eσeeσ(24a)λσ=Cmσxσ+Cmoxo+Fmeeσ (24b) withxσ∈RNσbeingthestateofthecontrollerandeσhavingthereferenceinputsandothercontrolinputsascomponents.Remark2:Thecomplementarityframeworkcanbeusedtorepresentamoregeneralclassofcontrollers,e.g.,thoseconsist-ingoflinearpartscombinedwithpiecewiselinear,quantized,orhystereticcharacteristics,ormoreingeneralallrelationshipsrepresentablewithinthecomplementarityframework.Inthesecases,LCmodelsofpiecewiselinearcharacteristicsandalge-braicmanipulations,similartothosepresentedinthispaper,allowtowritetheclosed-looppowerconverterintheform(17).InSectionVI-C,thiswillbedemonstratedforcurrent-modecontrolledpowerconverters. ThecomplementaritymodelcorrespondingtotheblockschemeinFig.5isthencomplete.Inparticular,(24)isthecontrollermodel,(23)isthemodulatormodel,and(19)isthemodelofthecircuitincludingtheelectronicdevicescharacter-istics(thedashboxedblock).Bycollecting(19)–(24)andbydefining x=col(xo,xσ)(25a)e=col(eo,eσ,1Ns)(25b)z=col(zo,zσ)(25c)w=col(wo,wσ) (25d) thecompletemodelofthecontrolledpowerconvertercanbewrittenintheform(17)with A=A0 oA(26a) σoAσ B= BoBϕ0 00(26b)C=CϕCo0 CC(26c) σmoCσCmσ SESSAetal.:COMPLEMENTARITYMODELFORCLOSED-LOOPPOWERCONVERTERS6827 D= CϕDoBϕ+Dϕ G ϕBσ0D(26d) σ E= Eo00 EE(26e) σoσe 0F= CϕFo000 CσFme γ. (26f) σ Itisimportanttohighlightthatthemodel(17)containsallthepossibleoperatingmodesoftheclosed-looppowerconverterandthatthematricesA,B,C,D,E,Fareconstant. Goingbacktotheboostillustrativeexample,consideraproportional–integralcontrollerwhoseinputistheerrorbe-tweentheoutputvoltagey=xo2anditsreferencevalue,sayeσ1,seeFig.7.Byindicatingwithxσthestatevariablecor-respondingtotheoutputoftheintegrator,witheσ2thecarriersignal,withkpandkiastheproportionalandintegralgainsofthecontroller,respectively,thecontrollerdynamicscanbewrittenas x˙σ=−xo2+eσ1 (27a)λσ=kixσ−kpxo2+kpeσ1−eσ2 (27b) whichareintheform(24)witheσ=col(eσ1,eσ2). Theswitchingsignalσcanbeexpressedbyusingthemodel(22).Letusdefinex=col(xo,xσ),e=col(eo,eσ).Byusing(26),orequivalentlybysubstituting(22a)in(21e)and(27b)in(22b),theclosed-loopmodelcanbewritteninthedynamicLCform(17)withthefollowingmatrices: ⎡R11 ⎤⎢−−L0 1⎥A=⎢ L⎢1 ⎢⎣11⎥⎥(28a) C1−R0⎥2C1 ⎦0−10⎡1⎤ ⎢L0000 1⎥B=⎢⎢⎢⎣0−1⎥ (28b) C000⎥⎥1 ⎦⎡000⎤00⎢100⎢0−10⎥⎥C=⎢⎢⎢⎢00 0⎥⎥ (28c) ⎢⎥⎣0k⎥p−ki⎥⎦ ⎡000 ⎢0 −1000⎤ ⎢10100⎥⎥D=⎢⎢⎢⎢0 −10i0⎥⎢max ⎥⎥(28d) ⎣ 00001⎥⎥⎦ 0 0 0−1 0 ⎡100 0 ⎤ E=⎢⎢L1 ⎣⎥ 0 000⎥⎦(28e) ⎡0100⎢ 0 0 00⎤ ⎢00⎥ ⎥F=⎢00⎢ ⎢⎢ 0000⎥⎥⎢⎥(28f) ⎣ 0−k p10⎥.⎥⎦0 0 0 1 TheLCmodel(17)withthematrices(28)representsthe dynamicevolutionsoftheclosed-loopdc–dcboostconverterforallpossibleoperatingmodes,initialconditionsandexogenousinputs. IV.TIME-STEPPINGANDSTEADY-STATESOLUTIONSThemodel(17)canbeusedtocomputethetransienttime-steppingevolutionandthesteady-stateoscillationexhibitedbyacontrolledconverter.Tothisaim,letusdiscretizethesystem(17)withasamplingperiodh.Byconsidering,forinstance,theTustinmethodoneobtainsthefollowingdiscrete-timesystem: xk−Azxk−1=Bz(zk−1+zk)+Ez(ek−1+ek)(29a)wk=Cxk+Dzk+Fek(29b)0≤wk⊥zk≥0 (29c) withk=1,2,...,Nh,xk=x(kh)andanalogouslyforthe othervariables,and thematricesaregivenby AIh−1h z=Nx−2AINx+2 A (30a)Bh h−1z=2INx−2 A B(30b)−1Eh h z=2INx−2A E(30c)whereINxistheNx×NxidentitymatrixandNx=No+Nσ isthenumberofthestatevariablesoftheclosed-looppowerconverter. Givenzk−1,ek−1,ekandxk−1,onecansolve(29a)forxkandsubstitutethisvaluein(29b)that,togetherwith(29c),willbeusedforfindingzk.Therefore,thetime-steppingevolutioncanbeobtainedbyiteratingthesolutionofLCproblemsintheform wk=Mzk+qk (31a)0≤wk⊥zk≥0 (31b) with M=CBz+D (32) and qk=CAzxk−1+(CEz+F)ek+CBzzk−1+CEzek−1 (33) fork=1,2,...,Nh.EachLCproblem(31)canbesolvedbyusingstandard(andefficient)algorithmswidelystudiedinthecomplementarityliterature[9]. 6828IEEETRANSACTIONSONPOWERELECTRONICS,VOL.29,NO.12,DECEMBER2014 ThedynamicLCmodel(29)canbeusedalsotocom-putesteady-stateoscillationsexhibitedbyclosed-looppowerconverters.Letusassumethatthesystem(17)hasaperi-odicabsolutelycontinuoussolutionx(t)=x(t+T)foreverycontinuous-timeinstanttwithTbeingtheknownperiodofthesolution.Weassumethattheconvergenceproperty,alsocalledconsistency,holds,i.e.,thecontinuouspiecewiselinearinter-polationofthesamplessequencexkgivenby(29)convergestothecontinuous-timesolutionx(t)of(17)ash=T/Nhgoestozero.Inparticular,weassumethat(29)hasaperiodicsolu-tionofperiodNh,approximatingtheperiodiccontinuous-timesolutionofperiodTofthesystem(17).Foralargeclassofconstrainedcomplementaritysystems,theconsistencypropertyholds[33].ThenumericalresultsinSectionsVandVIwillcon-firmthevalidityofthispropertyalsoforthepowerconvertersconsidered.Bydefining x¯=col(x1,x2,...,xNh) (34a)e¯=col(e1,e2,...,eNh)(34b)z¯=col(z1,z2,...,zNh) (34c) w¯=col(w1,w2,...,wwithx∈RN,z∈R(4NNandh)(34d) x·Nhs+Nd)·Nh byusingtheperi-odicityconditionx0=xNh,wecanwritesimultaneouslytheequations(29)alongtheperiodNhwhichleadsto 0=Ax+Bz+Ee(35a) w=Cx+Dz+Fe (35b) with ⎡ −INx00··· 0A⎢z⎤⎢⎢Az−INx0···00⎥0···0⎥⎥A=⎢⎢Az−INx0⎢⎢...⎢.. ....... ....⎥ .⎥.⎥⎣⎥(36a)0···0Az −INx0⎥⎦⎡00···0ABz00···0⎤z−INx B⎢z⎢ ⎢BzBz0···00⎥B=⎢⎢0BzBz0···0⎥⎥⎢⎢...⎥⎢ .. .......... ..⎥.⎥⎣⎥(36b) 0···0BzBz 0⎥⎦ 00···0BzBz C=INh⊗C(36c)D=I⎡Nh⊗DE0 ···0E⎢z0z⎤(36d) ⎢ ⎢EzEz0···00⎥0⎥⎥E=⎢⎢Ez Ez0···0⎢⎥⎢. ..⎥⎢ .. .............⎥⎣⎥(36e) 0···0EzEz0⎥⎦ 00··· 0 Ez Ez F=INh⊗F (36f) where⊗denotestheKroneckerproduct. Remark3:Bydiscretizing(17)withthebackwardEulerorthe Zero–Order–Holdtechniquesandbyusingsimilararguments,onecanobtaincorrespondingrepresentationsintheform(35)withsuitableA,B,C,D,E,F.From(36a),oneobtains det(A)=(−1)Nhdet(INzh x−AN) (37) thenA¯issingularifANhhassomeeigenvaluein1,whichhappensforinstancewhenz Ahaseigenvaluesintheorigin,see(30a). IfthematrixAisinvertible,theperiodicsolutionof(29)canbeobtainedbyformulatingasuitableLCproblem.Indeedbysolving(35a)forthevectorx,weobtain x=−A−1 (Bz+Ee).(38) Then,bysubstituting(38)in(35b),weobtain w=Mz+q(39a) 0≤w⊥z≥0 (39b)withM=−CA−1 B+D (40)and q=(−CA−1 E+F)e (41) whichisaclassicalLCproblemintheform(2).Thesolutionzcanbeusedin(38)toobtaintheperiodicsteady-statesolutionx. Remark4:IfthematrixAisnotinvertible(whichisthecasefortheclosed-loopboostconverterconsideredpreviously,see(28a),(30a),and(37)),onecandefineamixedLCproblem(1)whichallowstoavoidtheinversionofAforthecomputationoftheperiodicsolution.Indeed,thesystem(35)canbewrittenintheform(1)bydefining z=col (x,z) (42a)M= AB CD(42b)q=EFe (42c)l=col(−∞Nx·Nh,0) (42d)u=col(+∞Nx·Nh,+∞(4Ns+Nd)·Nh) (42e) where∞NistheNthdimensionalvectorof∞.Thechoiceofinfinitelowerandupperboundsimpliesthatthevariablewandthevariablevassociatedtoxarezero.Thisallowstoformulate(35)asamixedLCproblem. V.OPEN-LOOPPOWERCONVERTERSANALYSIS Theapproachforthecomputationofthesteady-statesolu-tioncanbeusedtodeterminethecontrol-to-outputfrequencyresponseofpowerconverters,thatisusuallycalculatedbycon-sideringopen-loopmodels.Then,inthefollowing,werefertotheapplicationofthetechniquepresentedintheprevioussectionbyconsideringthematrices A=Ao,B=BoBϕ,C=CϕCo,D=CϕDoBϕ+Dϕ (43) SESSAetal.:COMPLEMENTARITYMODELFORCLOSED-LOOPPOWERCONVERTERS6829 Fig.8.Z-sourcedc–dcpowerconverter. see(17)and(19).Ausefulpropertyforsuchanalysisistheuniquenessofthesteady-statesolutionxwhichcorrespondstotheuniqueleast-normsolutionzoftheLCproblem(39)–(41),orifAisnotinvertibletothesolutionofthemixedLCproblem(1)with(42).Conditionsforsuchuniquenesscanbeobtainedbyusingthepassivityconcept.Inparticular,iftheopen-loopmodel(18)ofapowerconverterispassivewithrespecttotheinputϕandtheoutputλ(withϕandλbeingtheinput–outputofthedis-cussedidealizedelectronicdevices),thenthecomplementarityproblem(39)hasauniqueleast-normsolution. Asanexample,letusconsidertheZ-sourcedc–dcconverterinFig.8,whereeoistheinputvoltage,xo1,xo3,xo5arethecurrentsoftheinductors,xo2,xo4,xo6arethevoltagesofthecapacitors,(ϕc,λc)isthecurrent–voltagepairoftheelectronicswitch,and(ϕd,λd)isthevoltage–currentpairofthediode.ByapplyingtheKirchhofflawstothecircuit,oneobtainsx˙(Ro1+R2)1R1=− LxoL+2x1 1−x1o2L1o5+Lϕ11 d + R2Lϕ1 1c+Le(44a)1ox˙o2 =1Cx11(44b) 1o1−Cx1o5−Cϕ1 c x˙(Ro1+R2)3=− Lx1R21 o3−xo4+xo5+Lϕ1L1L11 d + R2Lϕ1c+Le(44c)11ox˙o4 =1Cx11o3−Cxo5−ϕ(44d) 11C1 c x˙o5= R21RLx2oL2o21R2 1+x2+Lx2o3+Lx2o4−2Lx2o5− 1Lx1ϕR21 (44e)2o6−L2d−2Lϕ2c−Le2ox˙o6 =1Cx1o5−Rx(44f)23C2o 6 λd=xo1+xo3−xo5−ϕc (44g) λc=−R2xo1−xo2−R2xo3−xo4+2R2xo5+ϕd +2R2ϕc+eo (44h) whichisthemodelintheform(18)withxo= col(xo1,xo2,xo3,xo4,xo5,xo6),ϕ=col(ϕd,ϕc),andλ=col(λd,λc).Itiseasytoshowthatthemodelispassivewithrespecttotheinputϕandtheoutputλ. Moreover,bysubstitutingtheswitchandthediodecom-plementaritymodels(7)and(4),respectively,theresultingZ-sourceconvertermodelintheform(19)ispassivewithrespect totheinputzoandtheoutputwo. Atypicalapproachinordertoobtainthecontrol-to-outputfrequencyresponseofpowerconvertersconsistsofconsid-eringaPWMwithsinusoidalmodulationsignaleσ1=V0+V1sin(2πt/T)andaperiodiccarriersignal,sayeσ2.Withoutlossofgenerality,itisusefultoconsiderthemodulationsig-nalperiodTproportionaltothecarriersignalperiodTc,i.e.,T=NpTcwhereNpisapositiveinteger.Thesamplingperiodhcanbechosenash=T/Nh=TcNp/Nh.ByconsideringFig.7withoutthefeedback,i.e.,y=0,kp=1andki=0,onecanwrite λσ=eσ1−eσ2 (45) whichisintheform(24b).Themodelofthepowercon-vertercanbewrittenintheform(17)byusing(44)with(4)forthepair(ϕd,λd),(7)forthepair(ϕc,λc),(22)fortheswitchingsignalσ,(45)forthevariableλσandbydefiningx=xo,e=col(eo,eσ1,eσ2,1),z=col(zd,zc1,zc2,zσ1,zσ2),andw=col(wd,wc1,wc2,wσ1,wσ2). TheproposedLCapproachforthecomputationofthesteady-statesolutioncanbeappliedtotheresultingmodel. ConsiderthefollowingcircuitparametersL1=175μH,C1=220μF,R1=0.42Ω,R2=0.22Ω,R3=50Ω,L2=330μH,C2=470μF,andimax=5A,andeo=12V.Themodulationvoltageeσ1isasinusoidalsignalwithV0=0.3VandV1=0.03Vandthecarriersignaleσ2isasawtoothwithunitaryamplitudeandfrequency1/Tc=100kHz.Fig.9showstheamplitudeandthephaseofthefirstharmonicofthesteady-stateoutputvoltagexo6obtainedbyvaryingNp=2,3,...,10withNh=4000,comparedwiththeresultsobtainedbyus-ingtheaveragedmodelandtheanalyticalsolutionobtainedbyconsideringtheaprioriknowledgeofthecommutationtimeinstantsandthesequenceofthemodes.Thesedataarenotrequiredforthecomputationofthecomplementaritysolutionwhichprovidestheseinformationasresults. Fig.9confirmsthegoodaccuracyofthecomplementarityapproachwhoseresultsareveryclosetotheanalyticalsolution.Instead,at50kHz,correspondingtoNp=2,wecannotetheaccuracyreductionoftheaveragedmodelwhenthefrequenciesofthemodulationandcarriersignalsbecomecloser. TheLCmodelcapturestheswitchedbehavioroftheconverterindependentlyofthemodulationfrequency,providedthatasuf-ficientlysmallsamplingperiodhisselected. Onceagain,itisimportanttohighlightthatthesameLCmodelisvalidforalloperatingconditionsanddoesnotrequiretheaprioriknowledgeofthemodessequence. Inthefollowing,thecontrol-to-outputresponseisobtainedbyconsideringaconstantcontrolvoltage,asin[35],whereaZ-sourceconverterwiththeparasiticresistancesisconsidered.ThemodeloftheZ-sourceconverterisbuiltbyconsideringthecomplementaritymodelofthediodeandtheelectronicswitchwithparasitics,seeSectionII.Inordertoprovetheefficiencyoftheproposedapproach,wehavecomparedourresultswiththeexactsteady-statesolution,computedwithanalyticalmap,see 6830IEEETRANSACTIONSONPOWERELECTRONICS,VOL.29,NO.12,DECEMBER2014 Fig.9.FirstharmonicsoftheoutputvoltageoftheZ-sourceconverterobtainedwiththeLCsteady-stateapproach(*),theaveragedmodel(o),andtheanalyticalsolution()fordifferentvaluesofNp. Fig.10,andthetheoreticalandexperimentalresultspresentedin[35],seeTableI. Inparticular,Fig.10showstheevolutionoftheerrordefinedasthedifferencebetweenthevalueoftheexactsteady-statesolutionattheswitchingtimeinstantandtheonecomputedbyusingthecomplementarityprocedure.Thecomplementaritysolutioniscomputedbyvaryingthenumberofthesamplesperperiod.Asonecouldexpect,theerrordecreaseswhenthenumberofsamplesincreases.Thenonregularityofthecomputederrorismainlyduetothechosendiscretizationtechnique.Thisphenomenonisgenerallyobservedwhenahigh-ordermethodisusedforasolutionwithlimitedsmoothness,see[12,Section9.1]. TableIsummarizesthevaluesofsomekeyparameterscorre-spondingtothesteady-stateanalysis.Thevalidityofthecom-plementarityapproachisconfirmed. VI.SOMEEXAMPLESOFCLOSED-LOOPPOWER CONVERTERSANALYSIS TheproposedLCmodelingapproachcanbeusedforthecomputationofthetransientandsteady-statesolutionsof Fig.10.ErrorinthetrajectorycomputationobtainedbyvaryingN[50,500]fortheopen-loopZ-sourcedc–dcconverter.Thehorizontalaxish∈is log10(1/Nh)andtheverticalaxisisthelog10|xˆ∗oi−ˆxoi|,wherexˆ∗oiandˆx aretheanalyticalandthecomplementaritysolutions,respectively,evaluatedoiattheswitchingtimeinstant,with(a)i=1(o)andi=5(*),and(b)i=2(o)andi=6(*).Thedashedlinesarethelinearleast-squaresinterpolations. TABLE1 THEORETICAL,EXPERIMENTAL,ANDSIMULATIONRESULTS SESSAetal.:COMPLEMENTARITYMODELFORCLOSED-LOOPPOWERCONVERTERS6831 closed-looppowerconverters.Beforeanalyzingsomeexam-ples,itisinterestingtomakeapreliminaryconsiderationonthepassivityofclosed-looppowerconverters.Wewerenotabletofindapowerconverterwithaclosed-loopmodelbeingpassivewithrespecttothecomplementarityvariables:forallcasesanalyzed,thepassivitypropertyislostwhengoingfromopen-looptoclosed-loopmodels.Iftheclosed-loopcomple-mentaritymodelisnotpassive,itisnotpossibletoconcludetheuniquenessofthesolutionof(39).However,theinterest-ingthingisthatclosed-loopconverterscanbestillanalyzedbyusingthecomplementaritymodelingapproachandthesteady-statecomputationprocedurepresentedpreviously.Indeed,fordeterminingthemultiplesolutions,onecanenlargethecomple-mentarityproblemwithopportuneconstraints.Forinstance,byfollowingtheprocedureshownin[36],itispossibletofindalldifferentsolutionsofaLCproblem.Briefly,sayzˆasolutionoftheLCproblem(39):onecanconstructanewLCproblemthathasallsolutionsof(39)exceptforzˆ,i.e.,toexcludezˆfromthesolutionsof(39).Thiscanberepeatedforallsolutions.See[36]andthereferencesthereinformoredetails.AnotherapproachcouldbetoinitializetheLCproblemsolverwithdifferentini-tialguesses.AllLCproblemsaresolvedbyusingthePATHtool[32]. AsinSectionV,thenumericalresultspresentedinthissectionareverifiedbyconsideringtheexactsteady-statesolutioncom-putedbyconstructingthenonlinearclosed-loopmapswhichcanbeanalyticallyobtainedoncethesequenceofmodes(butnottheswitchingtimeinstant)isfixed. A.BoostConverterinDiscontinuousConductionModeConsidertheboostDC–DCconvertershowninFig.6withavoltage-modePWMandaproportional–integralcon-troller.Thecircuitandcontrollerparametersare:R1=0.1Ω,L1=100μH,C1=200μF,R2=20Ω,kp=0.1,ki=400,imax=5A,eo=10V,eσ1=15V,andeσ2isasawtoothwithunitaryamplitudeandfrequency1/Tc=5kHz.Theclosed-looppowerconvertercanbemodeledintheform(17)withthematricesgivenby(28).Suchmodelisvalidforalloperatingcon-ditions(continuousanddiscontinuousconductionmodes)ofthepowerconverter.AperiodicsolutionofperiodTcisexpected.BydiscretizingthesystemwithNh=130samplesperpe-riod,whichcorrespondstoh=1.53μs,wecanconstructthemixedLCproblem(1)withthematricesdefinedin(30),(36),and(42).Fig.11showsthesolutionsobtainedthroughtheLCprocedure.ThecomputationtimerequiredtosolvethemixedLCproblemis1.06s.Theresultsshowthattheproposedalgorithmisabletodetectthesteady-statebehavioroftheclosed-loopconverteroperatingindiscontinuousconductionmode,whichisasituationdifficulttobeaprioripredictedwithoutintroduc-ingsomesimplifyingassumptions.Letusdefinetheerrorasthedifferencebetweenthevalueoftheswitchingtimeinstantinwhichthecurrentbecomeszerocomputedbyconsideringtheexactsteady-statesolutionandtheoneobtainedbyusingthecomplementarityapproachwithdifferentvaluesofNh.Fig.12showsthatsucherrordecreaseswhenNhincreases,thuscon-firmingtheeffectivenessoftheproposedapproach. Fig.11.Steady-stateinductorcurrentandoutputvoltagecomputedbytheLCprocedurefortheclosed-loopboostdc–dcconverterindiscontinuousconductionmode. Fig.12.ErrorintheswitchingtimeinstantinwhichthecurrentbecomeszeroobtainedbyvaryingNindiscontinuousconductionh∈[42,mode.2]Theforthehorizontalclosed-loopaxisboostislogdc–dcconverter10(1/Nh)and theverticalaxisisthelog10|t∗sw−tsw|wheret∗swandtswaretheswitching timeinstantsinwhichthecurrentbecomeszeroobtainedfortheanalyticalandthecomplementaritysolutions,respectively.Thedashedlinesarethelinearleast-squaresinterpolations. B.BoostConverterWithanUnstableSolution Considertheboostdc–dcconvertershowninFig.6withaPWMandaproportionalcontrollerwhoseschemeisinFig.7,wherey=k1xo1+k2xo2,eσ1isthereferenceoutputvoltageandtheintegraltermiszero,i.e.,ki=0.ThisexampleshowsthattheLCapproachisabletocomputealsounstablesteady-statesolutions.Thematricesoftheform(17)canbesimplyobtainedbytheprocedureinSectionIII.Thefollowingparam-etersareused:R1=0Ω,L1=5.24μH,C1=0.2μF,R2=16Ω,k1=−0.1,k2=0.01,kp=1,imax=5A,eo=4V,eσ1=0.48V,andeσ2isasawtoothwithunitaryamplitudeandfrequency1/Tc=500kHz. InFig.13,itisdepictedthetimeevolutionofthestablesolutionobtainedwiththetime-steppingnumericalintegrationoftheLCmodelandbychoosingasinitialconditionsxo1=0.1Aandxo2=8V.Theresultsconfirmthosereportedin[30]. 6832IEEETRANSACTIONSONPOWERELECTRONICS,VOL.29,NO.12,DECEMBER2014 Fig.13.Timeevolutionobtainedwiththetime-steppingLCprocedurefortheclosed-loopboostdc–dcconverter. Fig.14.Phaseplanecorrespondingtothestable(continuousline)andtheunstable(dashedline)solutionsobtainedwiththeLCtechniqueappliedtotheclosed-loopboostdc–dcconverter. In[30],itisshownthattheclosed-looppowerconverterex-hibitstwoperiodicsolutionswithperiodTc:onestableandanotherunstable.Fig.14showsthestable(continuousline)andtheunstable(dashedline)solutionsinthecurrent–voltageplaneobtainedwiththeLCapproachandNh=400,whichcorre-spondsto0.005μs.Theresultsarealsocoherentwiththosepresentedin[37].ThetwosolutionsareobtainedbyusingthePATHalgorithm[32]withzero(nonzero)initialguessforthestable(unstable)solution.Thecomputationtimeis2.04sforthestablesolutionand2.06sfortheunstableone.InFig.15,itisshownthecomparisonofthecomplementaritysolutionwiththeexactsteady-statesolutionofthenonlinearclosed-loopmapobtainedbyassumingthesequenceofmodes.ThequalitativecommentsontheerroraccuracyreportedforFig.10arecon-firmedfortheboostconverter. C.BoostConverterWithCurrent-ModeControl Considertheboostdc–dcconverterinFig.6undercurrent-modecontrolwithslopecompensation.Becauseofthepresence Fig.15.ErrorinthetrajectorycomputationobtainedbyvaryingN[200,600]fortheclosed-loopboostdc–dcconverter.Thehorizontalaxish∈islog10(1/Nh)andtheverticalaxisisthelogtheanalyticalandthecomplementaritysolutions,10|xˆ∗oi−respectively,ˆxoi|,wherexˆ∗evaluatedoiandˆxareoiattheswitchingtimeinstant,with(a)i=1(o)andi=2(*)forthestablesolutionand(b)i=1(o)andi=2(*)fortheunstablesolution.Thedashedlinesarethelinearleast-squaresinterpolations. Fig.16.Blockdiagramofthecurrent-modecontroller:eσthecompensation1isthereferencesignalfortheoutputvariabley,thatisacurrent;eσ2isramp;eσ3istheclock;σistheswitchingsignal. ofamemoryelement,thatistheflip-flop,itisopportunetoformalizethecurrent-modecontrolprobleminthediscrete-timedomain.AcorrespondingblockdiagramisshowninFig.16,whereeσ1isthereferencecurrentvalue,eσ2istheexternalcompensationramp,eσ3istheclocksignalthatis1foronesampleatthebeginningoftheperiod,i.e.,k=1anditiszerofork=2,3,...,Nh. ThebehavioroftheS-Rflip–flopcanbemodeledbyusingthefollowingfunction: σk=1−(1−eσ3,k)sat[0,1](1−σk−1+step(λσ,k))(46a) SESSAetal.:COMPLEMENTARITYMODELFORCLOSED-LOOPPOWERCONVERTERS6833 Fig.17.ErrorinthetrajectorycomputationobtainedbyvaryingN[50,900]fortheclosed-loopboostdc–dcconverterwithcurrent-modecontrol. h∈ Thehorizontalaxisislogwherexˆ∗andxˆarethe10(1/Nanalyticalh)andtheverticalaxisisthelogandthecomplementaritysolutions,10|ˆx∗oirespec-−ˆx oi|tively,evaluatedoi oiattheswitchingtimeinstant,withi=1(o)andi=2(*).Thedashedlinesarethelinearleast-squaresinterpolations. λσ,k=xo1,k−eσ1,k+eσ2,k (46b) wheresat[0,1]isthesaturationfunctionbetweenzeroandoneandstepistheunitaryamplitudestepfunction,thatwehavealreadyanalyzedinSectionIII-B,seeFig.3(b).Fork=1,theclockvalueeσ3,k,issetto1and,from(46a),thecontrolsignalσissetto1independentlyonthevalueofthecurrent(switchON).TheswitchstaysON,i.e.,σkeepsthevalue1,untilthecurrentxo1,k=ykreachesthecompensationrampeσ1,k−eσ2,kforsomevalueofk.Atthisvalueofk,λσ,kbecomesnonnegativeandtheoutputofthestepfunctionchangesfrom0to1.Afterthat,thecontrolvariableσiszero,i.e.,theswitchisOFFuntilthebeginningofthenextperiodalsointhecaseλσ,kchangesagainitssign.Byreplacingin(46a)thesaturationandthestepfunctionwiththecorrespondingcomplementarityrepresentation,weobtainthecomplementaritymodelofthecontrolsignalinthecaseofcurrent-modecontrol σk=1−(1−eσ3,k)zσ2,k(47a)wσ1,k=−zσ2,k+1 (47b)wσ2,k=zσ1,k+zσ2,k−zσ3,k−1+σk−1(47c)wσ3,k=zσ4,k−λσ,k(47d)wσ4,k=−zσ3,k+1 (47e)0≤wσ,k⊥zσ,k≥0 (47f) whereλσ,kisgivenin(46b).Bydiscretizingtheopen-loopLCmodelofthepowerconverterin(19)andbyconsidering(47)andtheperiodicitycondition,theclosed-loopdiscretizedLCmodelintheformof(35)beeasilyobtained.In[4],thefollowingparametersarechosenR1=0Ω,R2=22Ω,C1=880μF,L1=69μH,imax=10A,eo=16.9V,eσ1=12.58A,andeσ2isthecompensationrampwithslopeequalto8.4As−1andfrequency1/Tc=100kHz. InFig.17,itisshownthattheerrorbetweentheexactsteady-statesolutionandtheonecomputedbyusingtheapproach Fig.18.Buckdc–dcconverter. proposedinthispaperdecreaseswhenthetimestepchosenforthediscretizationdecreases. D.BuckConverterWithPeriodDoublingBifurcationConsiderthebuckdc–dcconvertershowninFig.18withavoltage-modePWMandaproportionalcontrollerwhoseschemeisinFig.7,wherey=k1xo1+k2xo2,eσ1isthereferenceoutputvoltageandtheintegraltermiszero,i.e.,ki=0.In[31],itisshownthatthispowerconverterpresentsdifferentkindsofbifurcations,underthevariationoftheinputvoltageeoandthefrequencyofthecarriersignaleσ2.WhenthefollowingparametersarechosenR1=22Ω,C1=47μF,L1=5.8mH,kp=1,k1=0.02,k2=2,imax=5A,eo=20V,eσ1=8V,andeσ2isasawtoothsignalwithafrequency1/Tc=1.013kHzandwhoseamplitudevariesbetween2.4and8V,thebuckdc–dcconverterhasaperioddoublingbifurcation.ByusingtheproceduredescribedinSectionIII,i.e.,byapplyingtheKirchhofflawstothecircuitinFig.18andbyusing(4),(7),and(22),theLCmodeloftheclosed-looppowerconvertercanbewrittenasfollows: x˙11o1=−Lx1o1− Lx1 1o2+Lzd(48a)x˙11o2=Cx1o1−Cx1R1o2 (48b)wd=xo1−zc1(48c)wc1=zd+zc2−eo(48d)wc2=−zc1+imaxzσ1 (48e)wσ1=kpxo2+zσ2−kpeσ1+eσ2(48f)wσ2=−zσ1+1(48g)0≤w⊥z≥0 (48h) whichisintheform(17)withx=col(xo1,xo2),z= col(zd,zc1,zc2,zσ1,zσ2), w=col(wd,wc1,wc2,wσ1,wσ2)ande=col(eo,eσ1,eσ2,1).Theconverterhasanunstablesolutionwiththesameperiodofthesawtoothandastablesteady-statesolutionwithdouble-period,thatisT=2Tc. BydiscretizingthesystemwithNh=350samples(h=5.6μsfortheunstablesolutionandh=2.8μsforthestableone)andbyconstructingthemixedLCproblem(1)withthema-tricesdefinedin(30),(36),and(42),thePATHalgorithmwithzeroandnonzeroinitialguessesprovidesthesolutionsshowninFigs.19and20. Fig.21showsthecomparisonbetweenthenumericalre-sultsobtainedwiththecomplementarityprocedureandtheexperimentalresultspresentedin[31]andconfirmsthe 6834IEEETRANSACTIONSONPOWERELECTRONICS,VOL.29,NO.12,DECEMBER2014 Fig.19.Carriersignaleσ2(dottedline)andmodulationsignalsforstabledouble-periodsolution(continuousline)andsingle-periodicunstablesolution(dashedline)fortheclosed-loopbuckdc–dcconverter. Fig.20.Phaseplanecorrespondingtothedifferentsolutionsoftheclosed-loopbuckdc–dcconverterinFig.19:unstable(dashedline)andstable(continuousline).Notethepresenceofmultiplediscontinuousconductionmodephasesduringthedouble-periodicsolution. Fig.21.Comparisonwithexperimentalresults(dots)fortheclosed-loopbuckdc–dcconverter:carriersignaleσtinuousline).Numericalsolutionwith2(dottedline)andsimulationsolution(con-slidingmotion(dot-dashedline)obtainedwithdifferentcontrolparameters. effectivenessoftheproposedapproach.Inthesamefigure,withthedash–dottedline,wepresentalsothesolutioncharacterizedbyslidingmotionobtainedbysettingthevalueofthereferencevoltageeσ1=12Vandthecontrolparametersk1=0.01andk2=1.05. VII.CONCLUSIONS LCsystemsareaninterestingclassofmodelssuitablefortherepresentationofthedynamicevolutionsofpowerconverters.OneofthemajordrawbacksoftheLCmodelspreviouslypro-posedintheliteratureforpowerconverterswasthepresenceofswitchedsets(cones)requiredfortherepresentationoftheswitchescharacteristics.Thatmadeverycomplicatedthecon-structionofcomplementaritymodelsforcontrolledconverters.TheLCmodelproposedinthispaperforthevoltage–currentpiecewiselinearcharacteristicsofswitchesallowstorepresentpowerconvertersasnonswitchedLCsystems.TheLCmodelstructurewithconstantmatricesisvalidforbothopen-loopandclosed-looppowerconverters,anditcanbeobtainedbycom-biningthedynamicalequationsdescribingthecircuitwiththeLCrepresentationsoftheelectronicdevices,modulator,andcontroller.TheLCmodelcanbeusedforthetime-steppingevolutionandforthesteady-stateoscillationcomputations.Inparticular,thesteady-statesolutionofthediscretizedclosed-loopsystemhasbeenformulatedasthesolutionofastaticmixedLCproblem.Theproposedtechniquehasbeenshowntobeeffectiveforthecomputationofthetransientandthesteady-stateperiodicoscillationsexhibitedbyclosed-loopZ-source,boost,andbuckdc–dcpowerconvertersoperatingincontinu-ousordiscontinuousconductionmodeandalsointhepresenceofmultiplesolutions. Futureworkwillbededicatedtoimprovethenumericalef-fectivenessoftheLCmodelintegration,totheordermodelreductionissuewithinthecomplementarityframeworkandtotheapplicationoftheproposedtechniquefortheanalysisofmorecomplexnonlinearphenomenainswitchedcircuits. REFERENCES [1]B.DeKelper,L.A.Dessaint,K.Al-Haddad,andH.Nakra,“Acom-prehensiveapproachtofixed-stepsimulationofswitchedcircuits,”IEEETrans.PowerElectron.,vol.17,no.2,pp.216–224,Mar.2002. [2]R.W.EricksonandD.Maksimovic,FundamentalsofPowerElectronics, 2nded.Norwell,MA,USA:Kluwer,2001. [3]D.Maksimovic,A.M.Stankovic,V.J.Thottuvelil,andG.C.Verghese, “Modelingandsimulationofpowerelectronicconverters,”Proc.IEEEPowerElectron.,vol.,no.6,pp.8–912,Jun.2001. [4]T.Pavlovic,T.Bjazic,andZ.Ban,“Simplifiedaveragedmodelsofdc–dc powerconverterssuitableforcontrollerdesignandmicrogridsimulation,”IEEETrans.PowerElectron.,vol.28,no.7,pp.3266–3275,Jul.2013.[5]J.D.vanWykandF.C.Lee,“Onafutureforpowerelectronics,”IEEEJ. EmergingSel.Top.PowerElectron.,vol.1,no.2,pp.59–72,Jun.2013.[6]J.G.KassakianandT.M.Jahns,“Evolvingandemergingapplicationsof powerelectronicsinsystems,”IEEEJ.Emerg.Sel.TopicsPowerConvert.,vol.1,no.2,pp.47–58,Jun.2013. [7]H.Peng,A.Prodic,E.Alarcon,andD.Maksimovic,“Modelingofquan-tizationeffectsindigitallycontrolledDC–DCconverters,”IEEETrans.PowerElectron.,vol.22,no.1,pp.208–215,Jan.2007. [8]A.Davoudi,J.Jatskevich,andT.DeRybel,“Numericalstate-space average-valuemodelingofPWMDC–DCconvertersoperatinginDCMandCCM,”IEEETrans.PowerElectron.,vol.21,no.4,pp.1003–1012,Jul.2006. SESSAetal.:COMPLEMENTARITYMODELFORCLOSED-LOOPPOWERCONVERTERS6835 [9]R.Cottle,J.Pang,andR.Stone,TheLinearComplementarityProblem, 2nded.Boston,MA,USA:Academic,2009. [10]M.K.Camlibel,W.P.M.H.Heemels,A.J.v.derSchaft,and J.M.Schumacher,“Switchednetworksandcomplementarity,”IEEETrans.CircuitsSyst.I,vol.50,no.8,pp.1036–1046,Aug.2003. [11]V.Acary,O.Bonnefon,andB.Brogliato,“Time-steppingnumericalsim-ulationofswitchedcircuitswithinthenonsmoothdynamicalsystemsap-proach,”IEEETrans.Comput.-AidedDesignIntegr.CircuitsSyst.,vol.29,no.7,pp.1042–1055,Jul.2010. [12]V.AcaryandB.Brogliato,NumericalMethodsforNonsmoothDynamical Systems.vol.35,Berlin,Germany:Springer-Verlag,2008. [13]V.Sessa,L.Iannelli,V.Acary,B.Brogliato,andF.Vasca,“Comput-ingperiodandshapeofoscillationsinpiecewiselinearlur’esystems:Acomplementarityapproach,”presentedattheIEEEConf.Decis.Control,Florence,Italy,Dec.2013. [14]F.Vasca,L.Iannelli,M.K.Camlibel,andR.Frasca,“Anewperspective formodelingpowerelectronicsconverters:Complementarityframework,”IEEETrans.PowerElectron.,vol.24,no.2,pp.456–468,Feb.2009.[15]V.Acary,O.Bonnefon,andB.Brogliato,NonsmoothModelingandSim-ulationforSwitchedCircuits.London,U.K.:Springer-Verlag,2011.[16]J.J.Rico-Melgoza,J.P.Suarez,E.Barrera-Cardiel,andM.M.Martinez, “Modelingandanalysisofthree-phasediodebridgerectifiersaslinearcomplementaritysystems,”Electr.PowerCompon.Syst.,vol.47,no.15,pp.1639–1655,2009. [17]G.Angelone,F.Vasca,L.Iannelli,andK.Camlibel,“Dynamic,steady-stateanalysisofswitchingpowerconvertersmadeeasy:Complementarityformalism,”inDynamicsandControlofSwitchedElectronicSystems,F.VascaandL.Iannelli,Eds.London,U.K.:Springer-Verlag,2012.[18]L.Iannelli,F.Vasca,andG.Angelone,“Computationofsteady–state oscillationsinpowerconvertersthroughcomplementarity,”IEEETrans.CircuitsSyst.I,vol.58,no.6,pp.1421–1432,Jun.2011. [19]C.Batlle,E.Fossas,I.Merillas,andA.Miralles,“Generalizeddiscontin-uousconductionmodesinthecomplementarityformalism,”IEEETrans.CircuitsSyst.II,vol.52,no.8,pp.447–451,Aug.2005. [20]N.Carrero,C.Batlle,andE.Fossas,“Modelingacoupled-inductorboost converterinthecomplementarityframework,”inProc.6thUKSim/AMSSEur.Symp.Comput.Model.Simulat.,Valletta,Malta,Nov.2012,pp.471–476. [21]J.Tant,J.Driesen,andW.Michiels,“Event-drivensimulationofpower electronicsinthecomplementaritysystemsframework,”inProc.IEEE13thWorkshopContolModel.PowerElectron.,Kyoto,Japan,Jun.2012,pp.1–7. [22]C.Glocker,“Modelsofnon-smoothswitchesinelectricalsystems,”Int. J.Circ.Theor.App.,vol.33,no.3,pp.205–234,2005. [23]D.Goeleven,“Existenceanduniquenessforalinearmixedvariational inequalityarisinginelectricalcircuitswithtransistor,”J.Optim.TheoryAppl.,vol.138,pp.397–406,2008. [24]M.Shirazi,R.Zane,andD.Maksimovic,“Anautotuningdigitalcontroller forDC–DCpowerconvertersbasedononlinefrequency-responsemea-surement,”IEEETrans.PowerElectron.,vol.24,no.11,pp.2578–2588,Nov.2009. [25]R.Yang,H.Ding,Y.Xu,L.Yao,andY.Xiang,“Ananalyticalsteady-statemodelofLCCtypeseries-parallelresonantconverterwithcapacitiveoutputfilter,”IEEETrans.PowerElectron.,vol.29,no.1,pp.328–338,Jan.2014. [26]K.Ilves,A.Antonopoulos,S.Norrga,andH.-P.Nee,“Steady-stateanaly-sisofinteractionbetweenharmoniccomponentsofarmandlinequantitiesofmodularmultilevelconverters,”IEEETrans.PowerElectron.,vol.27,no.1,pp.57–68,Jan.2012. [27]Q.Song,W.Liu,X.Li,H.Rao,S.Xu,andL.Li,“Asteady-stateanalysis methodforamodularmultilevelconverter,”IEEETrans.PowerElectron.,vol.28,no.8,pp.3702–3713,Aug.2013. [28]R.Yu,G.K.Y.Ho,B.M.H.Pong,B.-K.Ling,andJ.Lam,“Computer-aideddesignandoptimizationofhigh-efficiencyLLCseriesresonantconverter,”IEEETrans.PowerElectron.,vol.27,no.7,pp.3243–3256,Jul.2012. [29]V.P.GaligekereandM.KKazimierczuk,“Small-signalmodelingofopen-loopPWMZ-sourceconverterbycircuit-averagingtechnique,”IEEETrans.PowerElectron.,vol.28,no.3,pp.1286–1296,Mar.2013. [30]J.W.vanderWoude,W.L.deKoning,andY.Fuad,“Ontheperiodic behaviorofPWMDC–DCconverters,”IEEETrans.PowerElectron.,vol.17,no.4,pp.585–595,Jul.2002. [31]M.DiBernardo,F.Garofalo,L.Iannelli,andF.Vasca,“Bifurcationsin piecewise-smoothfeedbacksystems,”Int.J.Control,vol.75,no.16–17,pp.1243–1259,2002. [32]S.P.DirkseandM.C.Ferris,“ThePATHsolver:Anon-monotonestabi-lizationschemeformixedcomplementarityproblems,”Optim.MethodsSoftw.,vol.5,pp.123–156,1995. [33]L.Han,A.Tiwari,M.K.Camlibel,andJ.-S.Pang,“Convergenceoftime-steppingforpassiveandextendedlinearcomplementaritysystems,”SIAMJ.Numer.Anal.,vol.47,no.5,pp.3768–3796,2009. [34]R.Frasca,M.K.Camlibel,I.C.Goknar,L.Iannelli,andF.Vasca,“Lin-earpassivenetworkswithidealswitches:Consistentinitialconditionsandstatediscontinuities,”IEEETrans.CircuitsSyst.I,vol.57,no.12,pp.3138–3151,Dec.2010. [35]V.P.GaligekereandM.KKazimierczuk,“AnalysisofPWMZ-source DC–DCconverterinCCMforsteadystate,”IEEETrans.CircuitsSyst.I,vol.59,no.4,pp.8–863,Apr.2012. [36]L.IannelliandF.Vasca,“Computationoflimitcyclesandforcedos-cillationsindiscretetimepiecewiselinearfeedbacksystemsthroughacomplementarityapproach,”inProc.IEEEConf.Decis.Contr.,Cancun,Mexico,Dec.2008,pp.1169–1174. [37]C.C.Fang,“Criticalconditionsofsaddle-nodebifurcationsinswitch-ingDC–DCconverters,”Int.J.Electron.,vol.100,no.8,pp.1–28,2012. ValentinaSessa(S’10–M’13)wasborninAvellino,Italy,in1983.Shereceivedthemaster’sdegreeinau-tomaticcontrolengineeringandthePh.D.degreeininformationengineeringfromUniversityofSannio,Benevento,Italy,in2010and2013,respectively.In2012,shewasaVisitingStudentatINRIARhˆone-Alpes,France.SheiscurrentlyaPostdoctoralFellowattheDepartmentofEngineering,UniversityofSannio.Hercurrentresearchinterestsincludetheanalysisofnonsmoothdynamicalsystems,inpartic-ular,piecewiselinearandcomplementaritysystems, andthemodelingandcontrolofpowerelectronicconverters. LuigiIannelli(S’00–M’02–SM’12)wasborninBenevento,Italy,in1975.Hereceivedthemaster’sdegree(Laurea)incomputerengineeringfromtheUniversityofSannio,Benevento,Italy,in1999,andthePh.D.degreeininformationengineeringfromtheUniversityofNapoliFedericoII,Naples,Italy,in2003. HewasaGuestResearcherattheDepartmentofSignals,Sensors,andSystems,RoyalInstituteofTechnology,Stockholm,Sweden,andthenasaRe-searchAssistantattheDepartmentofComputerand SystemsEngineering,UniversityofNapoliFedericoII.Currently,heisanAssistantProfessorofautomaticcontrolwiththeDepartmentofEngineering,UniversityofSannio.Hiscurrentresearchinterestsincludeanalysisandcontrolofswitchedandnonsmoothsystems,stabilityanalysisofpiecewise-linearsys-tems,smartgridcontrolandapplicationsofcontroltheorytopowerelectronics.HeisaMemberofIEEEControlSystemsSociety,theIEEECircuitsandSys-temsSociety,andtheSocietyforIndustrialandAppliedMathematics. FrancescoVasca(M’94–SM’12)wasbornin1967inGiugliano,Napoli,Italy.In1995,hereceivedthePh.D.degreeinautomaticcontrolfromtheUniver-sityofNapoliFedericoII,Naples,Italy. Since2000,hehasbeenanAssociateProfes-sorofautomaticcontrolattheUniversityofSannio,Benevento,Italy.Hisresearchinterestsincludetheanalysisandcontrolofswitchedsystems(averaging,complementarity,dithering,real-timehardwareintheloop)withapplicationstopowerelectronics,railwaycontrol,andautomotivecontrol. Since2008,hehasbeenanAssociateEditorfortheIEEETRANSACTIONSONCONTROLSYSTEMSTECHNOLOGY. 因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- efsc.cn 版权所有 赣ICP备2024042792号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务