4
10ACTAMATHEMATICAEAPPLICATAESINICA
Vol.26No.4
Oct.,2003
Reissner-Mindlin
(
100080)
(
420002)
(
100080)
Reissner-Mindlin
Reissner-Mindlin
1
Reissner-Mindlin
[1]
.
“
”(
[1,2]
:
(
).
[1,3,4]
:
).,
[2,5−9]
,
Arnold-Falk
[5,6]
“
”
(
“
”
).
[10]
Reissner-Mindlin
Raviart-Thomas
Stokes-Inf-Sup
.[1,12]
,[10][10]
[1]
,-Helmholtz-[11]
[5]
.
2001
9
26
2003
6
4
630
26
[10].
[1,12]
-[5,6,10]
Inf-Sup
,
Stokes-Helmholtz-
“
”
L2
[10]
Reissner-Mindlin[13]
Sobolev:Hm(D),m≥0,
L2(D)=H0(D):(·,·)0,D,·0,D.D=Ω
1H0(Ω)H−1(Ω),
C()t
EuclideanT
∂v1∂v2∂v1∂v∂vT2+,rotv=−,rotv=∂v∂x∂y∂y,∂x∂x−∂y.
·m,D,|·|m,D.
D(m≥1)0,D·1(|·|1),·−1.h•
∂v∂vT
v=∂x,∂y,divv=
L2(Ω)
2
f,t>0,
12
θ=(θ1,θ2)∈H0(Ω),
Ω⊂IR2.Reissner-Mindlin
1
w∈H0(Ω)γ=(γ1,γ2)∈
⎧
⎪⎨a(θ,η)−(γ,η)=0,(γ,v)=(f,v),⎪⎩
λ−1t2(γ,s)−(w−θ,s)=0,
12
∀η∈H0(Ω),
1∀v∈H0(Ω),
2
∀s∈L2(Ω),
(1.1)
∂θ2∂η1∂θ1∂θ2∂η2E∂θ1
+ν+ν+a(θ,η)=
12(1−ν2)Ω∂x∂y∂x∂x∂y∂y1−ν∂θ1∂θ2∂η1∂η2
+++,
2∂y∂xy∂x(1.2)
λ=
eκ
,κ
2(1+ν)
eYoung’s
νPoisson
12
Θ=H0(Ω),
[1]
1
W=H0(Ω),
2
Q=L2(Ω).
(1.3)
:
a(η,η)≥C1η21,
sup
(η,v)∈Θ×W
∀η∈Θ,∀s∈Q,
(1.4)(1.5)
(v−η,s)
≥CsH,
η1+v1
2H=s∈H−1(Ω);divs∈H−1(Ω),
·H=·−1+div·−1.
(1.1)
(θ,w,γ),
θ2+w2+γ+u2+p1+tp2≤Cf,(1.6)
4
Reissner-Mindlin
631
Helmholtz-Ωf∈L2(Ω),1
u∈H0(Ω),p∈H1(Ω)/R.
λ=1.
[1,5];γ=u+rotp
2
Ω
Ch
Ω
[13]
.hK
h=suphK.
K∈Ch
Eh
nE,
τE.
Γh=Eh∪∂Ω.E∈Γh
vE∈Eh
|E|,
[v],i.e.,
[v]=v|K1−v|K2,
E=K1∩K2.K
2L(x,K),2L(y,K),K
(xK,yK).
T
φK(x,y):=−(x−xK),(y−yK),BK(x,y):=(x−xK)2−(y−yK)2,R(K):=span{1,x,y,BK(x,y)},
S(K):=span(1,0)T,(0,1)T,φK.
4L(x,k)L(y,K)
(2.1)(2.2)(2.3)(2.4)
,1≤i≤4,
(xi,yi)∈(1,1),(−1,1),(−1,−1),(1,−1).
Q1(K):=
[L(x,K)+xi(x−xK)][L(y,K)+yi(y−yK)]
P1(K)=span{1,x,y}.
2.1
Vh=v∈H1(Ω);v|K∈Q1(K),∀K∈Ch,
(2.5)
Θh:=(Vh∩W)×(Vh∩W),
Wh=v∈L2(Ω);v|K∈R(K),∀K∈Ch,[v]=0,∀E∈Eh,
E
v=0,∀E∈∂Ω,
E
Qh=s∈Q;s|K∈S(K),∀K∈Ch,
:=|v|2v2h0,K,
K∈Ch
(2.6)(2.7)
·h
Wh
2.1[16]
.
w∈W∩H2(Ω),w∈Wh
w=w,∀E∈Γh,
[13,14]
h.
EE
(2.8)
w
w−w+hw−wh≤Ch2w2,
1/2
2m−22hK|w−w|m,K+wh≤C|w|1,
K∈Ch
(2.9)
m=0,1.
(2.10)
632
26
2.2
γ∈Qh,
K∈Ch,
Ei∈∂K,1≤i≤4,
divγ|K
=0,
γ•nE|E
=
,
∀E∈∂K.2.3
rotVh⊂Qh,hWh⊂Qh,
(rotv,hw)=0,
∀v∈Vh,∀w∈Wh.
v∈Vh.
K∈Ch,
4v=1
4LviLy(x,k)L(y,K)(x,K)+xi(x−xK)L(y,K)+i(y−yK),
i=1
vi,1≤i≤4
v
4L(x,k)L(y,K)rotv=
LvL3+v4)
(x,K)(−v1−v2+(y,K)(v1−v2−v3
+v4)
+(v1−v2+v3−v4)
−(yx−−yxK)
K
.(2.12),
hWh⊂Qh
(2.13).
(rotv,
hw)=
rotv•n∂K.K∈Ch
∂K
wrotv•n∂K=
∂τ∂v∂K
(
v∈Vh
rotv•n∂K|∂K=
Wh
(2.6)
(2.13).
2.4[12,16](Cl´ement-∈H2(Ω),
)
qq∈Vh
h2K
m−2
|q−
q|21/2
m,K
+|q|1≤Cq2,m=0,1,K∈Ch
q−q+h|q−q|1≤Ch2q2.
2.2
(1.1)
(θh,wh,γh)∈Θh×Wh×Qh
Lh(θh,γvh,s
h,wh);(ηh,h)=(f,vh),
∀(ηh,vh,sh)∈Θh×Wh×Qh,
Lh(θ,w,γ);(η,v,s)
=a(θ,η)+(hw−θ,s)+(hv−η,γ)
−(t2+h2K)(γ,s)0,K.
K∈Ch
(2.11)
(2.12)(2.13)
(2.14)
(2.15)
(2.16)),
(2.17)(2.18)
(2.19)
(2.20)
4
Reissner-Mindlin
633
s2t,h
2.1
:=
K∈Ch
222
h2Ks0,K+ts.
(2.21)
(θ,w,γ)∈Θh×Wh×Qh,
sup
(η,v,s)∈Θh×Wh×Qh
Lh((θ,w,γ);(η,v,s))
≥Cθ1+wh+γt,h.
η1+vh+st,h
(2.22)
(θ,w,γ)∈Θh×Wh×Qh,
(η∗,v∗,s∗)=(θ,w,−γ+δhw)∈Θh×Wh×Qh,
(2.23)
δ>0
2
Lh(θ,w,γ);(η∗,v∗,s∗)=a(θ,θ)+δw2−δ(w,θ)+(t2+h2hhK)γ0,K
−δ
K∈Ch
K∈Ch
(t2+h2K)(γ,hw)0,K.
(2.24)
2|ab|≤a2/ε+εb2,
a∈R,b∈R,ε>0,
δδ∗∗∗22
1−ε(tLh(θ,w,γ);(η,v,s)≥C1−++h)w2θ21h
22δ22+1−(t+h2K)γ0,K.2ε
K∈Ch
(2.25)
0<δ 1 , t2+h2(2.27) 22Lh(θ,w,γ);(η∗,v∗,s∗)≥Cθ2+w+γ1ht,h, (2.28) η∗1+v∗h+s∗t,h≤Cθ1+wh+γt,h, (2.29) Lh((θ,w,γ);(η,v,s))Lh((θ,w,γ);(η∗,v∗,s∗)) sup≥∗η1+v∗h+s∗t,h(η,v,s)∈Θh×Wh×Qhη1+vh+st,h ≥Cθ1+wh+γt,h. (2.30) 634 26 2.1 Θh×Wh×Qh, (θ,w,γ),(θh,wh,γh) (1.1),(2.19) (ηh,vh,sh)∈ 2 Lh(θ−θh,w−wh,γ−γh);(ηh,vh,sh)=−hK(γ,sh)0,K+ γ•n∂Kvh.(2.31) K∈Ch ∂K (ηh,vh,sh)∈Θh×Wh×Qh, (f,vh)=−(divγ,vh)=(hvh,γ)− L ∂K γ•n∂Kvh,h(θ,w,γ);(η K∈Ch h,vh,sh)=(γ,hvh)− h2K(γ,sh)0,K, K∈Ch (2.32),(2.33),(2.31). 2.2(θ,w,γ),(θh,wh,γh) (1.1),(2.19) θ−θh1+w−whh+γ−γht,h≤Chf. θ∈Θh θ∈H2(Ω) 2 [13] , θ−θ+h|θ−θ|1≤Ch2θ2. w∈Wh w ( 2.1). γ=u+rotp, u∈W∩H2(Ω), p∈H2(Ω)/R. γ=hu+rotp, u∈Wh, p∈Vh, p Cl´ement-( 2.4).γ∈Qh( 2.3) ξθ=θ−θh,ξw=w−wh,ξγ=γ−γh,ρθ=θ −θ,ρw=w−w, ργ=γ−γ. 2.1, 2.1 C ξθ1+ξwh+ξγ θt,h≤,ξw,ξγ);(η,v,s))(η,v,s)∈Θsup Lh((ξh×Wh×Qh η1+vh+st,h = sup Lh((ρθ,ρw,ργ);(η,v,s))+R(γ,v,s)(η,v,s)∈Θh×Wh×Qh η1+vh+st,h , R(γ,v,s)= − h2K(γ,s)0,K + K∈Ch ∂K γ•n∂Kv . (2.32)(2.33) (2.34) (2.35) (2.36) (2.37) (2.38) (2.39) 4 Reissner-Mindlin 635 Lh(ρθ,ρw,ργ);(η,v,s)=a(ρθ,η)+(hρw−ρθ,s)+(hv−η,ργ) γ −(t2+h2K)(ρ,s)0,K, K∈Ch (2.40) (hρw−ρθ,s)=(−ρθ,s)≤Chθ2st,h, (2.41) (hρw,s)=0( 2.1,2.2 ), K∈Ch ∂K γ•n∂Kv+(hv−η,ργ) γ•n∂Kv+hv,rot(p−p)∂u v∂n∂K (2.42) [13,16] )−(rotη,p−p)+=hv−η,h(u−u )−(rotη,p−p)+=hv−η,h(u−u≤Chu2+p1 K∈Ch ∂K vh+η1, : K∈Ch ∂K (2.13),(2.36) K∈Ch ∂K ∂u v≤Chu2vh,∂n∂K (2.43) (2.9),(2.10),(2.17)(2.18) γ−(t2+h2)(ρ,s)≤Chu+tp+p0,K221st,h,K (2.44)(2.45)(2.46) K∈Ch − h2K(γ,s)0,K≤Chγst,h, ( K∈Ch a(ρθ,η)≤Chθ2η1 (2.35)). (2.38),(1.6),(2.41),(2.42)(2.44)–(2.46) ξθ1+ξwh+ξγt,h≤Chf. (2.47) (1.6) (2.47) θ−θh1+w−whh+γ−γht,h≤Cρθ1+ρwh+ργt,h+hf, (2.48) ργt,h: tργ≤Chu2+tp2, 1/22γ2 hKρ0,K≤Chu1+p1, K∈Ch ργt,h (2.49)(2.50)(2.51) ≤Chu2+p1+tp2. 636 26 1 L2- Ph:η∈Θh→Phη∈Qh ∀s∈S(K),∀K∈Ch. (Phη,s)0,K=(η,s)0,K, (2.19) (2.52) (θh,wh)∈Θh×Wh a(θh,η)+ K∈Ch −1 (t2+h2(hwh−Phθh,hv−Phη)0,K=(f,v),K) ∀(η,v)∈Θh×Wh, (2.53) −1 γh|=(t2+h2(hwh−Phθh),K) K ∀K∈Ch.(2.54) 2 [15] : (2.55) θ−θh+w−wh≤Ch2f. 1BrezziF,FortinM.MixedandHybridFiniteElementMethods.???:Springer-Verlag,19912BrezziF,FortinM,StenbergR.ErrorAnalysisofMixedInterpolatedElementsforReissner-MindlinPlates.M3ASMath.Model.MethodsAppl.Sci.,1991,1:125–151 3ArnoldDN,FalkRS.AsymptoticAnalysisoftheBoundaryLayerfortheReissner-MindlinPlateModel.SIAMJ.Math.Anal.,1996,27:486–514 4ArnoldDN,FalkRS.TheBoundaryLayerfortheReissner-MindlinPlateModel.SIAMJ.Math. Anal.,1990,21:281–3125ArnoldDN,FalkRS.AUniformlyAccurateFiniteElementMethodfortheReissner-MindlinPlate.SIAMJ.Numer.Anal.,1989,26:1276–12906FrancaLP,StenbergR.AModificationofaLow-orderReissner-MindlinPlateProblem.IntheMathematicsofFiniteElementsandApplications,VII,MAFELAP,J.R.Witheman,ed.,Academic Press,London,1991,425–435 7LovadinaC.AnalysisofaMixedFiniteElementmethodfortheReissner-MindlinPlateProblem.Comput.MethodsAppl.Mech.Engrg.,1998,163:71–858ArnoldDN,FalkRS.AnalysisofaLinear-linearFiniteElementfortheReissner-MindlinPlateModel.M3ASMath.Model.MethodsAppl.Sci.,1997,7:217–2389ChapelleD,StenbergR.AnOptimalLow-orderLockingFreeFiniteElementMethodforReissner-MindlinPlates.M3ASMath.Model.MethodsAppl.Sci.,1998,8:407–430 10Xiu-ye.ARectangularElementfortheReissner-MindlinPlate.NumericalMethodsforPDE,2000, 16:184–192 11RannacherR,TurekS.SimpleNonconformingQuadrilateralStokesElement. forPDE,1992,8:97–111 12GiraultV,RaviartP.-A.FiniteElementMethodsforNavier-StokesEquations,TheoryandAlgorithms. Berlin:Springer-Verlag,1986 13CiarletPG.TheFiniteElementMethodforEllipticProblems.Amsterdam:North-Holland,197814CrouzeixM,RaviartP.-A.ConformingandNonconformingFiniteElementMethodsforSolvingthe StationaryStokesEquations.RAIRONumer.Anal.,1973,7:33–7615 NumericalMethods 2002 3 4 Reissner-Mindlin 637 16Cl´ementP.ApproximationbyFiniteElementUsingLocalRegularization.RAIROAnal.Numer., 1975,8:77–84 ANIMPROVEDREISSNER-MINDLIN RECTANGULARNONCONFORMINGELEMENT DUANHuoyuan CHENXing (AcademyofMathematicsandSystemSciences,ChineseAcademyofSciences,Beijing100080) LIShaoyou (DepartmentofAppliedMathematics,XiangtanUniversity,Xiangtan420002) LIANGGuoping (FeijianCorporation,Beijing100080) AbstractFortheReissner-Mindlinplateproblem,animprovedrectangularnonconform-ingmixedfiniteelementmethodisanalyzed.Conformingbilinearelementisusedfortherotation,andnonconformingrotatedQrotforthetransversedisplacement,andconstantele-1 mentenrichedbygivenfunctionsisusedfortheshearstress.Itisshownthatthismethodhasauniformstabilityandauniformoptimalerrorbound,withrespecttotheplate-thickness.KeywordsReissner-Mindlinplate,mixedfiniteelementmethod 因篇幅问题不能全部显示,请点此查看更多更全内容