搜索
您的当前位置:首页正文

A review of climate change, mitigation and adaptation

来源:筏尚旅游网
RenewableandSustainableEnergyReviews16 (2012) 878–897

ContentslistsavailableatSciVerseScienceDirect

RenewableandSustainableEnergyReviews

journalhomepage:www.elsevier.com/locate/rser

Areviewofclimatechange,mitigationandadaptation

S.VijayaVenkataRamana,S.Iniyanb,∗,RankoGoicc

a

DepartmentofMechanicalEngineering,CollegeofEngineering,AnnaUniversity,Chennai,IndiaInstituteforEnergyStudies,AnnaUniversity,Chennai,Indiac

DepartmentofElectricalEngineering,MechanicalEngineeringandNavalArchitecture,UniversityofSplit,Split,Croatia

b

article

info

abstract

Articlehistory:

Received13December2010

Receivedinrevisedform19August2011Accepted7September2011

Available online 29 October 2011

Keywords:

ClimatechangeGlobalwarming

MitigationandadaptationCarbonsequestration

CleandevelopmentmechanismEmissiontradingPolicies

Globalclimatechangeisachangeinthelong-termweatherpatternsthatcharacterizetheregionsoftheworld.Scientistsstateunequivocallythattheearthiswarming.Naturalclimatevariabilityalonecannotexplainthistrend.Humanactivities,especiallytheburningofcoalandoil,havewarmedtheearthbydramaticallyincreasingtheconcentrationsofheat-trappinggasesintheatmosphere.Themoreofthesegaseshumansputintotheatmosphere,themoretheearthwillwarminthedecadesandcenturiesahead.Theimpactsofwarmingcanalreadybeobservedinmanyplaces,fromrisingsealevelstomeltingsnowandicetochangingweatherpatterns.Climatechangeisalreadyaffectingecosystems,freshwatersupplies,andhumanhealth.Althoughclimatechangecannotbeavoidedentirely,themostsevereimpactsofclimatechangecanbeavoidedbysubstantiallyreducingtheamountofheat-trappinggasesreleasedintotheatmosphere.However,thetimeavailableforbeginningseriousactiontoavoidsevereglobalconsequencesisgrowingshort.Thispaperreviewsassessingofsuchclimatechangeimpactsonvariouscomponentsoftheecosystemsuchasair,water,plants,animalsandhumanbeings,withspecialemphasisoneconomy.Themostdauntingproblemofglobalwarmingisalsodiscussed.Thispaper,furtherreviewsthemitigationmeasures,withaspecialfocusoncarbonsequestrationandcleandevelopmentmechanism(CDM).Theimportanceofsynergybetweenclimatechangemitigationandadaptationhasbeendiscussed.Anoverviewoftherelationshipbetweeneconomyandemissions,includingCarbonTaxandEmissionTradingandthepoliciesarealsopresented.

© 2011 Elsevier Ltd. All rights reserved.

Contents1.2.

3.

4.

5.

Introduction..........................................................................................................................................Assessingtheimpactsofclimatechange............................................................................................................2.1.Air,water,plantsandanimals................................................................................................................2.2.Economy......................................................................................................................................2.3.Agriculture....................................................................................................................................2.4.Health.........................................................................................................................................Globalwarming......................................................................................................................................3.1.Globalwarmingpotential....................................................................................................................3.2.Economy......................................................................................................................................Mitigation............................................................................................................................................4.1.Economyofmitigation.......................................................................................................................Carbonsequestration................................................................................................................................5.1.Oceanandgeologicalsequestration..........................................................................................................5.2.Agriculturalsoils.............................................................................................................................5.3.Soilorganiccarbon(SOC)....................................................................................................................5.4.Forests........................................................................................................................................

5.4.1.Afforestation........................................................................................................................

5.5.Miscellaneous................................................................................................................................

879

881882882883884884884884885885886886887887888888888

∗Correspondingauthor.Tel.:+914422531070;fax:+914422353637.E-mailaddress:iniyan777@hotmail.com(S.Iniyan).

1364-0321/$–seefrontmatter© 2011 Elsevier Ltd. All rights reserved.doi:10.1016/j.rser.2011.09.009

S.VijayaVenkataRamanetal./RenewableandSustainableEnergyReviews16 (2012) 878–897

879

5.6.Interrelationshipwithbiodiversityandsustainabledevelopment..........................................................................5.7.Economicaspects.............................................................................................................................6.Cleandevelopmentmechanism.....................................................................................................................

6.1.CDM-AR.......................................................................................................................................7.Mitigationandadaptation...........................................................................................................................8.Economyandemissions.............................................................................................................................

8.1.Carbontax....................................................................................................................................8.2.Emissiontrading..............................................................................................................................9.Policies...............................................................................................................................................

9.1.Influenceofscienceandtechnology.........................................................................................................9.2.Influenceofsustainabledevelopment.......................................................................................................10.Conclusion..........................................................................................................................................

References...........................................................................................................................................

888889889890890890891891891893893893894

1.Introduction

Climatechangereferstoastatisticallysignificantvariationineitherthemeanstateoftheclimateorinitsvariability,persist-ingforanextendedperiod(typicallydecadesorlonger).Climatechangemaybeduetonaturalinternalprocessesorexternalforc-ing,ortopersistentanthropogenicchangesinthecompositionoftheatmosphereorinland-use.Climatechangehaslong-sinceceasedtobeascientificcuriosity,andisnolongerjustoneofmanyenvironmentalandregulatoryconcerns.

EversincetheIndustrialRevolutionbeganabout150yearsago,man-madeactivitieshaveaddedsignificantquantitiesofgreenhousegases(GHGs)totheatmosphere.AcordingtotheThirdAssessmentReportonclimatechange2001oftheIntergovermentalPanelonclimatechange,theatmosphericconcentrationsofcar-bondioxide,methane,andnitrousoxidehavegrownbyabout31%,151%and17%,respectively,between1750and2000.AnincreaseinthelevelsofGHGscouldleadtogreaterwarming,which,inturn,couldhaveanimpactontheworld’sclimate,leadingtothephenomenonknownasclimatechange.Indeed,scientistshaveobservedthatoverthe20thcentury,themeanglobalsurfacetem-peratureincreasedby0.6◦C.Theyalsoobservedthatsince1860(theyeartemperaturebegantoberecordedsystematicallyusingathermometer),the1990shavebeenthewarmestdecade.Itisagrowingcrisiswitheconomic,healthandsafety,foodproduc-tion,security,andotherdimensions.Shiftingweatherpatterns,forexample,threatenfoodproductionthroughincreasedunpre-dictabilityofprecipitation,risingsealevelscontaminatecoastalfreshwaterreservesandincreasetheriskofcatastrophicflood-ing,andawarmingatmosphereaidsthepole-wardspreadofpestsanddiseasesoncelimitedtothetropics.Thenewstodateisbadandgettingworse.Ice-lossfromglaciersandicesheetshascontinued,leading,forexample,tothesecondstraightyearwithanice-freepassagethroughCanada’sArcticislands,andacceleratingratesofice-lossfromicesheetsinGreenlandandAntarctica.Combinedwiththermalexpansion–warmwateroccu-piesmorevolumethancold–themeltingoficesheetsandglaciersaroundtheworldiscontributingtoratesandanultimateextentofsea-levelrisethatcouldfaroutstripthoseanticipatedinthemostrecentglobalscientificassessment.Thereisalarm-ingevidencethatimportanttippingpoints,leadingtoirreversiblechangesinmajorecosystemsandtheplanetaryclimatesystem,mayalreadyhavebeenreachedorpassed.EcosystemsasdiverseastheAmazonrainforestandtheArctictundra,forexample,maybeapproachingthresholdsofdramaticchangethroughwarm-inganddrying.Mountainglaciersareinalarmingretreatandthedownstreameffectsofreducedwatersupplyinthedriestmonthswillhaverepercussionsthattranscendgenerations.Climatefeed-backsystemsandenvironmentalcumulativeeffectsarebuildingacrossEarthsystemsdemonstratingbehaviorswhichcannotbeanticipated.

TheEarth’sclimatehaschangedthroughouthistory.Justinthelast650,000yearstherehavebeensevencyclesofglacialadvanceandretreat,withtheabruptendofthelasticeageabout7000yearsagomarkingthebeginningofthemodernclimateera–andofhumancivilization.MostoftheseclimatechangesareattributedtoverysmallvariationsinEarth’sorbitthatchangetheamountofsolarenergyourplanetreceives.

Theevidenceforrapidclimatechange(IPCCFourthAssessmentReport)iscompelling:

(1)Sea-levelrise:Globalsea-levelroseabout17cm(6.7in.)inthe

lastcentury.Therateinthelastdecade,however,isnearlydoublethatofthelastcentury.

(2)Globaltemperaturerise:Mostofthiswarminghasoccurred

sincethe1970s,withthe20warmestyearshavingoccurredsince1981andwithall10ofthewarmestyearsoccurringinthepast12years.

(3)Warmingoceans:Theoceanshaveabsorbedmuchofthis

increasedheat,withthetop700m(about2300ft.)ofoceanshowingwarmingof0.302◦Fahrenheitsince1969.

(4)Shrinkingicesheets:TheGreenlandandAntarcticicesheets

havedecreasedinmass.DatafromNASA’sGravityRecoveryandClimateExperimentshowGreenlandlost150–250km3(36–60cubicmiles)oficeperyearbetween2002and2006,whileAntarcticalostabout152km3(36cubicmiles)oficebetween2002and2005.

(5)DecliningArcticseaice:BoththeextentandthicknessofArctic

seaicehasdeclinedrapidlyoverthelastseveraldecades.

(6)Glacialretreat:Glaciersareretreatingalmosteverywhere

aroundtheworld–includingintheAlps,Himalayas,Andes,Rockies,AlaskaandAfrica.

(7)Oceanacidification:SincethebeginningoftheIndustrialRev-olution,theacidityofsurfaceoceanwatershasincreasedbyabout30%.Theamountofcarbondioxideabsorbedbytheupperlayeroftheoceansisincreasingbyabout2billiontonsperyear.

TheincreasingtrendofCO2emissions,ArcticseaIce,CO2con-centration,sealevelandglobalsurfacetemperatureisshowninFigs.1–5respectively.

SeptemberArcticiceisnowdecliningatarateof11.5%perdecade.ArcticseaicereachesitsminimuminSeptember.TheSeptember2010extentwasthethirdlowestinthesatelliterecord.TherearelotsofinitiativestakenbydifferentcountriesandorganizationslikeUnitedNationsFrameworkConventiononCli-mateChange(UNFCCC),UnitedNationsEnvironmentProgramme(UNEP)andIntergovermentalPanelonClimateChange(IPCC),inmitigatingandadaptingtotheglobalclimatechange.Themostimportantmitigationmeasuresincludecarbonsequestration,cleandevelopmentmechanism,jointimplementationandmost

880S.VijayaVenkataRamanetal./RenewableandSustainableEnergyReviews16 (2012) 878–897

Fig.1.CO2(ppm)trendoveryears.

Source:NASAsatellitedata.

Fig.2.Arcticsea-icelevel.

Source:NASAsatelliteobservations.

Fig.3.Carbondioxideconcentrationlevel.

Source:NASAsatelliteobservations.

S.VijayaVenkataRamanetal./RenewableandSustainableEnergyReviews16 (2012) 878–897

881

Fig.4.Sealevel.

Source:NASAsatelliteobservations.

Fig.5.Globaltemperaturevariation.

Source:NASAsatelliteobservations.

importantlyuseofrenewableandnon-pollutingsourcesofenergylikesolar,windandgeothermalenergysources.

2.Assessingtheimpactsofclimatechange

Theever-increasingemissionsofgreenhousegasesfromvarioussourceshasledtocatastrophicclimatechangesincludingthewellpronounced‘globalwarming’.SergePlantonetal.givesanoverviewoftheexpectedchangeofclimateextremesduringthiscenturyduetogreenhousegasesandaerosolanthropogenicemissionslikedecreasingnumberofdaysoffrost,increasinggrowingseasonlength,trendsfordroughtdurationandchangeofwind-relatedextremes[1].Thedramaticchangethatthearctichasundergoneduringthepastdecadeincludingatmosphericsea-levelpressure,windfields,sea-icedrift,icecover,lengthofmeltseason,changeinprecipitationpatterns,changeinhydrology,changeinoceancur-rentsandwatermassdistributionwerestudiedbyMacdonaldetal.[2].Thenear-surfacethermalregimeinpermafrostregionscouldchangesignificantlyinresponsetoanthropogenicclimatewarm-ing[3].AscenarioofchainoftransitionsinthesolarconvectivezonewassuggestedbyBershadskii,inordertoexplaintheobser-vationsofincreaseinsunspotsnumberandaforecastforglobal

warmingwasalsosuggestedonthebasisofthisscenario[4].With15casestudiesinthecatchmentsofUK,NigelW.Arnellfoundthattheeffectsofclimatechangeonaverageannualrunoffdependontheratioofaverageannualrunofftoaverageannualrainfall,withthegreatestsensitivityinthedriestcatchmentswithlowestrunoffcoefficients[5].HirstexaminedtheresponseoftheSouthernoceantoglobalwarming,foratransientgreenhousegasintegra-tionusingtheCommonwealthScientificandIndustrialResearchOrganisation(CSIRO)coupledocean–atmospheremodel[6].GlobalwarmingcausedbyenhancedgreenhouseeffectislikelytohavesignificanteffectsonthehydrologyandwaterresourcesoftheGBM(Ganges,Brahmaputra,Meghna)basinsandmightultimatelyleadtomoreseriousfloodsinBangladesh,India[7].MohammedFazlulKarimandNobuoMimurausedacalibratednumericalhydrody-namicmodeltostimulatesurgewavepropagationthroughtheriversandoverlandflooding,todescribetheimpactsofclimatechangenamelytheseasurfacetemperatureandsea-levelriseoncyclonicstormsurgefloodinginwesternBangladesh,India[8].TheAsianPacificIntegratedModel(AIM)isalarge-scalemodelforsce-narioanalysesofgreenhousegasemissionsandtheimpactsofglobalwarmingintheAsianPacificregion.YuzuruMatsuokaetal.categorizedthescenariosthathavebeenwrittensofarinrelationto

882S.VijayaVenkataRamanetal./RenewableandSustainableEnergyReviews16 (2012) 878–897

globalwarmingandthen,givenfixedinputs,simulatestheeffectsofglobalwarmingtakingintoaccountvariousuncertaintiesusingAIM[9].vanMinnenetal.presentedanewmethodologycalledthe“criticalclimatechange”approachforevaluatingthepoliciesforreducingclimatechangeimpactsonnaturalecosystems[10].

2.1.Air,water,plantsandanimals

Thefutureevolutionoftheconcentrationofnear-surfacepol-lutantsdeterminingairqualityatascaleaffectinghumanhealthandecosystemsisasubjectofintensescientificresearch.RobertVautardandDidierHauglustaine,basedonthisthematicissue,reviewedthecurrentscientificknowledgeoftheconsequencesofglobalclimatechangeonregionalairqualityanditsrelatedimpactonthebiosphereandonhumanmortality.Thechangesintheglobalatmosphericcomposition,changesintheregionalairqualityandtheorganizationofthethematicissueofnear-surfacepollutantsthatdeterminestheairquality[11].Mooijetal.hypothesizedthatclimatewarmingandclimate-inducedeutroph-icationwillincreasethedominanceofcyanobacteriaandclimatechangewillalsoaffectshallowlakesthroughachanginghydrol-ogyandthroughclimatechange-inducedeutrophication,usingtwomodelsnamelythefullecosystemmodelPCLakeandamin-imaldynamicmodeloflakephosphorusdynamics[12].Delplaetal.explainedtheclimatechangeimpactsonwaterqualitybyreviewingthemostrecentinterdisciplinaryliteratureandcon-cludedthatadegradationtrendofdrinkingwaterqualityinthecontextofclimatechangeleadstoanincreaseofatrisksitua-tionsrelatedtopotentialhealthimpact[13].Wrightetal.usedtheMAGICmodeltoevaluatetherelativesensitivityofseveralpos-sibleclimate-inducedeffectsontherecoveryofsoilandsurfacewaterfromacidificationandsuggeststhatthefuturemodelingofrecoveryfromacidificationshouldtakeintoaccountpossiblecli-matechangesandfocusespeciallyontheclimate-inducedchangesinorganicacidsandnitrogenretention[14].Asimplemethodol-ogyforassessingthesalinationriskforanywatermanagementsituationandunderglobalwarmingconditionswaspresentedbyAngelUtsetandMatildeBorroto,wherethephysicallybasedSWAP(Soil–Water–Atmosphere–Plantenvironment)modelwasusedtopredictfuturewatertabledepthsafterirrigationbeginsandunderglobalwarmingconditions[15].Estimatingtheimpactsofclimatechangeongroundwaterrepresentsoneofthemostdifficultchal-lengesfacedbythewaterresourcespecialists.PascalGoderniauxetal.providedanimprovedmethodologyfortheestimationoftheimpactsofclimatechangeongroundwaterreserves,whereaphys-icallybasedsurface–subsurfaceflowiscombinedwithadvancedclimatechangescenariosfortheGeerbasin,Belgiumusingfiniteelementmodel‘HydroGeoSphere’[16].Thechangeinclimateislikelytohaveaprofoundeffectonhydrologicalcycleviz.precip-itation,evapotranspirationandsoilmoisture,evapotranspiration(ET)beingthemajorcomponentofhydrologicalcyclewillaffectcropwaterrequirementandfutureplanningandmanagementofwaterresources.AnattempthasbeenmadebyGoyaltostudythesensitivityofETtoglobalwarmingforaridregionsofRajasthan,India.WeeklyreferenceevapotranspirationwascalculatedusingthePenman–Monteithmethodandthestudyrevealedthatevenassmallas1%increaseintemperaturefrombasedatacouldresultinanincreaseinevapotranspirationby15mm,whichmeansanaddi-tionalwaterrequirementof34.275mcmforJodhpurdistrictaloneand313.12mcmforwholearidzoneofRajasthan.Theincreasedevapotranspirationdemandduetoglobalwarmingcanputtremen-douspressureonexistingoverstressedwaterresourcesofthisregionandsincethisregionisdevoidofanyperennialriversystem,anyincreaseinwaterdemandrequirescarefulplanningforfuturewaterresourcedevelopmentinthisregion.Thestudyprovidedacontemporaryviewonfuturewaterrequirementofthisregionin

contextofglobalwarming[17].WiththeglobalclimatechangedataprovidedbytheIPCCfromthefirstversionoftheCanadianGlobalCoupledModel(CGCMI),GISbasedEPICisrunbyGuoxinTanandRyosukeShibasaki,forscenariosoffutureclimateintheyearof2010,2020,2030,2040and2050topredicttheeffectsofglobalwarmingonmaincropyieldsandtheresultsshowedthattheglobalwarmingwillbeharmfulformostofthecountriesandanefficientadaptationtoalternativeclimatestendstoreducethedamages[18].Goudieoutlinedthatfutureglobalwarminghasanumberofimplicationsfor‘fluvialgeomorphology’becauseofchangesinsuchphenomenaasratesofevapotranspiration,precip-itationcharacteristics,plantdistributions,plantstomatalclosure,sealevels,glacierandpermafrostmeltingandhumanresponses[19].Savingtropicalforestsasaglobalwarmingcounter–mea-surehasbecomeoneoftheenvironment’smostdivisiveissues,accordingtoFearnside[20].TheimpactsofGHGemissionsonfor-estecosystemshavebeentraditionallytreatedseparatelyforairpollutionandclimatechange.AndrzejBytnerowiczetal.reviewedthelinksbetweenairpollutionandclimatechangeandtheirinter-activeeffectsonnorthernhemisphereforests[21].Rangelimitsofmanyplantspeciesareexpectedtoshiftdramaticallyifclimatewarming,drivenbythereleaseofGHG,occursinthenextcentury.SimulationmodelsarepresentedbyDyer,whichincorporatetwofactors,land-usepatternandmeansofdispersal,toassesspoten-tialresponsesofforestspeciestoclimatewarming[22].Wildlifemanagersfacethedauntingtaskofmanagingwildlifeinlightofuncertaintyaboutthenatureandextentoffutureclimatechangeandvariabilityanditspotentialadverseimpactsonwildlife.TonyPratodevelopedaconceptualframeworktomanagewildlifeundersuchuncertainty,whichusesafuzzylogictotesthypothesesabouttheextentofthewildlifeimpactsofpastclimatechangeandvari-abilityandfuzzymultipleattributeevaluationtodeterminebestcompensatorymanagementactionsforadaptivelymanagingthepotentialadverseimpactsoffutureclimatechangeandvariabilityonwildlife[23].

2.2.Economy

TheimpactsofGHGemissionsandtheresultingclimatechangehaveaseriousimpactontheglobaleconomy.TheFuturesofGlobalInterdependence(FUGI)globalmodelingsystemhasbeendevelopedasascientificpolicysimulationtoolofprovidingglobalinformationtothehumansocietyandfindingoutpossibilitiesofpolicycoordinationamongcountriesinordertoachievesustain-abledevelopmentoftheglobaleconomyundertheconstraintsofrapidlychangingglobalenvironment.TheFUGIglobalmodelM200classifiestheworldinto200countries/regionswhereeachnational/regionalmodelisgloballyinterdependentthroughoilprices,energyrequirements,internationaltrade,export/importprices,financialflows,ODA,privateforeigndirectinvestment,exchangerates,stockmarketpricesandglobalpolicycoordination,etc.AkiraOnishistudiedthefuturesofglobaleconomyundertheconstraintsofenergyrequirementsandCO2emissionsupto2020aswellasstrategyforsustainabledevelopmentoftheinterdepen-dentglobaleconomy.InordertocutbackglobalCO2emissions,itisnecessarytoconfrontdilemmaofsustainabledevelopmentoftheglobaleconomy.Asurprisingproposalmadebylimitstogrowth(1972)iszerogrowthoftheglobaleconomy.Iftheglobaleconomywillconfrontwithzerogrowth,itseemslikelytoinduceglobalcrisessuchasGreatDepressionin1930s.ZerogrowthmaycutbackCO2emissionsbutcouldnotsolvetrade-offbetweenenvironmentissuesanddesirabledevelopmentoftheglobaleconomy.

AlternativesimulationbyFGMS(FUGIglobalmodelingsystem)revealedthatcutbacksofglobalCO2emissionsshouldbepre-requisiteagainstglobalwarming.InordertocutbackglobalCO2emissions,itshouldbeneededforinternationalco-operationand

S.VijayaVenkataRamanetal./RenewableandSustainableEnergyReviews16 (2012) 878–897

883

co-ordinationofdevelopmentstrategy.EvenifEUandJapanwillco-operateandco-ordinatethepoliciestowardcutbackofCO2emissionsbytechnologyinnovationsfordevelopingalternativeenergyandenergysavings,itcouldnotachievetheglobaltargetswithoutco-operationwiththemajorCO2emissionnationssuchasUS,China,RussianFederation.InordertodecreaseglobalCO2emis-sions,thedevelopingcountriesshouldjoinasagroupandshouldpromoteofficialdevelopmentassistance(ODA),inparticular,tech-nicalco-operationtothedevelopingcountries.Technologytransferfromtheadvancedtodevelopingcountriesarepre-requisiteforachievingthetargetofcutbackglobalCO2emissions.AdvancedeconomiesshouldmakeutmosteffortstoincreaseR&Daswellasinvestmentsforalternativeenergyandenergysavings.TheFUGIglobalmodelsimulationsaffirmedthatnotonlyincreasedR&DtogetherwithinvestmentswillincreaseratesofdevelopmentofglobaleconomybutalsodecreaseglobalCO2emissions[24].Evi-denceoftheimpactsofanthropogenicclimatechangeonmarineecosystemsisaccumulating,butmustbeevaluatedinthecontextofthe“normal”climatecyclesandvariabilitywhichhavecausedfluctuationsinfisheriesthroughouthumanhistory.Theimpactsonfisheriesareduetoavarietyofdirectandindirecteffectsofanumberofphysicalandchemicalfactors,whichincludetem-perature,winds,verticalmixing,salinity,oxygen,pHandothers.Thedirecteffectsactonthephysiology,developmentrates,repro-duction,behaviorandsurvivalofindividuals.Indirecteffectsactviaecosystemprocessesandchangesintheproductionoffoodorabundanceofcompetitors,predatorsandpathogens.KeithBran-derreviewedtherecentstudiesoftheeffectsofclimateonprimaryproductionandevaluatedtheconsequencesforfisheriesproduc-tionthroughregionalexamplesnamelyNorthAtlantic,TropicalPacificAntarticandLakeTanganyika.RegionalexamplesnamelyNorthSea,BalticandNorthAtlanticarealsousedtoshowchangesindistributionandphenologyofplanktonandfish,whichareattributedtoclimate.Theroleofdiscontinuousandextremeevents(regimeshifts,exceptionalwarmperiods)wasalsodiscussed[25].Harleetal.madeastudyontheimplicationsofclimatechangeontheAustralianwoolindustry,principallythroughonforageandwaterresources,landcarryingcapacityandsustainability,animalhealthandcompetitionwithothersectors,particularlycropping[26].MariaBerrittellaetal.studiedtheeconomicimplicationsofclimatechange-inducedvariationsintourismdemand,usingaworldComputableGeneralEquilibrium(CGE)model.Themodelwasfirstre-calibratedatsomefutureyears,obtaininghypotheti-calbenchmarkequilibria,whichweresubsequentlyperturbedbyshocks,simulatingtheeffectsofclimatechange.Theimpactofcli-matechangeontourismwasportrayedinthisstudybymeansoftwosetsofshocks,occurringsimultaneously.Thefirstsetofshockstranslatespredictedvariationsintouristflowsintochangesofconsumptionpreferencesfordomesticallyproducedgoods.Thesecondsetreallocateincomeacrossworldregions,simulatingtheeffectofhigherorlowertourists’expenditure.Theanalysishigh-lightsthatvariationsintouristflowswillaffectregionaleconomiesinawaythatisdirectlyrelatedtothesignandmagnitudeofflowvariations.Ataglobalscale,climatechangewillultimatelyleadtoawelfareloss,unevenlyspreadacrossregions.Despitethecruderesolutionoftheanalysismade,whichhidesmanyclimatechange-inducedshiftsintouristdestinationchoices,itwasfoundthatclimatechangemayaffectGDPby−0.3–0.5%in2050.Eco-nomicimpactestimatesofclimatechangearegenerallyintheorderof−1–2%ofGDPforawarmingassociatedwithadou-blingoftheatmosphericconcentrationofcarbondioxide,whichistypicallyputatalaterdatethan2050.Asthesestudiesexcludetourism,thisimpliesthatregionaleconomicimpactsmayhavebeenunderestimatedbymorethan20%.Thestudyindicatesthattheglobaleconomicimpactofaclimatechange-inducedchangeintourismisquitesmall,andapproximatelyzeroin2010,butin2050,

climatechangewillultimatelyleadtoanon-negligiblegloballoss[27].SusanneBeckenanalyzedtheadaptationtoclimatechangebytouristresortsinFiji,aswellastheirpotentialtoreduceclimatechangethroughreductionsinCO2emissions[28].KoetseandPietRietveldpresentedasurveyofempiricalliteratureontheeffectsofclimatechangeonthetransportsectorandthenetimpactongeneralizedcostsandeconomyofvarioustransportmodesaredis-cussed[29].RaduZmeureanuandGuillaumeRenaudpresentedamethodfortheestimationofclimatechangeontheeconomyoftheheatingenergyuseofexistinghouses[30].

2.3.Agriculture

RobertMendelsohnexaminedthelikelyimpactonagricultureoftheclimatechangewhichhasalreadytakenplacebetween1960and2000,whentheglobaltemperaturerisewas0.25◦C,causingtheprecipitationpatternstoshiftandthecross-sectionalandcropsimulationevidence,temperature,precipitationandCO2responsefunctionsareusedtocalculatetheimpactsonagriculture[31].TheimplicationsforagricultureofmitigatingGHGemissionsandbywhenandbyhowmucharetheimpactsreducedwasinves-tigatedbyTubielloaandGuntherFischeraanditwasfoundthatmitigationcouldpositivelyimpactagriculture[32].BernardTin-keretal.addressedthequestionsoftowhatextentslashandburnofagricultureisresponsibleandhowlandconversionofthistypewillaffecttheclimatesystem,includingitsimpactonlocalandregionalhydrology[33].Rivingtonetal.arguedthatanIntegratedAssessment(IA)approach,combiningsimulationmod-elingwithdeliberativeprocessinvolvingdecisionmakersandotherstakeholders,hasthepotentialtogeneratecredibleandrelevantassessmentsofclimatechangeimpactsonfarmingsystems[34].Chakrabortyetal.foundthat,despitethesignificanceofweatheronplantdiseases,comprehensiveanalysisofhowclimatechangewillinfluenceplantdiseasesthatimpactprimaryproductioninagricul-turalsystemsispresentlyunavailableandimprovementstoassessdiseaseimpactsismandatory[35].TrudieDockertyetal.exploredthepossibilityofinterpretingclimatechangeimpactsinformationofagriculturallandscapeinNorfolkthroughGISbasedvisualiza-tions[36].Guntheretal.investigatedthepotentialchangesinglobalandregionalagriculturalwaterdemandwithinanewsocio-economicscenario,A2r,developedattheInternationalInstituteforAppliedSystemAnalysis(IIAS)withandwithoutclimatechange,withandwithoutmitigationofGHGemissions[37].Despitetheimportanceoflivestocktopoorpeopleandthemagnitudeofthechangesthatarelikelytobefalllivestocksystems,theintersec-tionofclimatechangeandlivestockindevelopingcountriesisarelativelyneglectedresearcharea.Littleisknownabouttheinterac-tionsofclimateandincreasingclimatevariabilitywithotherdriversofchangeinlivestocksystemsandinbroaderdevelopmenttrends.Inmanyplacesinthetropicsandsubtropics,livestocksystemsarechangingrapidly,andthespatialheterogeneityofhouseholdresponsetochangemaybeverylarge.Thorntonetal.brieflyreviewedtheliteratureonclimatechangeimpactsonlivestockandlivestocksystemsindevelopingcountries.Theimpactofclimatechangeonlivestockintermsofquantityandqualityoffeeds,heatstress,water,livestockdiseasesandvectors,biodiversityandsys-temsandlivelihoodswerestudied.Forinstance,whiletheresponseoflivestocktoknownincreasesintemperatureispredictable,intermsofincreaseddemandforwater,attemptstoquantifytheimpactsofclimatechangeonwaterresourcesintheland-basedlivestocksystemsindevelopingcountriesarefraughtwithuncer-tainty,particularlyinsituationswheregroundwateraccountsforasubstantialportionofthesupplyofwatertolivestock,whichisthecaseinmanygrazingsystems.Inadditiontothedirectimpactsofachangingclimateonmanyaspectsoflivestockandlivestocksystems,therearevariousindirectimpactsthatcanbeexpectedto

884S.VijayaVenkataRamanetal./RenewableandSustainableEnergyReviews16 (2012) 878–897

impingeonlivestockkeepersindevelopingcountries.Oneofthemostsignificantoftheseistheimpactonhumanhealth.Aswithlivestockdiseases,thechangeswroughtbyclimatechangeoninfec-tiousdiseaseburdensmaybeextremelycomplex,whichwasalsostudiedbriefly[38].

2.4.Health

Thepotentialimpactsofclimatechangeonhumanhealtharesignificant,rangingfromdirecteffectssuchasheatstressandflood-ing,toindirectinfluencesincludingchangesindiseasetransmissionandmalnutritioninresponsetoincreasecompetitionforcropandwaterresources.Huntingfordetal.addressedthisissuebyargu-ingthatclosercollaborationbetweentheclimatemodelingandhealthcommunitiesisrequiredandtheclimate–healthmodelsim-ulationswillprovidetheneededestimatesofthelikelyimpactsofclimatechangeonhumanhealth[39].KhasnisandNettlemanstud-iedthatglobalwarmingwillcausechangesintheepidemiologyofinfectiousdiseasesandthevector-bornediseaseswillbecomemorecommonastheearthwarms[40].Theeconomicimpactsofclimatechange-inducedchangeinhumanhealth,viz.cardiovascu-larandrespiratorydisorders,diarrhea,malaria,denguefeverandschistosomiasiswerestudiedbyFrancescoBoselloetal.[41].Theglobalincreaseinsurfacetemperature(globalwarming)wasfoundtoimpactonmortalitythroughillhealth,particularlyamongtheelderly,insummerandPretietal.exploredtheimpactofglobalwarmingonsuicidemortality,usingthedatafromItaly[42].

3.Globalwarming

Globalwarmingisaprobleminwhichthecombustionofcoal,oilandotherfossilfuelscausestheatmosphericconcentrationsofGHGssuchascarbondioxide,toincrease.Thisresultsinmountingglobalairtemperaturesthatleadtoclimatechange.Specifically,globalwarmingwillcauseariseinsealevels,changesintherainfallpatternsandotherproblems.

Thereareconcernsthattherapiddevelopmentofthedevelop-ingcountrieswillhastenglobalwarmingandexacerbateresourceproblems.ButYasuhiroMurotaandKokichiItoattemptedtoshowthat,onthecontrary,thefastdevelopmentofthesecountriesmightverywellbringaboutalong-termsolutionoftheglobalwarmingproblem[43].DuttaandRoymodeledtheglobalwarmingprocessasadynamiccommonsgameinwhichtheplayersarecountries,theiractionsateachdateproduceemissionsofGHGsandthestatevariableisthecurrentstockofGHGsandacompletetheoreti-calcharacterizationisprovidedforthebestequilibriumanditisshownthatithasaverysimplestructure,involvingaconstantemissionratethroughtime[44].AlessioAlexiadisusedthecon-troltheorytostudytheconnectionbetweenhumanactivitiesandglobalwarming.AfeedbackmechanismisproposedandtestedagainsttemperatureandCO2concentrationhistoricaldata,consid-eringfourscenariosandtheresultsshowedthateveninthecaseofdramaticreductionoftheanthropogenicCO2emission,thetemper-aturewillnotdecreaseforacertaintimeandalthoughthesystematthemomentisstable,itisveryclosetobecomingunstablewithunpredictableconsequencesonclimatechange[45].Honjorecom-mendedthatinadditiontoenergyrelatedR&D,alsoimportantaretheR&DforCO2absorptionandfixationforfundamentalsolutiontoglobalwarming[46].EvaluationmethodsofglobalwarmingarepresentedbyAkiraSekiya,consideringthedirectwarmingeffectofchemicalcompoundsandofdecomposedcompounds,warmingeffectduetotheformationoftroposphereozoneandthecoolingeffectduetothedecompositionofstratosphereozone[47].Kumaretal.assessedthemethaneemissioninventoryfrommunicipalsolidwastedisposalsitesandexpressedthatthereisaneedto

studytheever-increasingcontributionofsolidwastetotheglobalGHGeffect[48].

3.1.Globalwarmingpotential

Inordertoquantitativelycomparethegreenhouseeffectofdif-ferentgreenhousegases,aglobalwarmingpotential(GWP)indexhasbeenusedwhichisbasedontheratiooftheradioactiveforcingofanequalemissionoftwodifferentgases,integratedeitherover-alltimeoruptoanarbitrarilydeterminedtimehorizon.TheGWPindexisanalogoustotheOzoneDepletingPotential(ODP)index.AnalternativeGWPindexwasproposedbyDannyHarvey,whichexplicitlytakesintoaccountthedurationofcapitalinvest-mentsintheenergysectorandislesssensitivetouncertaintiesinatmosphericlifespansandradiativeheatingthanusualGWPindexfortimehorizonslongerthanthelifespanofcapitalinvest-mentandtheeffectofthisalternateGWPindexproposedhereisthat,comparedwithpreviousindices,istoshiftattentionawayfromshortlivedgasessuchasmethaneandtowardCO2[49].TheIntergovernmentalPanelonClimateChange(IPCC)usedGWPstostandardizeinputsofdifferentgaseswithdifferingradiativeforc-ingsandatmosphericlifetime.AnalternativeunifiedindexwasproposedbyFearnsidethatassignsexplicitweightstotheinter-estsofdifferentgenerations[50].AsimplemodelwasusedbyKoetal.,toillustratethemethodologyfordeterminingthetimevaria-tionsoftheradiativeforcingandtemperaturechangesattributabletothedirectgreenhouseeffectfrompotentialemissionsofthehalo-carbons,usedextensivelyasanalternatetoCFCs[51].TapscottandDouglasMatherproposedthatincorporationofcertainmolec-ularfeaturesintofluorocarbonscandecreasethetroposphericlifetime,providingcommerciallyapplicablechemicalswithlowglobalwarmingandstratosphericozoneimpacts[52].Drageetal.measuredthehighresolution(0.03/cm)absoluteinfraredphotoabsorptioncross-sectionsofbromotrifluoromethane(CF3Br)andtetrafluoroethylene(C2F4)usingFourier–transformedinfrared(FTIR)spectroscopyattemperaturesbetween213and296Kandthemeasuredcross-sectionsweresubsequentlyusedtoestimatetheradiativeforcingsandtheGWPsofthesetwospecies[53].Tat-suruShirafugietal.preparedlowdielectricconstantfluorinatedamorphouscarbonfilmsfromthelowGWPgasofC5F8byacapaci-tivelycoupledplasmaenhancedchemicalvapordepositionmethod[54].

3.2.Economy

In-TaeJeongaandKun-MoLeeproposedanassessmentmethodforecodesignimprovementoptionsusingglobalwarmingandeco-nomicperformanceindicators,theglobalwarmingperformanceindicatorastheexternalcostwhichconvertstheexternaleffectofglobalwarmingintoamonetaryvalue,inordertomeasuretheperformanceoftheGHGreductionoftheproductandthelifecyclecostoftheproductwaschosenastheeconomicperformanceindicator,withLCDpanelasacasestudy[55].Economicanaly-sesofglobalwarminghavetypicallybeengroundedinthetheoryofeconomicefficiency.WoodwardandBishopdevelopedasimpleeconomicmodelwhichdemonstratedthatanefficienteconomyisnotnecessarilyasustainableeconomyandthenconsideredthepolicyalternativestoaddressglobalwarminginthecontextofeconomieswiththedualobjectivesofefficiencyandsustainability,withparticularattentiontocarbonbasedtaxes[56].AlfredGreinerandWilliSemmlerpresumedasimpleendogenousgrowthmodelwhereglobalwarmingaffectseconomicgrowthandanalyzedthedynamicsofthecompetitiveeconomyandofthesocialoptimum[57].Usingthetopicalissueofglobalwarmingasanillustration,itwasarguedthattheecologicalisationoftheeconomicsdisci-plinechallengesthefoundationsofthestrategythat“continued

S.VijayaVenkataRamanetal./RenewableandSustainableEnergyReviews16 (2012) 878–897

885

relianceonanunreconstructedneo-classicaleconomicmodelforhumanprogressislargelyresponsibleforaneconomicdevelop-mentpathwhichisbothunsustainableandundemocratic”,amongotherbenefits,amoredemocraticglobaleconomicorganization[58].LarryKarpanalyzedthetime-consistentMarkovPerfectequi-libriuminageneralmodelwithastockpollutantandthesolutiontothelinearquadraticspecializationillustratedtheroleofhyperbolicdiscountinginamodelofglobalwarming[59].

4.Mitigation

TheTriptychapproachisamethodforallocatingfutureGHGemissionreductionsamongcountriesunderapost-2012interna-tionalclimatemitigationregimebasedontechnologicalcriteriaatthesectorlevelandaccountingforstructuraldifferences.AnewTriptychapproachwaspresentedbyMicheldenElzenetal.,whichisarefinementofanearlierversionintermsofanincreasedtransparencyandallowingadelayedparticipationfordevelopingcountries[60].Thedoublingofatmosphericmethaneoverthelasttwocenturiesmaycontributetoglobalwarming,enhanceforma-tionoftroposphericozone,suppressOHandaffectstratosphericozonebutthecalculationsdonebyThompsonetal.showedthatstabilizationofCH4couldreduceprojectedtemperatureincreasesandpossiblymitigatebackgroundtroposphericozoneincreasesduetoincreasinglevelsofCH4[61].MicheldenElzenetal.pre-sentedasetoftechnicallyfeasiblemulti-gasemissionpathways(envelopes)forstabilizingGHGconcentrationat450,550and650ppmCO2equivalentandtheirtrade-offsbetweendirectabate-mentcostsandprobabilitiestomeettemperaturetargets[62].TimJacksonpresentedamethodologyforcomparingthecost-effectivenessofdifferenttechnicaloptionsfortheabatementofGHGemissionsandthismethodologyallowsadeterminationoftheextenttowhicheachtechnologycancontributetoabatementbyaspecifieddate[63].KeigoAkimotoetal.developedanintegratedassessmentmodel,DNE21,composedofthreesub-modelsvizanenergysystem,amacroeconomicandaclimatechangemodelandthesimulationresultsindicatedthattheoptimalmitigationstrategyagainstglobalwarmingshouldbecomprehensiveimple-mentationofthevariousoptions,amongwhichenergysavingintheend-usesectorsisimportantthroughoutthe21stcenturyandCO2sequestrationisafterthemiddleofthecentury[64].Preiningconcludedfromhisstudythatclimatemodelingrequiresthefullinclusionofaerosols,takingintoaccounttheannualcarbonemis-sionsofthesame[65].VanVuurenanddeVriesdevelopedtwodifferentmitigationscenariosforstabilizingcarbondioxidecon-centrationat450ppmv×2100,basedontherecentlydevelopedB1baselinescenario(partoftheIPCCSpecialReportonEmissionScenarios)andpredictedthatinthefirst/secondquarterofthiscen-turymostofthereductionwillcomefromenergyefficiencyandfuelswitchingoptionsandlaterontheintroductionofcarbon-freesupplyoptionswillaccountforthebulkoftherequiredreduc-tions[66].JosSijmetal.presentedanewsector-basedframework,calledthemulti-sectorconvergenceapproach(MSC),fornegotiat-ingbindingnationalGHGmitigationtargetsafterthefirstbudgetperioddefinedbytheKyotoProtocol(2008–2012)andthemethod-ologyandmajorcharacteristicsoftheMSCapproachwasoutlined,followedbysomenumericalillustrations[67].SannaSyrietal.assessedtheachievementpossibilitiesoftheEU2◦CclimatetargetwiththeETSAPTIAMglobalenergysystemsmodelandcalcu-latedthecost-effectiveglobalandregionalmitigationscenariosofcarbondioxide,methane,nitrousoxideandF-gaseswithalterna-tiveassumptionsonemissionstradingandpredictedthatinthemitigationscenarios,a85%reductioninCO2emissionsisneededfromthebaselineandverysignificantchangesintheenergysys-temtowardsemission-freesourcestakeplaceinthiscentury[68].

MitigatingglobalclimatechangerequiresnotonlygovernmentactionbutalsocooperationfromconsumersandthequalitativedataanalyzedbySemenzaetal.indicatedthatthereareanum-berofcognitive,behavioralandstructuralobstaclestovoluntarymitigation[69].ThefindingsofStoll-Kleemannetal.suggestedthatmoreattentionneedstobegiventothesocialandpsycho-logicalmotivationsastowhyindividualserectbarrierstotheirpersonalcommitmenttoclimatechangemitigation,evenwhenprofessinganxietyoverclimatefutures[70].DaliaStreimikieneandStasysGirdzijauskasaanalyzedthepost-Kyotoclimatechangemitigationregimesandtheirimpactonsustainabledevelopment.Widerangeofpost-Kyotoclimatechangemitigationarchitectureshavedifferentimpactondifferentgroupsofcountries,thereforesustainabilityassessmentwasperformedforfourmaingroupofcountries:EUandotherAnnex-Icountries,USA,advanceddevel-opingcountriesandleastdevelopedcountries.Thepost-Kyotoclimatechangemitigationregimeswereevaluatedbasedontheireconomical,environmental,socialandpoliticalimpactfordiffer-entgroupsofcountriesandscoringwasappliedforassessment.ThearchitecturesincludingTargetsandTimetables,harmonizeddomesticpoliciesandmeasures,resourcetransferfromdevelopedcountriestodeveloping,sustainabledevelopmentpoliciesindevel-opingcountries,werefurtherrankedaccordingtothebestresultsorhighestscoreobtainedduringassessmentaccordingtoallcri-teriaandforallgroupsofcountries.Theanalysisconcludedthatatpresentmostassessmentsofclimatechangemeasuresarepar-tialandincomplete.Amoreholisticassessmentagainsteconomic,socialandenvironmentaldimensionsofsustainabledevelopmentcalled3A’s(acceptability,availabilityandaccessibility)developedbyWorldEnergyCouncilwouldnotonlyensurethatthemeasureswerelikelytobemoreeffectiveinawidersenseinpromotingsustainabledevelopment,butwouldalsohelpmakethemmoreviableinanarrowersense,thatis,moreacceptabletothoseaffectedandthereforeeasiertointroduceandgetsupportedandthusmorelikelytoachievetheirgoals.Basedontheanalysisofinternationalpost-Kyotoclimatechangemitigationregimesaccordingto3A’sthemostsuitablefutureregimewouldbeflexibleemissionreduc-tiontargetsviacontinuingKyotoapproach.Thisapproachprovidesthehighestadvantagesrelativetothecriticalcriteriaofsustainableenergydevelopment:acceptability,accessibilityandavailabilityforallgroupsofcountries[71].

4.1.Economyofmitigation

ThedebateoverthecostsofGHGemissionmitigationhasbecomemorecomplexrecentlyasdisagreementsovertheexis-tenceofeconomicandenvironmentaldoubledividendshavebeenaddedtodiscussionsovertheexistenceofanegativecostpotential.

Industrializedcountriesmayreducetheircostsofmeetingcar-bonconstraintsiftheypenalizefuelsnotonlyonthebasisoftheircarbonintensitybutalsoonthebasisoftheirimport–export[72].HadiDowlatabadiusedsimplerepresentationsofendogenousandinducedtechnicalchangetoexplorethesensitivityofmitigationcostestimatestohowtechnicalchangeisrepresentedinenergyeconomicsmodel[73].Chandleretal.summarizedselectedstudiesofthepotentialandcostofcarbonemissionsmitigationstrate-giesinthepost-plannedeconomies[74].AlexanderRoehrlandKeywanRiahianalyzedthelong-termGHGemissionsandtheirmitigationinafamilyofhigheconomicandenergydemandgrowthscenariosinwhichtechnologicalchangeunfoldsinalternativepathdependantdirections[75].KristenHalsnaesdiscussedmethod-ologicallessonsandempiricalresultsofclimatechangemitigationassessmentfordevelopingcountrieswithaspecialemphasisoneconomicstudies.Nationalstudyresuitswerediscussedinrela-tiontoexpectedgeneralinternationaldevelopmenttrendsingreenhousegasemissions.Itwasconcludedthatgreenhousegas

886S.VijayaVenkataRamanetal./RenewableandSustainableEnergyReviews16 (2012) 878–897

emissionsfromdevelopingcountriescertainlywillincreaseinthefutureduetoeconomicdevelopmentneeds.Thereishow-everalargeandrelativelycheappotentialforemissionreductionsconnectedtoefficiencyimprovementsinindustrialproductionandgeneralenergyefficiencyimprovementsinthecountries.Theimplementationofgreenhousegasmitigationstrategiesisinter-relatedwithgeneralnationaleconomicdevelopmentpolicies.Themacroeconomicimpactofimplementingclimatechangemitiga-tionstrategieswasassessedonthebasisoftwocasestudiesforZimbabweandVenezuelaanditisconcludedthatprojectimple-mentationandeconomicwelfareimprovementinsomecasescanbeachievedsimultaneously.Themethodologicalbasisformacroeconomicassessmentandfortheestablishmentofbase-linescenarioswerecriticallydiscussedinrelationtothespecificplanningcontextofdevelopingcountriesandrecommendationswerealsogivenonresearchrequirements.Despitedifferencesinmethodologicalapproachesbottom–upCO2emissionreductioncostingstudiescarriedoutfortheenergysectorofdevelopingcountriesexhibitsomecommonresultsnamely(i)the30–40yearreferencescenarioprojectionsshowatendencytodecreas-ingenergy/GDPintensity,butincreasingCO2/energyintensity,(ii)thepotentialfora30–40%emissionreductionfrombaselineovera40-yeartimeframehasbeenestimated.However,evenaftersuchareductionisrealized,emissionswillonaveragebetwoorthreetimesgreaterthanpresentlevelsbecauseofeconomicgrowthand(iii)theemissionreductionpotentialincludeslow/negativecostoptionsrelatingtoenduseandconventionalsupplytechnologiesintheshorttomediumterm.Inthe30–40yeartimeframe,theUNEPcountrystudieshaveestimatedaverageemissionreductioncoststobebelowUS$14/tonneofCO2[76].ValentinaBosettietal.investi-gatedthebestshort-termstrategiesthatemergingeconomiescanadoptinreactingtoOECDcountries’mitigationeffort,giventhecommonlong-termgoaltopreventexcessivewarmingwithouthamperingeconomicgrowth[77].HarriLaurikkaandUrsSpringerpresentedaframeworkforevaluatingtherisksofinvestmentsinclimatechangemitigationprojectstogenerateemissioncreditsandalsoproposedamethodologyforquantifyingriskandreturnofsuchinvestments,discussdatarequirementsandillustrateitusingasampleofvoluntaryprojects[78].UrsSpringerusedamean-varianceapproachtocomputetheinternationalportfoliosofcarbonabatementactivitiesthatbalancelowabatementcostsandinvestmentrisks[79].Jean-CharlesHourcadeandJohnRobinsonunderlinedtheimportanceofthetimingofdecisionsfordetermin-ingthecostsofGHGemissionsmitigation[80].

5.Carbonsequestration

Carbonsequestrationisanimportanttechnologyforthemain-tenanceofoptimumCO2levelintheatmosphere,whichinturnresultsintheclimatechangemitigation.Atushikurosawahaddoneasensitivityanalysisofthecostsofcarbonsequestrationandtherelativeimportanceofsequestrationtechnologywasassessedinalong-termcarbonmanagementframeworkandsuggestedthatcarbonrecoverywithoceanandgeologicalsequestrationcouldbeincludedamongtheavailablecarbonabatementtech-nologiesanditsabatementpotentialissensitivetothecarbontransportandstoragecostassumption[81].DavidGerardandWil-sonexploredaparticularlydiceyissue–howtoensureadequatelong-termmonitoringandmaintenanceofthecarbonsequestra-tionsites,withaspecialmentionofbondingmechanisms[82].LionelRagotandKathelineSchubertmodeledtheasymmetryofthesequestration/de-sequestrationprocessatamicrolevelandofitsconsequencesatamacrolevel,takingexplicitlyintoaccountthetemporalityofsequestrationandshowedthatwiththeseassump-tionssequestrationmustbepermanent[83].

5.1.Oceanandgeologicalsequestration

Although,ithasreceivedrelativelylittleattentionasapoten-tialmethodofcombatingclimatechangeincomparisontoenergyreductionmeasuresanddevelopmentofcarbon-freeenergytech-nologies,sequestrationofcarbondioxideingeologicorbiosphericsinkshasenormouspotential.Grimstonetal.reviewedthepoten-tialforsequestrationusinggeologicalandoceanstorageasameansofreducingcarbondioxideemissions.Thereareconcernsaboutpossibleenvironmentaleffectsoflarge-scaleinjectionofcarbondioxideespeciallyintotheoceans.Availabletechnologies,espe-ciallyofseparatingandcapturingthecarbondioxidefromwastestream,havehighcostsatpresent,perhapsrepresentinganaddi-tional40–100%ontothecostsofgeneratingelectricity.Inmostoftheworldtherearenomechanismstoencouragefirmstocon-sidersequestration.ThestudyindicatesthatconsiderableR&Disrequiredtobringdownthecostsofprocess,toelucidatetheenvi-ronmentaleffectsofstorageandtoensurethatcarbondioxidewillnotescapefromstoresinunacceptablyshorttimescales[84].Israelssonetal.evaluatedtheexpectedenvironmentalimpactofseveralpromisingschemesforoceansequestrationbydirectinjec-tionofcarbondioxideandconcludedfromtheanalysisthatoceancarbonsequestrationbydirectinjectionshouldnotbedismissedasaclimatechangemitigationstrategyonthebasisofenvironmentalimpactaloneanditcanbeconsideredasaviableoptionforfurtherstudy,especiallyinregionswheregeologicalsequestrationprovesimpractical[85].Chowetal.presentedthestrategiesforproducingnegativelybuoyantcarbondioxidehydratecompositeparticlesforoceancarbonsequestration[86].Thephytoplanktonoftheupperoceanremovecarbondioxidefromtheatmospherebyphotosyn-thesisandthisoceanuptakeofcarbondioxideislimitedbytheavailabilityofnitrogenintheupperwatersovermuchoftheglobalocean.Thecostofprovidingthisneedednitrogentotheupperoceanfromapilotplantwithacapacitytosequester2,000,000tonnesofcarbondioxideperyearisexaminedbyJonesandOtaegui[87].

Geologiccarbonsequestrationistheinjectionofanthropogeniccarbondioxideintodeepgeologicformationswhereitisintendedtoremainindefinitely.Ifsuccessfullyimplemented,geologiccarbonsequestrationwillhavelittleornoimpactonterrestrialecosystemsasidefromthemitigationofclimatechange.

PriceandOldenburgproposedthattheregulationsforthesitingofearlygeologiccarbonsequestrationprojectsshouldemphasizelimitingtheconsequencesoffailurebecausetheconsequencesareeasiertoquantifythanfailureprobability[88].Acomputation-allyefficientsemi-analyticalcodeCQUESTRAhasbeendevelopedbyLeNeveuforprobabilisticriskassessmentandrapidscreeningofpotentialsitesforgeologicalsequestrationofcarbondioxideandthesensitivityanalysisofCQUESTRAindicatedthatcriteriasuchassitingbelowaquiferswithlargeflowratesandsitinginreservoirshavingfluidpressurebelowthepressureofthefor-mationsabovecanpromotecompletedissolutionofthecarbondioxideduringmovementtowardthesurface,therebypreventingreleaseintothebiosphere[89].Theproductsofforsteritedis-solutionandtheconditionsfavorableformagnesiteprecipitationhavebeeninvestigatedbyGiammaretal.,inexperimentscon-ductedattemperatureandpressureconditionsrelevanttogeologicCsequestrationindeepsalineaquifers[90].TheU.S.Environmen-talProtectionAgencyhasdevelopedaVulnerabilityEvaluationFramework(VEF)forthegeologicsequestrationofcarbondioxidewhichcanbeusedasareferencetoinformsite-specificassess-mentsandriskmanagementdecisions[91].Oldenburgetal.havedevelopedaCertificationFramework(CF)forcertifyingthesafetyandeffectivenessofgeologiccarbonsequestrationsites,byrelatingtheeffectivetrappingtocarbondioxideleakageriskwhichtakesintoaccountboththeimpactandprobabilityofleakage[92].KeigoAkimotoetal.analyzedthecostofthegeologicalstorageofCO2

S.VijayaVenkataRamanetal./RenewableandSustainableEnergyReviews16 (2012) 878–897

887

inJapaninordertoconsiderfutureresearch,developmentanddeployment[93].

5.2.Agriculturalsoils

Carbonsequestrationindegradedagriculturalsoilsindevelop-ingcountriestomitigateatmosphericgreenhousegasconcentra-tionsisincreasinglypromotedasapotentialwin–winstrategy[94].Acomprehensiveanalysisincorporatingecologic,geographicandeconomicdatawasusedbyThomsonetal.todeveloptheterrestrialcarbonsequestrationestimatesforagriculturalsoilcarbon,refor-estrationandpasturemanagement,estimatingthecontributionofterrestrialsequestrationoverthenextcenturyas23–41GtC[95].Pandeysuggestedthatagroforestrysystemsareabetterclimatechangemitigationoptionthanoceanicandotherterrestrialoptionsbecauseofthesecondaryenvironmentalbenefitssuchasfoodsecurity,securedlandtenure,increasingfarmincome,restoringandmaintainingtheabove-groundandbelow-groundbiodiver-sity,maintainingwatershedhydrologyandsoilconservation[96].AlainAlbrechtandKandjianalyzedthecarbonstoragedatainsometropicalagroforestrysystemsanddiscussedtheroletheycanplayinreducingtheconcentrationofCO2intheatmosphere[97].KarenUpdegraffetal.designedasystemcalledC-Locktopro-ducestandardizedcarbonemissionreductioncredits(CERCs)thatminimizelitigationriskstopurchasersandmaximizethepoten-tialvaluetoagriculturalproducersi.e.C-Lockisanonlinesystemtostandardizetheestimationofagriculturalcarbonsequestrationcredits[98].JohnAntleetal.developedmethodstoinvestigatetheefficiencyofalternatecontractsforcarbonsequestrationincroplandsoils,takingintoaccountthespatialheterogeneityofagriculturalproductionsystemsandthecostsofimplementingmoreefficientcontracts[99].BiosphericcarbonsinksandsourcescanbeincludedinattemptstomeetemissionreductiontargetsduringthefirstcommitmentperiodoftheKyotoProtocol.Forestmanagement,croplandmanagement,grazinglandmanagementandre-vegetationareallowableactivitiesunderArticle3.4oftheKyotoProtocol.Soilcarbonsinks(andsources)can,therefore,beincludedundertheseactivities.TheroleofcroplandsinEuro-peancarbonbudgetandthepotentialforcarbonsequestrationinEuropeancroplandsandthentheglobalcontextpertainingtothesamewerereviewedbyPeteSmith.CroplandsareestimatedtobethelargestbiosphericsourceofcarbonlosttotheatmosphereinEuropeeachyear,butthecroplandestimateisthemostuncertainamongallland-usetypes.ItwasestimatedthatEuropeancrop-lands(forEuropeasfareastastheUrals)lose300MtCperyear.ThemeanfigurefortheEuropeanUnionisestimatedtobe78(S.D.37)MtCperyear.ThereissignificantpotentialwithinEuropetodecreasethefluxofcarbontotheatmospherefromcropland,andforcroplandmanagementtosequestersoilcarbon,relativetotheamountofcarbonstoredincroplandsoilsatpresent.Thebiologi-calpotentialforcarbonstorageinEuropean(EU15)croplandisoftheorderof90–120MtCperyearwitharangeofoptionsavail-ableincludingreducedandzerotillage,set-aside,perennialcropsanddeeprootingcrops,moreefficientuseoforganicamendments(animalmanure,sewagesludge,cerealstraw,compost),improvedrotations,irrigation,bioenergycrops,extensification,organicfarm-ing,andconversionofarablelandtograsslandorwoodland.Thesequestrationpotential,consideringonlyconstraintsonland-use,amountsofrawmaterialsandavailableland,isupto45MtCperyear.Therealisticpotentialandtheconservativeachievablepoten-tialsmaybeconsiderablylowerthanthebiologicalpotentialduetosocio-economicandotherconstraints,witharealisticallyachiev-ablepotentialestimatedtobeabout20%ofthebiologicalpotential.Aswithothercarbonsequestrationoptions,potentialimpactsonnon-CO2tracegasesneedtobefactoredin.Soilcarbonseques-trationisariskierlong-termstrategyforclimatemitigationthan

directemissionreductionandcanplayonlyaminorroleinclos-ingcarbonemissiongapsby2100[100].Theeffectofalternativeharvestingpracticesonlong-termecosystemproductivityandcar-bonsequestrationwasinvestigatedbyBradSeelyetal.,withtheecosystemsimulationmodelFORECAST[101].

5.3.Soilorganiccarbon(SOC)

Oneofthemostimportantterrestrialpoolsforcarbonstor-ageandexchangewithatmosphericCO2issoilorganiccarbon(SOC).Follettfeltthatinthefuture,itisimportanttoacquireanimprovedunderstandingofSOCsequestrationprocesses,theabil-itytomakequantitativeestimatesofratesofSOCsequestrationandthetechnologytoenhancetheseratesinenergyandinputefficiencymanner[102].Yangetal.evaluatedtheinfluenceofsoildepthandsamplenumbersonSOCsequestrationinno-tillage(NT)andmold-boardplow(MP)cornandsoyabeanproductionsystems,withthreelong-termfieldtrialsinhumidregionsofCanadaandUSA.ThefirsttrialwasconductedonaMaryhillsiltloam(TypicHapludalf)atElora,Ontario,Canada,thesecondonaBrookstonclayloam(TypicArgiaquoll)atWoodslee,Ontario,Canada,andthethirdonaThorpsiltloam(ArgiaquicArgialboll)atUrbana,Illinois,USA.No-tillageledtosignificantlyhigherSOCconcentrationsinthetop5cmcom-paredtoMPatallthreesites.However,NTresultedinsignificantlylowerSOCinsubsurfacesoilsascomparedtoMPatWoodslee(10–20cm,P=0.01)andUrbana(20–30cm,P<0.10).No-tillagehadsignificantlymoreSOCstoragethanMPattheElorasite(3.3MgCha−1)andattheWoodsleesite(6.2MgCha−1)onanequivalentmassbasis(1350Mgha−1soilequivalentmass).Similarly,NThadgreaterSOCstoragethanMPattheUrbanasite(2.7MgCha−1)onanequivalentmassbasisof675Mgha−1soil.However,thesedifferencesdisappearedwhentheentireplowlayerwasevaluatedforboththeWoodsleeandUrbanasitesasaresultofthehigherSOCconcentrationsinMPthaninNTatdepth.Usingtheminimumdetectabledifferencetechnique,weobservedthatupto1500soilsamplepertillagetreatmentcomparisonwillhavetobecollectedandanalyzedfortheEloraandWoodsleesitesandover40soilsam-plespertillagetreatmentcomparisonfortheUrbanatostatisticallyseparatesignificantdifferencesintheSOCcontentsofsub-plowdepthsoils.Therefore,itisimpracticable,andattheleastpro-hibitivelyexpensive,todetecttillage-induceddifferencesinsoilCbeyondtheplowlayerinvarioussoils.ItisconcludedthatalthoughNTpracticesarefoundtofavorSOCgaininthenear-surfacelayersofsoil,differencesintheamountofSOCbetweenNTandMPpracticesmayalsooccurindeeperdepths(evenbelowtheplowlayer)[103].Yadavetal.usedtheSoilWaterAssessmentTool(SWAT)waterqualitymodel,theWaterErosionPredictionProject(WEPP)ero-sionmodelandtheCENTURY4.0asoilcarbonmodel,tostimulatethecarbonsequestrationratesfor160crop-tillagerotationsin272sub-basinsoftheBigCreekwatershedandconcludedthatdevel-opingmodel-basedestimatesofSOCsequestrationratesoffieldpracticesatmanylocationswouldthusgreatlyservetheneedsofcarboncreditingprograms[104].Thesignificanceofdifferentvari-ablesonGHGproductionandsoilCsinkcapacitywasinvestigatedbyMondinietal.,bymonitoringCO2andN2OfluxesfromamendedsoilsunderlaboratoryconditionsandreportedthattheCconserva-tionefficiencyoforganicresidues,calculatedbythecombinedlossduringcompostingandafterlandapplicationwashigherforthelesstransformedorganicmaterials[105].AfforestationofagriculturalecosystemsandforestplantationscanenhanceSOCstockthroughCsequestration[106].ParrandSullivanexaminedtheroleoftheorganiccarbonoccludedwithinphytoliths(referredasphytOC)incarbonsequestrationinsomesoilsandtheprocessfollowedofferstheopportunitytouseplantspeciesthatyieldhighamountsofphy-tOCtoenhanceterrestrialcarbonsequestration[107].Hutchinsonetal.exploredtheglobalpotentialofaerablesoilsbyusingthe

888S.VijayaVenkataRamanetal./RenewableandSustainableEnergyReviews16 (2012) 878–897

datafromselectedregionsespeciallytheCanadianPrairiesandtheTropics,consideringthefactthatsoilCsequestrationisasignificantmitigationoption[108].ShresthaandLalworkedontherestora-tionofthedepletedSOCpoolsofreclaimedminesoil(RMS),whichcanbedonethroughtheconversiontoanappropriateland-useandadoptionofrecommendedmanagementpractices(RMPs)[109].

5.4.Forests

Onestrategyformitigatingtheincreaseinatmosphericcarbondioxideistoexpandthesizeoftheterrestrialcarbonsink,partic-ularlyforests,essentiallyusingtreesasbiologicalscrubbers.TheKyotoprotocoltotheframeworkconventiononclimatechangeincludesmanyprovisionsforforestandland-usecarbonsequestra-tionprojectsandactivitiesinitssignatories’overallGHGmitigationplans.

KennethandKristerexplainedthedifficultythatevenimpartialanalystshaveinassessingthecarbonoffsetbenefitsofprojects,whichwhencombinedwithself-interest,asymmetriesofinfor-mationandlargenumbers,preventstoaproject-basedforestandland-usecarboncreditprogrammaybeinsurmountable[110].SofiaBackeusetal.presentedanoptimizationmodelforanaly-sisofcarbonsequestrationinforestbiomassandforestproductsatalocalorregionalscaleandconcludedthatassigningcarbonstorageamonetaryvalueandremovalofcarboninforestprod-uctsasacostincreasesthecarbonsequestrationintheforest[111].Informationonsoilcarbonsequestrationanditsinterac-tionwithnitrogenavailabilityisratherlimited,sincesoilprocessesaccountforthemostsignificantunknownsintheCandNcycles.Onaccountofthis,MolDijkstraetal.comparedthreecompletelydif-ferentapproachestocalculatecarbonsequestrationinforestsoilsnamelylimit-valueconcept(annuallitterfall×recalcitrantfractionofthedecomposingplantlitter),N-balancemethod(Nretentioninthesoil×presentsoilC/Nratio)anddynamicSMART2model[112].TimoKarjalainenetal.studieddifferentscenariosforcar-bonsequestrationintheforestsectorinFinlandanddemonstratedthatCsequestrationassessmentsshouldincludenotonlyCinthebiomassoftrees,butalsoCinthesoilandinthewoodproducts[113].Usingtheinstitutionalmechanismsprovidedbycommu-nitybasedforestmanagement(CBFM),PreetPalSinghpredictedthat833.8Tgcarboncanbesequesteredbyenhancementoffor-estcarbonstocksinlowbiomassIndianforests[114].Hashimotoetal.discussedthepotentialcarbonsequestrationinwoodprod-uctsandtheimpactsofthreeaccountingapproaches(IPCCdefault,stock-exchangeandatmospheric-flow)onnetcarbonemissionsof16industrializedcountries[115].RiittaKorhonenetal.illustratedthattheuseofbioenergyfromthereforestedareastoreplacefossilfuelscaninthelongtermcontributemoreeffectivelytothecontrolofcarbondioxideconcentrationsthanpermanentsequestrationofcarbontoforests[116].

5.4.1.Afforestation

Benitezetal.providedaframeworkforidentifyingtheleast-costsitesforafforestationandreforestationandderivingcarbonsequestrationcostcurvesatagloballevelinascenariooflim-itedinformation[117].AscenariogeneratingtoolwasdevelopedbyNiuandDuiker,todetectthehotspotsintermsofCseques-trationpotential(CSP),withtheassessmentofCsequestrationpotentialbyafforestationofmarginalagriculturalland(MagLand)andidentificationofhotspotsforpotentialafforestationactivitiesintheU.SMidwestregion[118].BaralandGuhacomparedthecostsandquantityofcarbonmitigationbyafforestationandfossilfuelsubstitutionbasedonsimplecarbonstocksandflowsassum-ingthegrowthconditionsoftreesinthesouthernUSandfoundthatCsequestrationsequesteredthroughafforestationprojectscanbeusedtoearncarboncreditstomeetcarbonreductiontargets

throughKyotomechanisms[119].Yinetal.introducedaninte-gratedassessment(IA)approachforaCanada–Chinajointresearchprojectthatlinkedforestcarbonsequestration,forestresourcemanagementandlocalsustainabilityenhancement,whichstressestheimportanceofIA[120].

5.5.Miscellaneous

LiuandSmirnovrecordedthatcarbondioxidesequestrationinacoalbedisaprofitablemethodtoreduceGHGsintheatmosphereandtorecoverbyproductmethanefromthecoalseam[121].Avari-ablesaturationmodelwasdevelopedbyGuoxiangLiuandSmirnovtopredictthecapacityofcarbondioxidesequestrationandcoalbedmethanerecoveryandtheresultsoftheirstudyandthedevel-opedmodelscanprovidetheprojectionsfortheCO2sequestrationandmethanerecoveryincoalbedswithdifferentregionalspecifics[122].GargandShuklashowedthatCarbondioxidecaptureandstorage(CCS)canmitigateCO2emissionsfromcoalbasedlargepointsources(LPS)clustersandthereforewouldplayakeyroleinmitigatingbothenergysecurityrisksforIndiaandglobalclimatechangerisks[123].Anunder-researchedalternativeapproach,con-cerningtheapplicationofbiomasstoreduceglobalwarminggasemissions,istoextractfrombiomassblack(elemental)carbon,whichcanbepermanentlysequesteredasmineralgeomassandmayberelativelyadvantageousintermsofthoserisks.MalcolmFowlesreviewedthesalientfeaturesofbiomassblack(elemental)carbonsequestrationandusedahighlevelquantitativemodeltocomparetheapproachwiththealternativeuseofbiomasstodis-placefossilfuels.Blackcarbonhasbeendemonstratedtoproducesignificantbenefitswhensequesteredinagriculturalsoil,appar-entlywithoutbadside-effects.Blackcarbonsequestrationappearstobemoreefficientingeneralthanenergygeneration,intermsofatmosphericcarbonsavedperunitofbiomass;anexceptioniswherebiomasscanefficientlydisplacecoal-firedgeneration.Blackcarbonsequestrationcanreasonablybeexpectedtoberelativelyquickandcheaptoapplyduetoitsshortvaluechainandknowntechnology.However,themodelissensitivetoseveralinputvari-ables,whosevaluesdependheavilyonlocalconditions.Becausecharacteristicsofblackcarbonsequestrationareonlyknownfromlimitedgeographicalcontexts,itsworldwidepotentialwillnotbeknownwithoutmultiplestreamsofresearch,replicatedinother.Thepaperconcludesthateffortsareneededtodiscoverthefea-sibilityandeffectivenessofsuchsequestrationinlocalconditionsandsuggeststhatsequestrationhasmorecarbonsavingpotentialthanelectricitygenerationfrombiomass,becausethelatterisnotefficientenough,butthatthedisplacementofcoalinparticularbybiomasshasmorecarbonsavingpotentialthansequestration[124].CarbonsequestrationthroughtheformationofcarbonatemineralsisapotentialmeanstoreduceCO2emissions.Huntzingeretal.pre-sentedthefirststudyexaminingthefeasibilityofCsequestrationincementkilndust(CKD),abyproductgeneratedduringtheman-ufacturingofcement[125].CelebStewartandMirAkbarHessamiexplainedthemethodsofCO2captureandsequestration,withthetopicofphotosyntheticreaction,whichhaslongbeenknownasanaturalprocessthatcanproduceusefulbyproductsofbiomass,oxy-genandhydrogen,fixingtheCO2,usingaphotosyntheticbioreactorapproach[126].

5.6.Interrelationshipwithbiodiversityandsustainabledevelopment

Theeconomicandlegalimplicationsoftheinterrelationshipbetweencarbonsequestrationprogramsandbiodiversityareana-lyzedbyAlejandroCaparrosandFredericJacquemont.ThecurrenttreatmentofthisissueundertheFrameworkConventiononCli-mateChangeprocesswaspresented;theimplicationsofcarbon

S.VijayaVenkataRamanetal./RenewableandSustainableEnergyReviews16 (2012) 878–897

889

incentivesforexistingforestswerestudied(basingtheanalysisonanextensionoftheHartmanmodelincludingcarbonseques-trationandbiodiversityvalues)andthen,theexpectedinfluenceofthispolicyondecisionsaboutwhichtypeofforesttouseforafforestationandreforestationwasdiscussed.Anoptimalcon-trolmodelwasusedtoanalyzethechoicebetweentwotypesofforests:(i)onewithhightimberandcarbonsequestrationval-uesbutlower,ornegative,biodiversityvalues;and(ii)onewithlowertimberandcarbonsequestrationbenefits,butwithhighbio-diversityvalues.TherelationshipbetweentheKyotoprocessandtheConventiononBiologicalDiversitywasalsoinvestigated,toassesswhetherornotthelatterisexpectedtohaveanyinflu-enceontheoutcomesobtainedintheanalysisabove.Resultsshowedthatcreatingeconomicincentivesforcarbonsequestra-tionmayhavenegativeimpactsonbiodiversity,especiallyforafforestationandreforestationprograms[127].RobBailisdiscussedthelinksbetweensustainabledevelopmentandcarbonseques-trationasaclimatechangemitigation(CMM)strategy,withafocusonLatinAmerica,whichhashostedthemajorityofseques-trationactivitiestodate[128].RegionalCarbonSequestrationPartnerships(RCSP)intheU.S.indeterminingandimplementingthetechnology,infrastructureandregulationsmostappropri-atetopromotecarbonsequestrationindifferentregionsofthenationisreviewedbyLitynskietal.,indicatingtheinterrela-tionshipbetweentheCsequestrationandtheregionalvariations[129].

5.7.Economicaspects

KeywanRiahietal.analyzedthepotentialsofcarboncap-tureandsequestrationtechnologies(CCT)inasetoflong-termenergy–economic–environmentalscenariosbasedonalternativeassumptionsfortechnologicalprogressofCCT.Inordertogetareasonableguidetofuturetechnologicalprogressinmanag-ingCO2emissions,pastexperienceincontrollingsulfurdioxide(SO2)emissionsfrompowerplantswerereviewed.Bydoingso,a“learningcurve”forCCTwasquantified,whichdescribestherela-tionshipbetweentheimprovementofcostsduetoaccumulationofexperienceinCCTconstruction.Thelearningcurvewasincor-poratedintotheenergy-modelingframeworkMESSAGE-MACROandgreenhousegasemissionsscenariosofeconomic,demographic,andenergydemanddevelopmentwereframed,wherealternativepolicycasesleadtothestabilizationofatmosphericCO2concen-trationsat550partspermillionbyvolume(ppmv)bytheendofthe21stcentury.Threetypesofcontributorstothecarbonemis-sionsmitigationwerequantified:(1)demandreductionsduetotheincreasedpriceofenergy,(2)fuelswitchingprimarilyawayfromcoal,and(3)carboncaptureandsequestrationfromfossilfuels.Duetotheassumedtechnologicallearning,costsoftheemissionsreductionforCCTdroprapidlyandinparallelwiththemassiveintroductionofCCTontheglobalscale.ComparedtoscenariosbasedonstaticcostassumptionsforCCT,thecontributionofcarbonsequestrationisabout50%higherinthecaseoflearning,resultingincumulativesequestrationofCO2rangingfrom150to250bil-lion(109)tonswithcarbonduringthe21stcentury.Also,carbonvalues(tax)acrossscenarios(tomeetthe550ppmvcarboncon-centrationconstraint)arebetween2%and10%lowerinthecaseoflearningforCCTby2100.Theresultsillustratethatassumptionsontechnologicalchangeareacriticaldeterminantoffuturecharacter-isticsoftheenergysystem,indicatingtheimportanceoflong-termtechnologypoliciesinmitigationofadverseenvironmentalimpactsduetoclimatechange[130].Klassvan’tVeldandAndrewPlantingashowedanalyticallythatifthecarbonpriceincreasesovertime,consistentwithprojectionsfromintegratedassessmentmodels,itbecomesoptimaltodelaycertainsequestrationprojects,whereastheoptimaltimingofenergy-basedabatementprojectsremain

unchanged[131].GreggMarlandetal.describedasystemwherebyemissioncreditscouldberented,ratherthansold,whencarbonissequesteredbutpermanenceofsequestrationiseithernotcer-tainornotdesiredandsucharentalcontractforemissioncreditswouldestablishcontinuousresponsibilityforsequesteredcarbon[132].Man-KeunKimetal.investigatedthedifferentialvalueofoff-setsinthefaceofimpermanentcharacteristicsbyformingapricediscountforland-basedCsequestrationthatequalizestheeffectivepricepertonbetweenaperfectoffsetandonepossessingsomewithimpermanentcharacteristics[133].Assessmentofimplicationsofthecarbonsequestrationpoliciesisnecessaryinordertodeterminewhetherthesesequestrationpoliciescontributesignificantlytotheglobalportfolioofclimatechangemitigationoptions.Dmitryetal.determinedwhethercarbonsequestrationpoliciescouldpresentasignificantcontributiontotheglobalportfolioofclimatechangemitigationoptions[134].

6.Cleandevelopmentmechanism

TheKyotoProtocol’scleandevelopmentmechanism(CDM)wasestablishedin1997withthedualpurposeofassistingnon-AnnexIpartiesinachievingsustainabledevelopmentandassistingAnnexIpartiesinachievingcompliancewiththeirquantifiedGHGemissioncommitments.

ErikHaitesandFarhanaYaminexaminedtheCDMdefinedbytheKyotoProtocol,thesubstantive,proceduralandinstitutionalissuesraisedbytheCDMinthelightofdecisionsadoptedbythefourthConferenceofthePartiestotheUNFrameworkConventiononClimateChangeheldinBuenosAiresandsuggestedpracticaloptionsfortheoperationandgovernanceoftheCDMinacredi-ble,cost-efficientandenvironmentallyeffectivemanner[135].JaneEllisetal.analyzedthedevelopmentoftheCDMportfolioaswellasachievementsoftheCDMtodateinthecontextofwiderpri-vateandpublicflowsofinvestmentintodevelopingcountriesandoutlinedthechangesthatareneeded,totransformtheCDMcon-cepttoabroaderscaleaftertheendofthefirstcommitmentperiodin2012[136].LarryCarpandXuemeiLiureviewedandevaluatedtheargumentssurroundingtheCDMandprovidednewempiricalevidenceconcerningitspotentialbenefits[137].Diakoulakietal.addressedthreequestions:inwhichcountry,whatkindofinvest-ment,withwhicheconomicandenvironmentalreturnandshowedforthefullexploitationoftheCDM,amulti-facedapproachforidentifyingprioritycountriesandinterestinginvestmentoppor-tunitiesineachprioritycountry,isnecessary[138].Gilauetal.addressedthecost-effectivenessofrenewableenergytechnologieslikephotovoltaic–diesel(PVDB),wind-diesel(WDB)andphoto-voltaicwind-diesel(PVWDB)hybrids,inachievinglowabatementcostsandpromotingsustainabledevelopmentsundertheCDM[139].Duicetal.assessedthepossibleinfluenceofCDMandbyassessingacaseofasmallisland,showedthatalthoughtheemis-sionreductiononglobalscaleissmall,thereisagreatpotentialforestablishingastrongmarketpresenceofrenewableenergytech-nologiesindevelopingcountries[140].MiriamSchroederdiscussedabouthowmuchtheCDMcancontributetothedeploymentofrenewableenergiesinChina.WhilethereareatleasttwogeneralbarrierstoutilizingCDMfinanceforREdeployment–namelyhighprojectcostsandtheproofofadditionality–thisarticlearguesthatanappropriatenationalregulationcanleadREtechnologiestoastageofcommercialisationatwhichCDMfinancingcanbecomecrucial.ForanassessmentofthecurrentpolicymixinplaceinChinaforthedeploymentofrenewableenergies,thearticlecom-paresthenationalChineseregulationsforrenewableenergiesandChina’sspecificCDMrulesfortheirimpact:wheredogeneralandCDM-specificregulationsforthepromotionofrenewableener-giesprovidesynergies,wheredoesthepolicy-makingonthese

890S.VijayaVenkataRamanetal./RenewableandSustainableEnergyReviews16 (2012) 878–897

twolevelscollide[141].TimilsinaandShresthaanalyzedthegen-eralequilibriumeffectsofasupplysideGHGmitigationoption–thesubstitutionofthermalpowerwithhydropowerinThailandundertheCDM[142].MalteSchneideretal.analyzedhowtheCDMcontributestotechnologytransferandfoundthattheCDMdoescontributetotechnologytransferbyloweringseveraltechnology-transferbarriersandbyraisingthetransferquality[143].ThecriticalissueofwhethertheCDMcanaddresspovertyalleviationandsustainabledevelopmentindevelopingcountrieswasdis-cussedbyBobLloydandSrikanthSubbara,inthecontextofexistingmarketprinciples,transparencyofthemechanism,economicsandthedauntingbureaucraticproceduresinvolvedandconcludedthattheCDM,ifsuitablymodified,canaddresstheaboveissues[144].ActualCDMpracticehasshownthatprojectsarelargelyinitiatedbythedemandofrelativelylow-costcertifiedemissionreductions,leadingtoaseriesofad-hocprojectsratherthanservingtheover-allhostcountries’sustainabledevelopmentneedsandpriorities.Intheaboveframework,CharikleiaKarakostaetal.aimedtodirectCDMtowardsnationalsustainabledevelopmentpriorities,throughtheidentificationofsustainableenergytechnologiesforelectricitygenerationinfiveexamineddevelopingcountries,namelyChile,China,Israel,KenyaandThailand[145].FundingforGHGmitiga-tionprojectsindevelopingcountriesiscrucialforaddressingtheglobalclimatechangeproblem.Byexaminingthecurrentclimatechangerelatedfinancialmechanismsandtheirlimitations,ZhongXiangZhangandAkiMaruyamaindicatedthattheCDM,oneoftheflexibilitymechanismsincorporatedintotheKyotoProtocol,couldoffergreatpotentialinhelpingforeigndirectinvestmenttowardsclimatemitigation,byprovidingcommercialincentivesfortheprivatesectortoinvestinmitigationprojectsandinternaliz-ingexternalitiesassociatedwithmitigationprojects[146].ShresthaandTimilsinaarguedthatwhileanapplicationofpurelyeconomicadditionalitycriterionisessentialtoensuretherealandlong-termmitigationofglobalGHGemissions,itcouldalsolimitthescopeofCDMasaneffectivevehicleforGHGmitigation[147].CurrentdiscussionsontheCDMlacksthetechnicalinputonwhichcar-bonemissionstradingcouldbebasedandMichaelSeeattemptedtopresentestimatesofcapitalcostsofcarbondioxidereductions,addressedmorevitalissuesofequitydistributionandillustratedhowemissionstradingmaybeconductedviaanexchange[148].SudhakaraReddyandBalachandrapresentedafewCDMbusinesscases(forbothruralandurbanhouseholds)anddemonstratedtheirfeasibilityandprofitabilityfromtheperspectivesofallthestakeholdersandconcludedthatthepossibilityofearningprofitsisveryhighfromthesesmallscaleCDMprojectcases,thehighestbeinginthecaseofshiftingfromtraditionaltoefficientfirewoodstoves[149].

6.1.CDM-AR

TheCDMallowsforasmallpercentageofemissionreductioncreditstocomefromafforestationandreforestation(CDM-AR)projects.Zomeretal.conductedaglobalanalysisoflandsuitabil-ityforCDM-ARcarbonsinkprojectsandidentifiedlargeamountsofland(749Mha)asbiophysicallysuitableandmeetingtheCDM-AReligibilitycriteria[150].Smallscaleafforestation/reforestationundertheCDMoftheKyotoProtocolwouldsequesteratmo-sphericcarbonandfacilitatecarbontradingbuttheyfacesignificantimplementationchallengesamongtheruralpoorhouseholdsandcommunitiesthataremeanttoadoptandbenefitfromthem[151].Theimplicithydrologicdimensionsofinternationaleffortstomitigateclimatechange,specificallypotentialimpactsoftheCDM-ARprovisionsoftheKyotoProtocolonglobal,regionalandlocalwatercyclesareexaminedbyAntonioTrabuccoetal.[152].

7.Mitigationandadaptation

Thepotentialfordevelopingsynergiesbetweenclimatechangemitigationandadaptationhasbecomearecentfocusofbothclimateresearchandpolicy.Therearealsoincreasingcallsforresearchtodefinetheoptimalmixofmitigationandadaptation[153].Thediagrammaticrepresentationofclimatechange,adap-tationandmitigationisimportantinconceptualizingtheproblem,identifyingimportantfeedbacksandcommunicatingbetweendis-ciplines,withamorerefineddistinctionbetweenadaptationandmitigation[154].XinshengLiuetal.foundthatemphasisonissuesolutionsisplacedmoreonmitigationstrategiesthanonadapta-tionbehaviorsandthatbothgovernmentalandnon-governmentalactionsandresponsibilitiesaresuggestedfordealingwithcli-matechange[155].PielkeJrdiscussedthelimitationsofmitigationresponsesandtheneedforadaptationtooccupyalargerroleinclimatepolicy[156].AlanInghametal.expressedthatmostoftheanalysistodatehasfocusedonthecasewheretheactionsavailabletosocietyarejustthemitigationofemissionsandwherethereislittleornoroleforlearning[157].Tolexpressedhisviewthatmiti-gationandadaptationshouldbeanalyzedtogether,astheyindeedare,albeitinarudimentaryway,incost–benefitanalysisofemis-sionabatementandrecommendedthatfacilitativeadaptationandmitigationnotonlybothreduceimpacts,buttheyalsocompeteforresources[158].KatarinaLarsenandUlrikaGunnarssonOstlingdis-cussedtheinter-relationshipsbetweenadaptationandmitigationbyexaminingtheprocessesofcitizenparticipationinconstruct-ingscenariosandapplyingtheconceptsofresilience,vulnerabilityandadaptivecapacityandarguedthattensionarisingfromclimatestrategiesrelyingoneitheradaptationormitigationstrategiesorcombiningboth,warrantfurtherexamination[159].TheresultsoftheanalysisdonebyNichollsandLowesuggestedthatamix-tureofadaptationandmitigationpoliciesneedtobeconsideredforcoastalareas,asthiswillprovideamorerobustresponsetohuman-inducedclimatechangethaneitherpolicyinisolation[160].JuliaLaukkonenetal.viewedthatitisnotsufficienttoconcentrateoneithermitigationoradaptation,butacombinationoftheseresultsinthemostsustainableoutcomesandyet,thesetwostrategiesdonotalwayscomplementeachotherbutcanbecounterpro-ductivewithcasestudiesofsuccessfuladaptationandmitigationstrategiessuggestingthatthesesuccessesbetranslatedintolocalcontextsandcommunalizedwiththeinvolvementoflocalauthori-tiesusingparticipatoryapproaches[161].FocusingpredominantlyoncasesfromUSandAustralia,HaminandNicoleGurranidentifiedwhetherthepoliciesaddressadaptation,mitigationorbothandwhetherthepracticesputmitigationandadaptationinpotentialconflictwitheachotherandfoundthathalfoftheactionsidentifiedcontainpotentialconflictstoachievingadaptationandmitigationsimultaneously[162].RobbertBiesbroeketal.discussedtheori-ginoftheadaptation–mitigationdichotomyandalsoaddressedtherelationshipbetweenclimatechangeresponsesandspatialplanning,asthespatialplanningcanfunctionasaswitchboardformitigation,adaptationandsustainabledevelopmentobjectives[163].

8.Economyandemissions

ApositiverelationshipbetweenCO2emissions,themostimpor-tantGHGimplicatedinglobalwarmingandGDPwasshownbyMichaelTucker,examiningthepercapitaincomeandCO2emis-sionsof137countriesacross21yearsandpredictedthathigherincomelevelsleadtoincreasedemandforenvironmentalprotec-tion[164].NehaKhannaexaminedthecostofmeetingtheKyotoProtocolcommitmentsunderalternativeassumptionsregardingtechnologyandtechnicalchange,bymodelingrealGDPasa

S.VijayaVenkataRamanetal./RenewableandSustainableEnergyReviews16 (2012) 878–897

891

functionofthecapital,laborandenergyinputsandfoundthatthelossinrealGDPduetoKyotocommitmentsisoneandahalftimeshigherthanobtainedunderstandardassumptions[165].YingFanetal.analyzedtheimpactofpopulation,affluenceandtechnologyonthetotalCO2emissionsofcountriesatdifferentincomelevelsovertheperiod1975–2000,usingtheSTIRPATmodelandthemainresultsshowedthatatthegloballeveltheeco-nomicgrowthhasthegreatestimpactonCO2emissions[166].Todate,futurechangeinsocio-economicsystemshasnotbeensufficientlyintegratedwithananalysisofclimatechangeimpactsandclimateimpactassessmentneedstotakeaccountoftwointerrelatedprocessesnamelysocio-economicchangeandclimatechange[167].Tobeyhighlightedthecriticalroleofeconomicsinunderstandingthepotentialmagnitudeofglobalclimatechangeasaproblemforhumansocietyandforassessinganddevelop-ingeffectiveresponsesandfeltthatmuchworksremainintheapplicationofeconomicconceptstoclimatechangeproblems[168].

8.1.Carbontax

RolfGolombeketal.studiedtheoptimaldesignofacarbontaxwhenagroupofcountriesseekstomaximizeitsnetincomeminusitsenvironmentalcosts,whichdependonthesumofCO2emis-sionsfromallcountries.Whenbothproductionandconsumptionofinternationallytradedfossilfuelsaretaxed,aparticularcombi-nationofproducerandconsumertaxesexistswhichisoptimal.Itwasalsoshownthatwiththistaxthesumoftheconsumertaxandproducertaxshouldbeequalacrossallfossilfuelsperunitofcarbon.Ontheotherhand,whenthecooperatingcoun-triesuseataxonconsumption(orproduction)offossilfuelsastheonlypolicyinstrument,thetaxperunitofcarbonshouldingeneralbedifferentiatedacrossfossilfuels.Anempiricalillustra-tionofthetheoreticalanalysiswasalsogiven,assumingthatthecooperatingcountriesarethoseoftheOECD[169].Ahighcar-bontaxforcarbonintensivetradablesectorsinthecooperatingcountrieswillreducetheproductionofgoodfromthesesectorsandhencetheCO2emissionsinthecooperatingcountrieswillalsoreduce.MichaelHoelshowedthatacarbontaxshouldnotbedif-ferentiatedacrosssectorsintheeconomy,providedonecanuseimportandexporttariffsonalltradedgoods[170].ZhongXiangZhangandAndreaBaranziniassessedthemaineconomicimpactsofcarbontaxesandbasedonareviewofempiricalstudiesonexist-ingcarbon/energytaxes,itwasconcludedthatcompetitivelossesanddistributiveimpactsaregenerallynotsignificantanddefinitelylessthanoftenperceived[171].Energytaxesdesignedtocon-trolenergyconsumptionandtoassisttheachievementofclimatechangecontroltargetsundertheKyotoProtocol,arefairlycommoninEUcountries.Yetmanyofthesetaxesbearlittleresemblancetothedesignguidancethatisgivenintheeconomicstextbooks.Politicaleconomyanalysis,inwhichtheinteractionofeconomicsandpoliticalrealityisemphasized,explainsthegapbetweenthe-oreticalidealsandpracticalreality.DavidPearceillustratedtheaboveissuesinthecontextofonetax,theUKClimateChangeLevy[172].

8.2.Emissiontrading

CedricPhilibert’sstudyaimedtoshowhowanemissiontrad-ingsystemcouldworkifsomeparticipatingentitiesareallocatedan“emissionbudget”ornon-bindingtarget,asthiswillallowthemtosellallowancesiftheiractualemissionsarelessthantheirbudgetbutwillnotobligatethemtobuyallowancesiftheiremis-sionsexceedtheirbudget[173].MarcelBraunrecapitulatedhowemissionstradingbecameacornerstoneoftheEU’sclimatepolicyandanalyzedthedevelopmentoftheEuropeanUnionEmissions

TradingScheme(EUETS)[174].EtanGumermansummarizedtheeconomicandcarbonsavingssensitivityanalysiscompletedfortheScenariosforaCleanEnergyFuturestudyandits19sensitivitycasesprovidedinsightintothecostsandcarbonreductionimpactsofacarbonpermittradingsystem[175].UrsSpringergatheredresultsfrom25modelsofthemarketfortradableGHGemissionpermitsundertheKyotoProtocolandsuggestedthatthesecountriescanincreasetheirrevenuesfromsellingpermitsbyrestrictingsup-ply,whichraisesthepermitprice[176].TheconsequencesoftheKyotoProtocolforthefossilfuelmarketsdependonwhichpolicyinstrumentsareusedinordertoreachtheemissiontargets.BjartHoltsmarkandOttarMaestadassessedthesignificanceofinter-nationalemissionstradingfortheoil,coalandgasmarkets,byusinganumericalmodel.ThreedifferenttradingregimesnamelyNorthAmerica,AsiaandEuropeincludingRussiawerecomparedandparticularattentionisdevotedtotheEUproposalaboutlim-itsonacquisitionsandtransfersofemissionpermits.ItwasfoundthattheEUproposalwillbenon-bindingforbuyersofemissionpermitsbutwillsignificantlyconstrainthesaleofemissionper-mitsfromEasternEurope.TheEUproposalwillincreasethelevelofabatementinAnnexBcountriesandwillcauseasharpincreaseinthepriceofpermitscomparedtothefreetradeequilibrium[177].

9.Policies

KatiaSimeonovaandHaraldDiaz-Boneprovidedanoverviewoftheevolvingclimatechangestrategiesputinplacebyindus-trializedcountriestocombatclimatechangeandtocomplywiththeirquantitativecommitmentsundertheKyotoProtocolandalsooutlinedtheportfoliosofpolicyinstrumentsusedbytheindustri-alizedcountriesintheirevolvingclimatechangestrategiesandintheirapproachtowideningthescopeandincreasingthecoverageofthosepolicyinstrumentstoallsectorsandallgases[178].PopiKonidariandDimitriosMavrakispresentedanintegratedmulti-criteriaanalysismethodforthequantitativeevaluationofclimatechangemitigationpolicyinstruments.Themethodconsistsof:(i)asetofcriteriasupportedbysub-criteria,allofwhichdescribethecomplexframeworkunderwhichtheseinstrumentsareselectedbypolicymakersandimplemented,(ii)ananalyticalhierarchyprocess(AHP)processfordefiningweightcoefficientsforcriteriaandsub-criteriaaccordingtothepreferencesofthreestakeholdersgroupsand(iii)amulti-attributetheory(MAUT)/simplemulti-attributerankingtechnique(SMART)processforassigninggradestoeachinstrumentthatisevaluatedforitsperformanceunderaspecificsub-criterion.Argumentsfortheselectedcombinationofthesestandardmethodsanddefinitionsforcriteria/sub-criteriaarequoted.Consistencyandrobustnesstestsareperformed.ThefunctionalityoftheproposedmethodwastestedbyassessingtheaggregateperformancesoftheEUemissiontradingschemeatDenmark,Germany,Greece,Italy,Netherlands,Portugal,SwedenandUnitedKingdom[179].HalTurtondescribedthedevelop-mentoftheenergyandclimatepolicyandscenarioevaluation(ECLIPSE)model,aflexibleintegratedassessmenttoolforenergyandclimatechangepolicyandscenarioassessment[180].Sova-coolandBrownassessedtheadvantagesanddisadvantagesoffightingtheclimatechangethroughlocal,bottom–upstrategiesaswellasglobal,top–downapproachesandconcludedthatinscal-ingthepolicyresponsestoclimatechange,localthinkingmustbecoupledwithglobalandnationalscalesofactioninordertoachievethelevelsofCO2reductionsneededtoavoiddangerousclimateimpacts[181].BruceTonnpresentedanalternativeframe-worktotheapproachcurrentlyembodiedintheKyotoProtocolformanagingglobalclimatechangepost-2012.Theframeworkhastwokeyprovisions.Thefirstisthateachpersonintheworld

892S.VijayaVenkataRamanetal./RenewableandSustainableEnergyReviews16 (2012) 878–897

wouldbeallowedanequalamountofGHGemissions,labeledastheequity-firstprovisionandthesecondprovisionfocusesonincorporatingriskconceptsintothesettingofGHGemissionreductions[182].InternationalnegotiationsundertheUNFrame-workConventiononClimateChangecouldtakeseveraldifferentapproachestoadvancefuturemitigationcommitments.Optionsrangefromtryingtoreachconsensusonspecificlong-termatmo-sphericconcentrationtargets(e.g.550ppmv)tosimplyignoringthiscontentiousissueandfocusinginsteadonwhatcanbedoneinthenearerterm.JanCorfeeMorlotandNiklasHohnearguedforastrategythatlaysbetweenthetwoextremesnamelythelong-termtargetsandtheshort-termcommitments.Internationallyagreedthresholdlevelsforcertaincategoriesofimpactsorofrisksposedbyclimatechangecouldbetranslatedintoacceptablelevelsofatmosphericconcentrations.ThiscouldhelptoestablisharangeofupperlimitsforglobalemissionsinthemediumtermthatcouldsettheambitionlevelfornegotiationsonexpandedGHGmitigationcommitments.Thepaperthusconsidershowphysicalandsocio-economicindicatorsofclimatechangeimpactsmightbeusedtoguidethesettingofsuchtargets.Inanefforttoexplorethefeasibil-ityandimplicationsoflowlevelsofstabilization,italsoquantifiesanintermediateglobalemissiontargetfor2020thatkeepsopentheoptiontostabiliseat450ppmvCO2.Ifneweffortstoreduceemissionsarenotforthcoming(e.g.theKyotoProtocolorsimi-larmitigationeffortsfail),thereisasignificantchancethattheoptionof450ppmvCO2isoutofreachasof2020.Regardlessofthepreferredapproachtoshapingnewinternationalcommitmentsonclimatechange,progresswillrequireimprovedinformationontheavoidedimpactsclimatechangeatdifferentlevelsofmiti-gationandcarefulassessmentofmitigationcosts[183].MasamiOnodareportedthatifwearetousesatellitedataasapoten-tialglobalcommonmeasurementtool,thereisaneedtobridgethegapsbetweenobservationmethodsandthepolicyframeworks[184].Recentstudiesonglobalwarminghaveintroducedtheinher-entuncertaintiesassociatedwiththecostsandbenefitsofclimatepoliciesandhaveoftenshownthatabatementpoliciesarelikelytobelessaggressiveorpostponedincomparisontothoseresult-ingfromtraditionalcost–benefitanalyses(CBA).Yet,thosestudieshavefailedtoincludethepossibilityofsuddenclimatecatastro-phes.AndreaBaranzinietal.aimedtoaccountsimultaneouslyforpossiblecontinuousanddiscretedamagesresultingfromglobalwarmingandanalyzedtheirimplicationsontheoptimalpathofabatementpolicies.Theapproachisrelatedtothenewlitera-tureoninvestmentunderuncertainty,andreliesonsomerecentdevelopmentsoftherealoptioninwhichnegativejumps(climatecatastrophes)inthestochasticprocesscorrespondingtothenetbenefitsassociatedwiththeabatementpolicieswereincorporated.Theimpactsofcontinuousanddiscreteclimaticriskscanthere-forebeconsideredseparately.Thenumericalapplicationsledtotwomainconclusions:(i)gradual,continuousuncertaintyintheglobalwarmingprocessislikelytodelaytheadoptionofabatementpoliciesasfoundinpreviousstudies,withrespecttothestandardCBA;however(ii)thepossibilityofclimatecatastrophesacceler-atestheimplementationofthesepoliciesastheirnetdiscountedbenefitsincreasesignificantly[185].TheproblemofdesigningacomprehensiveandefficientpolicypackagetoreduceemissionsofCO2andotherGHGsismorecomplicatedthansuggestedintheexistingeconomicliterature.SchheragaandLearyexaminedthreedifferentimplementationissues.First,thevariationofcost-effectivenessofdifferentenergytaxesasafunctionofthelevelofthemarketatwhichtheyareimposed,secondlytheintegra-tionofdifferentpolicytoolsintoanefficientpolicypackageandthirdthefocusingonallGHGandnotlimitedtoCO2andcon-cludedthatapiecemealapproachtopolicyformationthatfailstoconsidertheseissuesislikelytobeinefficientandunnecessar-ilycostly[186].TonyPratoproposedaconceptualframeworkfor

assessingandmanagingtheecosystemimpactsofclimatechange,whichcanbeusedbytheecosystemmanagerstosystematicallyassessthepotentialadverseimpactsoffutureclimatechangeonecosystemsandidentifybestadaptationstrategiesforalleviatingthoseimpacts[187].Policymakersandwaterresourcemanagersshouldbeawareoftheevolvinginformationonclimatechangeimpactstosounddecisionmakingoncurrentwaterresourcesman-agementactions[188].Considerablequantitiesofbio-availablenitrogenarereleasedintheproductionoffoodandenergy.Anintegratedapproachtonitrogenrelatedenvironmentalproblemswillbemoreeffectiveonallenvironmentalandgeopoliticallevelsandwillthereforemakeformoreefficientandcost-effectivepolicy[189].ClaudiaKemfertinvestigatedtheworldeconomicimplica-tionsofclimatechangepolicystrategiesandparticularlyevaluatedtheimpactsofanimplementationofCDM,jointimplementationandemissionstradingwithaworldintegratedassessmentmodel.Thisstudyelaboratesandcomparesmulti-gaspolicystrategiesandexplorestheimpactsofsinkinclusion.TheeconomicimpactsonallworldregionsoftheUSA’snon-cooperative,freeriderpositionresultingfromitsrecentisolatedclimatepolicystrategydecisionwereexamined.ItturnsoutthatCDMandJIshowevidenceofimprovementintheeconomicdevelopmentinhostcountriesandincreasetheshareofnewappliedtechnologies.Thedecompo-sitionofwelfareeffectsdemonstratesthatthecompetitivenesseffect(includingthespillovereffectsfromtrade)havethegreat-estimportancebecauseoftheintensetraderelationsbetweencountries.Climaticeffectswillhaveasignificantimpactwithinthenext50years,willcauseconsiderablewelfarelossestoworldregionsandwillintensifyifnationshighlyresponsibleforpollutionliketheUSAdonotreducetheiremissions[190].Theanticipatedimplicationsofinternationalenvironmentalpolicystrategiesarecriticalforthesuccessorfailureofinternationalnegotiationsonclimatechangepolicies.PeterNijkampetal.discussedthecom-plexmodelingissuesrelatedtotheincorporationofinternationalenvironmentalpolicymeasuresinoneofthepopularappliedgen-eralequilibriummodelsforinternationaltrade,theso-calledGTAPmodel[191].Approachingtheanalysisofclimatepoliciesfromaspatialorganizationperspectiveisnecessaryforrealizingbotheffi-cientandeffectivemitigationofGHGemissions.Inparticular,itallowsassessingthepotentialcontributionofspecificmechanismsofspatialorganizationandrelatedspatialplanningandpolicytoclimatepolicygoals.Sofar,thisspatialorganizationangleofcli-matepolicyhashardlyreceivedattentionintheliterature.ThemainsectorsignificantlycontributingtoGHGemissionsandsensi-tivetospatialorganizationandplanningisurbantransport.FabioGraziandvandenBerghprovidedaqualitativeevaluationoftheavailablespatialorganizationpolicyoptions,onthebasisoffourstandardEcriterianamely(social)efficiency,effectiveness,equityandenforcementandadecompositionofCO2emissions[192].Amulti-sector,multi-regiontrademodel(MS-MRT)wasdevel-opedbyBernsteinetal.thatfocusesontheinternationaltradeaspectsofclimatechangepolicies[193].AdamRosesuggestedthatconsiderationbegiventoanequitablesharingoftheeconomicimpactsofglobalwarmingpolicy[194].Customaryinternationallawhasthatcountriesmaydoeachothernoharm.Acountryviolatesthisruleifanactivityunderitscontroldoesdamagetoanothercountryandifthisisdoneonpurposeorduetocare-lessness.Impactsofclimatechangefallunderthisrule,whichisreinforcedbymanydeclarationsandtreatiesincludingtheUNFCCC.TolandRodaVerheyenpredictedthatstateresponsibilitycouldsubstantiallychangeinternationalclimatepolicy[195].SteinarAndresenandAgrawalailluminatedtheroleofleadershipexertedbyindividuals,institutionsandnation-statesatvariousstagesoftheglobalclimatechangeregimeandfourformsofleadershipintel-lectual,instrumental,power-basedanddirectional,wereidentified[196].

S.VijayaVenkataRamanetal./RenewableandSustainableEnergyReviews16 (2012) 878–897

893

9.1.Influenceofscienceandtechnology

TherecentlandmarkreportbytheNationalAcademyofSci-encesreviewedthescienceonwhichtheKyotoProtocolwasbasedandconcludedthatthepolicychoicesandthemandatoryreduc-tionsinGHGbythedevelopednationswerebasedonincompletesciencewithsignificantuncertainties,providinganewframeworkforconsiderationofglobalwarmingissues[197].Mossfeltfromhisstudiesthatinfuture,furtherinteractionisneededbetweenthepolicyandscientificcommunitiestohelppolicymakersabet-terunderstandingofthecomplexitiesoftheclimatesystemandtoassurethatthescientificcommunityprovidesinformationthatisusefultoevaluatingalternativeresponsestoclimatechange[198].SandenandChristianofferedsuggestionsforthesituationswhenitcomestonear-termtechnologypoliciesforlong-termcli-matetargetsbasedonsomeinsightsintothenatureoftechnicalchange[199].KhannaandChapmanexaminedthevalidityofstan-dardassumptionsusedinclimateeconomymodelsandexploredthepolicyconsequencesofchangingthemtoreflectactualasopposedtopostulatedtrends[200].Ottoetal.studiedthecost-effectivenessofclimatepolicyiftherearetechnologyexternalitiesandfoundthatcost-effectivenessofclimatepolicyimprovesifitisdifferentiatedbetweentechnologies[201].HenrikLundmadepre-liminaryrecommendationsforpoliciestoencouragetheuseoftheKyotomechanismsasanaccelerationofthenecessarytechnolog-icalinnovation[202].Untilrecentlyendogenoustechnicalchangeanduncertaintyhavebeenmodeledseparatelyinclimatepolicymodels.ErinBakerandEkundayoShittureviewedtheemerginglit-eraturethatconsidersboththeseelementstogetherandindicatedthatexplicitlyincludinguncertaintyhasimportantquantitativeandqualitativeimpactsonoptimalclimatechangetechnologypoli-cies[203].

9.2.Influenceofsustainabledevelopment

Climatechangeandsustainabledevelopmenthavebeenaddressedinlargelyseparatecirclesinbothresearchandpol-icy.Nevertheless,therearestronglinkagesbetweenthetwoinbothrealms.RobSwartetal.focusedonthescientificlink-agesanddiscussedtheopportunitiestheyprovideforintegratedpolicydevelopmentandthenecessitytoconsidertheriskoftrade-offsbetweentheclimatechangeandsustainabledevel-opment[204].BertMetzetal.presentedsomeevidencethatshiftingemphasisfromemissionreductiontosustainabledevel-opmentneedsinthepolicy-makingcancontributesignificantlytorelievingthethreatofhuman-inducedclimatechange[205].AdilNajametal.arguedthatreturningtothebasicprinciplesout-linedintheUNFCCCinsearchingforanorth–southbargainonclimatechangecouldbeachievedonlyifwecouldrealignthepolicyarchitectureoftheclimateregimetoitsoriginalstatedgoalsofsustainabledevelopment[206].AdilNajametal.reviewedhowsustainabledevelopmentwastreatedinpriorassessmentreportsoftheIPCCandpresentedproposalsonhowitmightbeintegratedintotheforthcomingFourthassessmentReport[207].

10.Conclusion

TheThirdAssessmentReportpublishedbytheIPCCin2001states,‘thereisnewandstrongerevidencethatmostofthewarm-ingobservedoverthelast50yearsisattributabletohumanactivities’.Hence,itispossibletomitigatetheclimatechangeandGHGemissionstoacertainlevel,thoughnotcompletely,byhumanbeings.TheClimateChange,MitigationandAdaptationhavebeenreviewedasfollows.

•Thereareprovingfactsfortheimpactofclimatechangeonvariouscomponentsofthebiospherelikeair,water,plants,ani-malsandhumanbeings,which,ifnotactedupon,mayleadtocatastrophes.Climatechangeinfluencesairquality,increasesthedominanceofcyanobacteriainwaterbodies,affectsqualityofdrinkingwater,achangeinthehydrologicalcycle,implicationsonfluvialgeomorphology,rangelimitsofplantspecies,adverseimpactsonwildlife.

•Thecrucialproblemthattheworldisfacingtoday,theglobalwarmingisdiscussed,includingtheglobalwarmingpotential(GWP)anditsinfluenceoneconomy.Climatechangehasasayonfisheries,whichaffectsthemarineeconomy,woolindustryprincipallyonforage,waterresources,landcarryingcapacityandanimalhealth,ontourismaffectingtheGDPby−0.3–0.5%in2050andagriculturebasedontemperaturerise,waterqualityandavailability.

•Thepotentialimpactsofclimatechangeonhumanhealtharesignificant,rangingfromdirecteffectssuchasheatstressandflooding,toindirectinfluencesincludingchangesindis-easetransmissionandmalnutritioninresponsetoincreasecompetitionforcropandwaterresources.Itchangestheepi-demiologyofinfectiousdiseasesandthevector-bornediseaseswillbecomemorecommonastheearthwarmsandimpactsonmortalitythroughillhealth,particularlyamongtheelderly,insummer.

•InadditiontoenergyrelatedR&D,alsoimportantaretheR&DforCO2absorptionandfixationforfundamentalsolutiontoglobalwarming.

•Variousmitigationstrategiesalongwiththeeconomyimplica-tionsarebriefed.

•Carbonsequestration,oneoftheeffectivemitigationtechniques,iselaboratedwithitssub-typesoceanandgeologicalsequestra-tionandsequestrationinagriculturalsoilsandforests.Adequatelong-termmonitoringandmaintenanceofthecarbonseques-trationsites,usingbondingmechanismsshouldbethefutureresearchconcern.

•Thecleandevelopmentmechanism(CDM),oneofthemostrecommendedandpromisingtechnologyformitigation,intro-ducedundertheKyotoProtocolisreviewed.Cost-effectiveandimmediatetoimplementCDMistheneedofthehour.FundingforGHGmitigationprojectsindevelopingcoun-triesiscrucialforaddressingtheglobalclimatechangeproblem.

•Theimportanceofthesynergybetweenmitigationandadap-tationisquoted.Therearealsoincreasingcallsforresearchtodefinetheoptimalmixofmitigationandadaptation.Itisnotsufficienttoconcentrateoneithermitigationoradapta-tion,butacombinationoftheseresultsinthemostsustainableoutcomes.

•Theeconomicaspectsofemissions,includingthecarbontaxandemissiontrading,havebeenstudied.ThelossinrealGDPduetoKyotocommitmentsisoneandahalftimeshigherthanobtainedunderstandardassumptions.

•AhighcarbontaxforcarbonintensivetradablesectorsinthecooperatingcountrieswillreducetheproductionofgoodfromthesesectorsandhencetheCO2emissionsinthecooperatingcountrieswillalsoreduce.

•Theexistingpoliciesandtheamendmentsneededinthefram-ingofnewpolicieshavebeenreviewed.Theportfoliosofpolicyinstrumentsusedbytheindustrializedcountriesintheirevolv-ingclimatechangestrategiesshouldbewidened,increasingthecoverageofthosepolicyinstrumentstoallsectors.Inscalingthepolicyresponsestoclimatechange,localthinkingmustbecou-pledwithglobalandnationalscalesofactioninordertoachievethelevelsofCO2reductionsneededtoavoiddangerousclimateimpacts.

894S.VijayaVenkataRamanetal./RenewableandSustainableEnergyReviews16 (2012) 878–897

•Fourformsofleadershipintellectual,instrumental,power-basedanddirectionalarerequiredforenforcementofglobalclimatechangemitigationpoliciesinthesociety.

References

[1]SergePlanton,MichelDeque,FabriceChauvin,LaurentTerray.Expected

impactsofclimatechangeonextremeclimateevents.ComptesRendusGeo-sciences2008;340(9–10):564–74.

[2]MacdonaldRW,HarnerT,FyfeJ.RecentclimatechangesintheArcticandits

impactoncontaminantpathwaysandinterpretationoftemporaltrenddata.ScienceoftheTotalEnvironment2005;342(1–3):5–86.

[3]AnisimovOA,ShiklomanovNI,NelsonFE.Globalwarmingandactive-layer

thickness:resultsfromtransientgeneralcirculationmodels.GlobalandPlan-etaryChange1997;15(3–4):61–77.

[4]BershadskiiA.Transitionalsolardynamicsandglobalwarming.PhysicsA:

StatisticalMechanicsanditsApplication2009;388(15–16):3213–24.

[5]ArnellNW.Factorscontrollingtheeffectsofclimaticchangeonriver

flowregimesinahumidtemperateenvironment.JournalofHydrology1992;132(1–4).

[6]HirstAC.TheSouthernOceanresponsetoglobalwarmingintheCSIRO

coupledocean-atmospheremodel.EnvironmentalModellingandSoftware1999;14(4):227–41.

[7]MonirulQaderMirzaM.Globalwarmingandchangesintheprobabilityof

occurrenceoffloodsinBangladeshandimplications.GlobalEnvironmentalChange2002;12(2):127–38.

[8]MohammedFazlulKarim,NobuoMimura.Impactofclimatechangeandsea-levelriseoncyclonicstormsurgefloodsinBangladesh.GlobalEnvironmentalChange2008;18(3):490–500.

[9]YuzuruMatsuoka,MikikoKainuma,TsuneyukiMorita.Scenarioanalysisof

globalwarmingusingtheAsiaPacificIntegratedModel(AIM).EnergyPolicy1995;23(4–5):357–71.

[10]vanMinnenJG,JaninaOnigkeit,JosephAlcamo.Criticalclimatechangeas

anapproachtoassessclimatechangeimpactsinEurope:developmentandapplication.EnvironmentalScienceandPolicy2002;5(4):335–47.

[11]RobertVautard,DidierHanglustaine.Impactofglobalclimatechangeon

regionalairquality:introductiontothethematicissue.ComptesRendusGeosciences2007;339(11–12):703–8.

[12]MooijWM,DeSenerpontD,JanseJH.Linkingspecies-andecosystem-level

impactsofclimatechangeinlakeswithacomplexandaminimalmodel.EcologicalModelling2009;220(21):3011–20.

[13]DelplaI,JungaAV,BauresE,ClementM,ThomasO.Impactofclimatechange

onsurfacewaterqualityinrelationtodrinkingwaterproduction.Environ-mentInternational2009;35(8):1225–33.

[14]WrightRF,AherneJ,BishopK,CamareroL,CosbyBJ,ErlandssonM,etal.

Modelingtheeffectofclimatechangeonrecoveryofacidifiedfreshwaters:relativesensitivityofindividualprocessesintheMAGICmodel.ScienceoftheTotalEnvironment2006;365(1–3):154–66.

[15]AngelUtset,MatildeBorroto.Amodeling–GISapproachforassessingirriga-tioneffectsonsoilsalinisationunderglobalwarmingconditions.AgriculturalWaterManagement2001;50(1):53–63.

[16]PascalGoderniaux,SergeBrouyere,FowlerHJ,Stephenblenkinsop,Renether-riend,PhillipeOrban,etal.Largescalesurface-subsurfacehydrologicalmodetoassessclimatechangeimpactsongroundwaterreserves.JournalinHydrol-ogy2009;373(1–2):122–38.

[17]GoyalRK.Sensitivityofevapotranspirationtoglobalwarming:acase

studyofaridzoneofRajasthan(India).AgriculturalWaterManagement2004;69(1):1–11.

[18]GuoxinTan,RyosukeShibasaki.Globalestimationofcropproductivityandthe

impactsofglobalwarmingbyGISandEPICintegration.EcologicalModeling2003;168(3):357–70.

[19]GoudieAS.Globalwarmingandfluvialgeomorphology.Geomorphology

2006;79(3–4):384–94.

[20]FearnsidePM.Savingtropicalforestsasaglobalwarmingcountermeasure:

anissuethatdividestheenvironmentalmovement.EcologicalEconomics2001;39(2):167–84.

[21]AndrzejBytnerowicz,KenjiOmasa,ElenaPaoletti.Integratedeffectsofair

pollutionandclimatechangeonforests:anorthernhemisphereperspective.EnvironmentalPollution2007;147(3):438–45.

[22]DyerJM.Landusepattern,forestmitigation,andglobalwarming.Landscape

andUrbanPlanning1994;29(2–3):77–83.

[23]TonyPrato.Evaluatingandmanagingwildlifeimpactsofclimatechange

underuncertainty.EcologicalModeling2009;220(7):923–30.

[24]AkiraOnishi.TheimpactofCO2emissionsontheworldeconomy:

policysimulationsofFUGIglobalmodel.JournalofPolicyModeling2007;28(6):797–819.

[25]KeithBrander.Impactsofclimatechangesonfisheries.JournalofMarine

Systems2010;79(3–4):389–402.

[26]HarleKJ,HowdenSM,HuntLP,DunlopM.Thepotentialimpactofcli-matechangeontheAustralianwoolindustryby2030.AgriculturalSystems2007;93(1–3):61–89.

[27]MariaBerrittella,AndreaBigano,RobertoRoson,TolRSJ.Ageneralequilib-riumanalysisofclimatechangeimpactsontourism.TourismManagement2006;27(5):913–24.

[28]SusanneBecken.Harmonizingclimatechangeadaptationandmitigation:

thecaseoftouristresortsinFiji.GlobalEnvironmentalChangePartA2005;15(4):381–93.

[29]KoetseMJ,PietRietveld.Theimpactofclimatechangeandweatherontrans-port:anoverviewofempiricalfindings.TransportationResearchPartD:TransportandEnvironment2009;14(3):205–21.

[30]RaduZmeureanu,GuillaumeRenaud.Estimationofpotentialimpactofcli-matechangeontheheatingenergyuseofexistinghouses.EnergyPolicy2008;36(1):303–10.

[31]RobertMendelsohn.Chapter60pastclimatechangeimpactsonagriculture.

HandbookofAgriculturalEconomics2007;3:3009–31.

[32]TubielloFN,GuntherFischera.Reducingclimatechangeimpactsonagri-culture:globalandregionaleffectsofmitigation,2000-2080.TechnologicalForecastingandSocialChange2007;74(7):1030–56.

[33]BernardTinkerP,IngramJSI,StenStruwe.Effectsofslash-and-burnagri-cultureanddeforestationonclimatechange.Agriculture,EcosystemandEnvironment1996;58(1):13–22.

[34]RivingtonM,MatthewKB,BellocchiG,BuchanK,StocklecCO,DonatelliM.

Anintegratedassessmentapproachtoconductanalysisofclimatechangeimpactsonwhole-farmsystems.EnvironmentalModellingandSoftware2007;22(2):202–10.

[35]ChakraborthyS,TiedemannAV,TengPS.Climatechange:potentialimpacton

plantdiseases.EnvironmentalPollution2000;108(3):317–26.

[36]TrudieDockerty,AndrewLovett,GillaSunnenberg,KatyAppleton,Martin

Parry.Visualizingthepotentialimpactsofclimatechangeonrurallandscapes.Computers,EnvironmentandUrbanSystems2005;29(3):297–320.

[37]GuntherF,TubielloaFN,vanVelthuizenaH,WibergaDA.Climatechange

impactsonirrigationwaterrequirements:effectsofmitigation,1990-2080.TechnologicalForecastingandSocialChange2007;74(4):1083–107.

[38]ThorntonPK,VandeSteegJ,NotenbaertA,HerreroM.Theimpactsofcli-matechangeonlivestockandlivestocksystemsindevelopingcountries:areviewofwhatweknowandwhatweneedtoknow.AgriculturalSystems2009;101(3):13–27.

[39]HuntingfordC,HemmingD,GashJHC,GedneyN,NuttallPA.Impactofclimate

changeonhealth:whatisrequiredofclimatemodelers?TransactionsoftheRoyalSocietyofTropicalMedicineandHygiene2007;101(2):97–103.

[40]KhasnisAA,NettlemanMD.Globalwarmingandinfectiousdisease.Archives

ofMedicalResearch2005;36(6):689–96.

[41]FrancescoBoselloa,RobertoRoson,TolRSJ.Economy-wideestimatesof

theimplicationsofclimatechange:humanhealth.EcologicalEconomics2006;58(3):579–91.

[42]PretiA,LentiniG,Maugeri.Globalwarmingpossiblylinkedtoanenhanced

riskofsuicide:datafromItaly,1974-2003.JournalofAffectiveDisorders2007;102(1–3):19–25.

[43]YasuhiroMurota,KokichiIto.Globalwarminganddevelopingcountries:

thepossibilitiesofasolutionbyacceleratingdevelopment.EnergyPolicy1996;24(12):1061–77.

[44]DuttaPK,RoyR.Astrategicanalysisofglobalwarming:theoryandsome

numbers.JournalofEconomicBehavior&Organization2009;71(2):187–209.[45]AlessioAlexiadis.Globalwarmingandhumanactivity:amodelforstudying

thepotentialinstabilityofthecarbon-dioxide/temperaturefeedbackmech-anism.EcologicalModeling2007;203(3–4):243–56.

[46]HonjoK.R&Dfortechnologytosolveglobalwarming.JournalofMaterials

ProcessingTechnology1996;59(3):218–20.

[47]AkiraSekiya.Theevaluationoftimevariationglobalwarmingeffects,

TWPAandCWP,forCFCalternatives.JournalofFluorineChemistry2007;128(10):1137–42.

[48]KumarS,MondalAN,GaikwadSA,DevottaS,SinghRN.Qualitativeassess-mentofmethaneemissioninventoryfrommunicipalsolidwastedisposalsites:acasestudy.AtmosphericEnvironment2004;38(29):4921–9.

[49]DannyHarveyLD.Aguidetoglobalwarmingpotentials.EnergyPolicy

1993;21(1):24–34.

[50]FrensidePM.Timepreferenceinglobalwarmingcalculations:aproposalfor

aunifiedindex.EcologicalEconomics2002;41(1):21–31.

[51]KoMKW,NienDakSze,GyulaMolnar,PratherMJ.Globalwarmingfromchlo-rofluorocarbonsandtheiralternatives:timescalesofchemistryandclimate.AtmosphericEnvironment1993;27(4):581–7.

[52]TapscottRE,DouglasMatherJ.Tropodegradablefluorocarbonreplacements

forozone-depletingandglobalwarmingchemicals.JournalofFluorineChem-istry2000;101(2):209–13.

[53]DrageEA,JakschD,SmithKM,McPheatRA,VasekovaE,MasonNJ.FTIR

spectroscopyandestimationoftheglobalwarmingpotentialofCF3BrandC2F4.JournalofQuantitativeSpectroscopyandRadiativeTransfer2006;98(1):44–56.

[54]TatsuruShirafuji,AkiraKamisawa,TakaakiShimasaki,YasuakiHayashi,

ShigehiroNishino.Plasmaenhancedchemicalvapordepositionofthermallystableandlow-dielectricconstantfluorinatedamorphouscarbonfilmsusinglowglobalwarmingpotentialgasC5F8.ThinSolidFilms2000;374(2):256–61.[55]In-TaeJeong,Kun-MoLee.Assessmentoftheecodesignimprovementoptions

usingtheglobalwarmingandeconomicperformanceindicators.JournalofCleanerProduction2009;17(13):1206–13.

[56]WoodwardRT,BishopRC.Efficiency,sustainabilityandglobalwarming.Eco-logicalEconomics1995;14(2):101–11.

[57]AlfredGreiner,WilliSemmler.Economicgrowthandglobalwarming:amodel

ofmultipleequilibriaandthresholds.JournalofEconomicBehaviourandOrganization2005;57(4):430–47.

S.VijayaVenkataRamanetal./RenewableandSustainableEnergyReviews16 (2012) 878–897

895

[58]JenkinsTN.Democratisingtheglobaleconomybyecologisingeconomies:the

exampleofglobalwarming.EcologicalEconomics1996;16(3):227–38.

[59]LarryCarp.Globalwarmingandhyperbolicdiscounting.JournalofPublic

Economics2005;89(2–3):261–82.

[60]MicheldenElzen,NiklasHohne,SaraMoltmann.TheTriptychapproach

revisited:astagedsectoralapproachforclimatemitigation.EnergyPolicy2008;36(3):1107–24.

[61]ThompsonAM,HoganKB,HoffmanJS.Methanereductions:implicationsfor

globalwarmingandatmosphericchemicalchange.AtmosphericEnviron-mentPartAGeneralTopics1992;26(14):2665–8.

[62]MicheldenElzen,MalteMeinshausen,DetlefvanVuuren.Multi-gasemis-sionenvelopestomeetgreenhousegasconcentrationtargets:costsversuscertaintyoflimitingtemperatureincrease.GlobalEnvironmentalChange2007;17(2):260–80.

[63]TimJackson.Least-costgreenhouseplanningsupplycurvesforglobalwarm-ingabatement.EnergyPolicy1991;19(1):35–46.

[64]KeigoAkimoto,ToshimasaTomoda,YasumasFujii,KenjiYamaji.Assessment

ofglobalwarmingmitigationoptionswithintegratedassessmentmodelDNE21.EnergyEconomics2004;26(4):635–53.

[65]PreiningO.Globalwarming:greenhousegasesversusaerosols.Thescience

oftheTotalEnvironment1992;126(1–2):199–204.

[66]vanVuurenDP,deVriesHJM.Mitigationscenariosintheworldoriented

insustainabledevelopment:theroleoftechnology,efficiencyandtiming.ClimatePolicy2001;1(2):189–210.

[67]JosSijm,JaapJansen,AsbjornTorvanger.Differentiationofmitigation

commitments:themulti-sectorconvergenceapproach.ClimatePolicy2001;1(4):481–97.

[68]SannaSyri,AnttiLehtila,TommiEkholma,IlkkaSavolainen,HanneleHolt-tinen,EsaPeltola.Globalenergyandemissionscenariosforeffectiveclimatechangemitigation-deterministicandstochasticscenarioswiththeTIAMmodel.InternationalJournalofGreenhouseGasControl2008;2(2):274–85.

[69]SemenzaJC,HallDE,WilsonDJ,BontempoBD,SailorDJ,GeorgeLA.Pub-licperceptionofclimatechange:voluntarymitigationandbarrierstobehaviorchange.AmericanJournalofPreventiveMedicine2008;35(5):479–87.

[70]Stoll-KleemannS,TimO’Riordan,JaegerCC.Thepsychologyofdenialconcern-ingclimatemitigationmeasures:evidencefromSwissfocusgroups.GlobalEnvironmentChange2001;11(2):107–17.

[71]DailaStreimikiene,StasysGirdzijaukasa.Assessmentofpost-Kyotoclimate

changemitigationregimesimpactonsustainabledevelopment.RenewableandSustainableEnergyReviews2009;13(1):129–41.

[72]HuntingtonHG,BrownSPA.Energysecurityandglobalclimatechangemiti-gation.EnergyPolicy2004;32(6):715–8.

[73]HadiDowlatabadi.Sensitivityofclimatechangemitigationestimates

toassumptionabouttechnicalchange.EnergyEconomics1998;20(5–6):473–93.

[74]ChandlerWU,MeredyddEvans,AlexanderKolesov.Climatechangemiti-gation:areviewofcostestimatesandmethodologiesforthepost-plannedeconomies.EnergyPolicy1996;24(10–11):927–35.

[75]AlexanderRoehrlR,KeywanRiahi.Technologydynamicandgreenhousegas

emissionsmitigation:acostassessment.TechnologyForecastingandSocialChange2000;63(2–3):231–61.

[76]KirstenH.Theeconomicsofclimatechangemitigationindevelopingcoun-tries.EnergyPolicy1996;24(10–11):917–26.

[77]ValentinaBosetti,CarloCarraro,MassimoTavoni.Climatechangemitiga-tionstrategiesinfast-growingcountries:thebenefitsofearlyaction.EnergyEconomics2009;31(2):S144–51.

[78]HarriLaurikka,UrsSpringer.Riskandreturnofproject-basedclimate

changemitigation:aportfolioapproach.GlobalEnvironmentalChange2003;13(3):207–17.

[79]UrsSpringer.Internationaldiversificationofinvestmentsinclimatechange

mitigation.EcologicalEconomics2003;46(1):181–93.

[80]Jean-CharlesHourcade,JohnRobinson.Mitigatingfactors:assessingthecosts

ofreducingGHGemissions.EnergyPolicy1996;24(10–11):863–73.

[81]AtsushiKurosawa.Carbonconcentrationtargetandtechnologicalchoice.

EnergyEconomics2004;26(4):675–84.

[82]DavidGerard,WilsonEJ.Environmentalbondsandthechallengeof

long-termcarbonsequestration.JournalofEnvironmentalManagement2009;90(2):1097–105.

[83]LionelRagot,KathelinSchubert.Theoptimalcarbonsequestrationinagri-culturalsoils:dothedynamicsofthephysicalprocessmatter?JournalofEconomicDynamicsandControl2008;32(12):3847–65.

[84]GrimstonMC,KarakoussisV,FouquetR,vanderVorstR,PearsonP,LeachM.

TheEuropeanandglobalpotentialofcarbondioxidesequestrationintacklingclimatechange.ClimatePolicy2001;1(2):155–71.

[85]IsraelssonPH,ChowAC,EricAdamsE.Anupdatedassessmentoftheacute

impactsofoceancarbonsequestrationbydirectinjection.EnergyProcedia2009;1(1):4929–36.

[86]ChowAC,AdamsEE,IsraelssonPH,TsourisC.Carbondioxidehydrateparticles

foroceancarbonsequestration.EnergyProcedia2009;1(1):4937–44.

[87]JonesISF,OtaeguiD.Photosyntheticgreenhousegasmitigationbyocean

nourishment.EnergyConservationandManagement1997;38(1):S367–72.[88]PricePN,OldenburgCM.Theconsequencesoffailureshouldbeconsideredin

sitinggeologiccarbonsequestrationprojects.InternationalJournalofGreen-houseGasControl2009;3(5):658–63.

[89]LeNeveuDM.CQUESTRA,ariskperformanceassessmentcodefoegeologi-calsequestrationofcarbondioxide.EnergyConservationandManagement2008;49(1):32–46.

[90]GiammarDE,BruantJrRG,PetersCA.Forsteritedissolutionandmagne-siteprecipitationatconditionsrelevantfordeepsalineaquiferstorageandsequestrationofcarbondioxide.ChemicalGeology2005;217(3–4):257–76.[91]LisaBacanskas,AnharKarimjee,KayleneRitter.Towardpracticalapplica-tionofthevulnerabilityevaluationframeworkforgeologicalsequestrationofcarbondioxide.EnergyProcedia2009;1(1):2565–72.

[92]OldenburgCM,BryantSL,Jean-PhilippeNicot.Certificationframeworkbased

oneffectivetrappingforgeologiccarbonsequestration.InternationalJournalofGreenhouseGasControl2009;3(4):444–57.

[93]KeigoAkimoto,MasatoTakagi,ToshimasaTomoda.Economicevaluationof

thegeologicalstorageofCO2consideringthescaleofeconomy.InternationalJournalofGreenhouseGasControl2007;1(2):271–9.

[94]PetraTschakert.Thecostsofsoilcarbonsequestration:aneconomic

analysisforsmall-scalefarmingsysteminSenegal.AgriculturalSystems2004;81(3):227–53.

[95]ThomsonAM,CesarIzaurraldeR,SmithSJ,ClarkeLE.Integratedesti-matesglobalterrestrialcarbonsequestration.GlobalEnvironmentalChange2008;18(1):192–203.

[96]PandeyDN.Carbonsequestrationonagroforestrysystems.ClimatePolicy

2002;2(4):367–77.

[97]AlainAlbrecht,KandjiST.Carbonsequestrationintropicalagroforestrysys-tems.Agriculture,EcosystemsandEnvironment2003;99(1–3):15–27.

[98]KarenUpdegraff,ZimmermanPR,MaribethPrice,CapehartWJ.C-Lock:an

onlinesystemtostandardizetheestimationofagriculturalcarbonseques-trationcredits.FuelProcessingTechnology2005;86(14–15):1695–704.

[99]JohnAntle,SusanCapalbo,SianMooney,EdwardElliott,KeithPaustian.Spa-tialheterogeneity,contractdesignandtheefficiencyofcarbonsequestrationpoliciesforagriculture.JournalofEnvironmentalEconomicsandManage-ment2003;46(2):231–50.

[100]PeteSmith.Carbonsequestrationincroplands:thepotentialinEuropeand

globalcontext.EuropeanJournalofAgronomy2004;20(3):229–36.

[101]BradSeely,CliveWelham,HamishKimmins.Carbonsequestrationinboreal

forestecosystem:resultsfromtheecosystemsimulationmodel,FORECAST.ForestEcologyandManagement2002;169(1–2):123–35.

[102]FollettRF.Soilmanagementconceptsandcarbonsequestrationincropland

soils.SoilandTillageResearch2001;61(1–2):77–92.

[103]YangXM,DruryCF,WanderMM,KayBD.Evaluatingtheeffectoftillageoncar-bonsequestrationusingminimumdetectabledifferenceconcept.Pedosphere2008;18(4):421–30.

[104]YadavV,MalansonGP,BekeleE,LantC.Modelingwatershed-scaleseques-trationofsoilorganic,carbonforcarboncreditprograms.AppliedGeography2009;29(4):488–500.

[105]LalR.Forestsoilsandcarbonsequestration.ForestEcologyandManagement

2005;220(1–3):242–58.

[106]MondiniC,CayuelaML,SiniccoT,CordaroF,RoigA,Sanchez-Monedero

MA.Greenhousegasemissionandcarbonsinkcapacityofamendedsoilsevaluatedunderlaboratoryconditions.SoilBiologyandBiochemistry2007;39(6):1366–74.

[107]ParrJF,SullivanLA.Soilcarbonsequestrationinphytoliths.SoilBiologyand

Biochemistry2005;37(1):117–24.

[108]HutchinsonJJ,CampbellCA,DesjardinsRL.Someperspectiveoncar-bonsequestrationinagriculture.AgricultureandForestMeteorology2007;142(2–4):288–302.

[109]ShresthaRajK,LalR.Ecosystemsoilbudgetingandsoilcarbonsequestration

inreclaimedminesoil.EnvironmentInternational2006;32(6):781–96.

[110]KennethR,KristerA.Theleaky-sink:persistentobstaclestoaforestcar-bonsequestrationprogrambasedonindividualprojects.ClimatePolicy2001;1(1):41–51.

[111]SofiaBackeus,PederWikstrom,TomasLamas.Amodelforregionalanalysis

ofcarbonsequestrationandtimberproduction.ForestEcologyandManage-ment2005;216(1–3):28–40.

[112]MolDijkstraJP,GertJanReinds,HansKros,BjornBerg,WimdeVries.

ModelingsoilcarbonsequestrationofintensivelymonitoredforestplotsinEuropebythreedifferentapproaches.ForestEcologyandManagement2009;258(8):1780–93.

[113]TimoKarjalainen,AriPussinen,SeppoKellomaki,RaisaMakipaa.Scenarios

forthecarbonbalanceofFinnishforestsandwoodsproducts.EnvironmentalScienceandPolicy1999;2(2):165–75.

[114]SinghPP.Exploringbiodiversityandclimatechangebenefitsofcommunity-basedforestmanagement.GlobalEnvironmentChange2008;18(3):468–78.

[115]HashimotoS,NoseM,ObaracT,MoriguchiaY.Woodproducts:potential

carbonsequestrationandimpactonnetcarbonemissionofindustrializedcountries.EnvironmentalScience&Policy2002;5(2):183–93.

[116]Rittakorhonen,KimPingouda,IlkkaSavolainena,RobertMatthews.Therole

ofcarbonsequestrationandthetonne-yearapproachinfulfillingtheobjectiveofclimateconvention.EnvironmentalScience&Policy2002;5(6):429–41.

[117]BenitezPC,IanMcCallum,MichaelObersteiner,YoshikiYamagata.Global

potentialforcarbonsequestration:geographicaldistribution,countryriskandpolicyimplications.EcologicalEconomics2007;60(3):572–83.

[118]NiuX,DuikerS.Carbonsequestrationpotentialbyafforestationofmarginal

agriculturallandintheMidweternU.S.ForestEcologyandManagement2006;223(1–3):415–27.

896S.VijayaVenkataRamanetal./RenewableandSustainableEnergyReviews16 (2012) 878–897

[119]BaralA,GuhaGS.Treesforcarbonsequestrationorfossilfuelsubstitution:

theissueofcostvs.carbonbenefit.BiomassandBioenergy2004;27(1):41–55.

[120]YinY,XuW,ZhouS.Linkingcarbonsequestrationsciencewithlocalsus-tainability:anintegrationassessmentapproach.JournalofEnvironmentManagement2007;85(3):711–21.

[121]LiuG,SmirnovAV.Carbonsequestrationincoal-bedswithstructuraldefor-mationeffects.EnergyConversionandManagement2009;50(6):1586–94.

[122]LiuG,SmirnovAV.Modelingofcarbonsequestrationincoal-beds:

avariablesaturatedsimulation.EnergyConversionandManagement2008;49(10):2849–58.

[123]GargA,ShuklaPR.CoalandenergysecurityforIndia:roleofcarbondioxide

(CO2)captureandstorage(CCS).Energy2009;34(8):1032–41.

[124]MalcolmFowles.Blackcarbonsequestrationasanalternativetobioenergy.

BiomassandBioenergy2007;31(6):426–32.

[125]HuntzingerDN,GierkeJS,SutterLL,KomarKS,EiseleTC.Mineralcarbona-tionforcarbonsequestrationincementkilndustfromwastepiles.JournalofHazardousMaterials2009;168(1):31–7.

[126]CalebStewart,Mir-AkbarHessami.Astudyofmethodsofcarbondioxide

captureandsequestration-thesustainabilityofaphotosyntheticbioreactorapproach.EnergyConservationandManagement2005;46(3):403–20.

[127]AlenjandroCaparros,FredericJacquemont.Conflictsbetweenbiodiversity

andcarbonsequestrationprograms:economicandlegalimplications.Eco-logicalEconomics2003;46(1):143–57.

[128]RobBailis.Climatechangemitigationandsustainabledevelopmentthrough

carbonsequestration:experiencesinLatinAmerica.EnergyforSustainableDevelopment2006;10(4):74–87.

[129]LitynskiJT,PlasynskiS,McIlvriedHG,MahoneyC,SrivastavaRD.TheUnited

StatesdepartmentofEnergy’sRegionalCarbonsequestrationpartnershipsprogramvalidationphase.EnvironmentalInternational2008;34(1):127–38.

[130]KeywanRiahi,RubinES,TaylorMR,LeoSchrattenholzer,DavidHounshell.

Technologicallearningforcarboncaptureandsequestrationtechnologies.EnergyEconomics2004;26(4):539–64.

[131]Klassvan’tVelda,AndrewPlantinga.Carbonsequestrationorabatement?

Theeffectofrisingcarbonpricesontheoptimalportfolioofgreenhouse-gasmitigationstrategies.JournalofEnvironmentalEconomicsandManagement2005;50(1):59–81.

[132]GreggMarland,KristyFruit,RogerSedjo.Accountingforsequestered

carbon:thequestionofpermanence.EnvironmentalScience&Policy2001;4(6):259–68.

[133]Man-KeunKim,McCarlBA,MurrayBC.Permanencediscountingforland-basedcarbonsequestration.EcologicalEconomics2008;64(4):763–9.

[134]DmitryR,BenitezPC,FlorianKraxner,IanMcCallum,MichaelObersteiner,

EwaldRametsteiner,etal.Geographicallyexplicitglobalmodelingofland-usechange,carbonsequestration,andbiomasssupply.TechnologicalForecastingandSocialChange2007;74(7):1057–82.

[135]ErikHaites,FarhanaYamin.Thecleandevelopmentmechanism:pro-posalsforitsoperationandgovernance.GlobalEnvironmentalChange2000;10(1):27–45.

[136]JaneEllis,HaraldWinkler,JanCorfee-Morlot,FredericGagnon-Lebrun.CDM:

takingstockandlookingforward.EnergyPolicy2007;35(1):15–28.

[137]LarryCarp,XuemeiLiu.Thecleandevelopmentmechanismanditscontrover-sies.AdvancesintheEconomicsofEnvironmentalResources2001;3:265–85.

[138]DiakoulakiD,GeorgiouP,TourkoliasC,GeorgopoulouE,LasasD,Miras-gedisS,etal.Amulticriteriaapproachtoidentifyinvestmentopportunitiesfortheexploitationofthecleandevelopmentmechanism.EnergyPolicy2007;35(2):1088–99.

[139]GilauAM,RobertVanBuskirk,SmallMJ.Enablingoptimalenergyoptions

underthecleandevelopmentmechanism.EnergyPolicy2007;35(11):5526–34.

[140]DuicN,AlvesLM,ChenF,daGracaCarvalhoM.PotentialofKyotoproto-colcleandevelopmentmechanismintransferofcleanenergytechnologiestosmallislanddevelopingstates:casestudyofcapeVerde.RenewableandsustainableEnergyReviews2003;7(1):83–98.

[141]SchroederM.Utilizingthecleandevelopmentmechanismforthedeployment

ofrenewableenergiesinchina.AppliedEnergy2009;86(2):237–42.

[142]TimilsinaGR,ShresthaRM.GeneralequilibriumeffectsofasupplysideGHG

mitigationoptionunderthecleandevelopmentmechanism.JournalofEnvi-ronmentalManagement2006;80(4):327–41.

[143]MalteSchneider,AndreasHolzer,HoffmannVH.UnderstandingtheCDM’s

contributiontotechnologytransfer.EnergyPolicy2008;36(8):2930–8.

[144]BobLloyd,Srikanthsubbarao.DevelopmentchallengesundertheCDM–can

renewableenergyinitiativesbeputinplacebeforepeakoil?EnergyPolicy2009;37(1):237–45.

[145]CharikleiaKarakosta,HarisDoukas,JohnPsarras.Directingcleandevelop-mentmechanismtowardsdevelopingcountries’sustainabledevelopmentpriorities.EnergyforSustainableDevelopment2009;13(2):77–84.

[146]ZhongXiangZhang,AkiMaruyama.Towardsaprivate-publicsyn-ergyinfinancingclimatechangemitigationprojects.EnergyPolicy2001;29(15):1363–78.

[147]ShresthaRM,TimilsinaGR.Theadditionalitycriterionforidentifyingclean

developmentmechanismprojectsundertheKyotoProtocol.EnergyPolicy2002;30(1):73–9.

[148]MichaelSee.ImplementingtheKyotoProtocol’scleandevelopmentmech-anismindevelopingcountries:additionalityissues,renewablevscarbontechnologiesandemissiontrading.WorldRenewableEnergyCongressVI2000;304:1465–8.

[149]SudhakaraReddyB,BalachandraP.Climatechangemitigationandbusiness

opportunities–thecaseofthehouseholdsectorinIndia.EnergyforSustain-ableDevelopment2006;10(4):59–73.

[150]ZomerRJ,TrabuccoA,BossioDA,VerchotLV.Climatechangemitigation:a

spatialanalysisofgloballandsustainabilityforcleandevelopmentmecha-nismafforestationandreforestation.Agriculture,Ecosystems&Environment2008;126(1–2):67–80.

[151]CoomesOT,FranqueGrimard,CatherinPotvin,PhilipSima.Thefateof

thetropicalproject:carbonorcattle?EcologicalEconomics2008;65(2):207–12.

[152]AntonioTrabucco,ZomerRJ,BossioDA,OlivervanStraaten,VerchotLV.

ClimateChangemitigationthroughafforestration/reforestration:aglobalanalysisofhydrologicimpactswithfourcasestudies.Agriculture,EcosystemsandEnvironment2008;126(1–2):81–97.

[153]KleinRJT,SchipperELF,SurajDessaid.Integrationmitigationandadaptation

intoclimateanddevelopmentpolicy:threeresearchquestions.Environmen-talScience&Policy2005;8(6):579–88.

[154]TerryBarker.Representingglobalclimatechange,adaptationandmitigation.

GlobalEnvironmentalChange2003;13(1):1–6.

[155]XinshengLiu,ArnoldVedlitza,LetitiaAlstona.Regionalnewsportray-alsofglobalwarmingclimatechange.EnvironmentalScience&Policy2008;11(5):379–93.

[156]PielkeJrRA.Rethinkingtheroleofadaptationinclimatepolicy.GlobalEnvi-ronmentalChange1998;8(2):159–70.

[157]AlanIngham,JieMa,AlistairUlph.Climatechange,mitigationandadap-tationwithuncertaintyandlearning.EnergyPolicy2007;35(11):5354–69.

[158]TolRSJ.Adaptationandmitigation:trade-offsinsubstanceandmethods.

EnvironmentalScience&Policy2005;8(6):572–8.

[159]KatarinaLarsen,UlrikaGunnarsson-Osling.Climatechangescenariosand

citizen-participation:mitigationandadaptationperspectivesinconstructingsustainablefutures.HabitatInternational2009;33(3):260–6.

[160]NichollsRJ,LoweJA.Benefitsofmitigationofclimatechangeforcoastalareas.

GlobalEnvironmentalChange2004;14(3):229–44.

[161]JuliaLaukkonen,PaolaKimBlanco,JenniferLenhart,MarcoKeiner,

BrankoCavric,CeciliaKinuthia-Njenga.Combiningclimatechangeadap-tationandmitigationmeasuresatthelocallevel.HabitatInternational2009;33(3):287–92.

[162]HaminEM,NicoleGurran.Urbanformandclimatechange:balancing

adaptationandmitigationintheU.S.andAustralia.HabitatInternational2009;33(3):238–45.

[163]RobbertBiesbroekG,SwartRJ,vanderKnaapWGM.Themitigation-adaptationdichotomyandtheroleofspatialplanning.HabitatInternational2009;33(3):230–7.

[164]MichaelTucker.CarbondioxideemissionsandglobalGDP.EcologicalEco-nomics1995;15(3):215–23.

[165]KhannaN.AnalyzingtheeconomiccostofKyotoprotocol.EcologicalEco-nomics2001;38(1):56–9.

[166]YingFan,Lan-CuiLiua,GangWua,Yi-MingWei.Analyzingimpactfactors

ofcarbondioxideemissionsusingtheSTIRPATmodel.ImpactAssessmentReview2006;26(4):377–95.

[167]FransBerkhout,JuliaHertina,AndrewJordan.Socio-economicfuturesincli-maticchangeimpactassessment:usingscenariosas‘learningmachines’.GlobalEnvironmentalChange2002;12(2):83–95.

[168]TobeyJA.Economicissuesinglobalclimaticchange.GlobalEnvironmental

change1992;2(3):215–28.

[169]RolfGolombek,CatherineHagem,MichaelHoel.Efficientincomplete

internationalclimateagreements.ResourceandEnergyEconomics1995;17(1):25–46.

[170]MichaelHoel.Shouldacarbontaxbedifferentiatedacrosssectors?Journalof

PublicEconomics1996;59(1):17–32.

[171]ZhongXiangZhang,AndreaBaranzini.Whatdoweknowaboutthecarbon

taxes?Anenquiryintotheirimpactsoncompetitivenessanddistributionofincome.EnergyPolicy2004;32(4):507–18.

[172]DavidPearce.Thepoliticaleconomyofanenergytax:theUnitedKingdom’s

ClimateChangeLevy.EnergyEconomics2006;28(2):149–58.

[173]CedricPhilibert.Howcouldemissiontradingbenefitdevelopingcountries.

EnergyPolicy2000;28(13):947–56.

[174]MarcelBrauna.TheevolutionofemissiontradingintheEuropeanUnion–

theroleofpolicynetworks,knowledgeandpolicyentrepreneurs.Accounting,Organizationsandsociety2009;34(3–4):469–87.

[175]EtanGumerman,KoomeyJG,BrownMA.Strategiesforcost-effectivecar-bonreductions:asensitivityanalysisofalternativescenarios.EnergyPolicy2001;29(14):1313–23.

[176]UrsSpringer.ThemarketfortradableGHGpermitsundertheKyotoProtocol:

asurveyofmodelstudies.EnergyEconomics2003;25(5):527–51.

[177]BjartHoltsmark,OttarMaestad.EmissiontradingunderKyotoProtocol-effectsonfossilfuelmarketsunderalternativeregimes.EnergyPolicy2002;30(3):207–18.

[178]KatiaSimeonova,HaraldDiaz-Bone.Integratedclimate-changestrategiesof

industrializedcountries.Energy2005;30(14):2537–57.

[179]PopiKonidari,DimitriosMavrakis.Amulti-criteriaevaluationmethod

forclimatechangemitigationpolicyinstruments.EnergyPolicy2007;35(12):6235–57.

[180]HalTurton.ECLIPSE:anintegratedenergy-economymodelforclimatepolicy

andscenarioanalysis.Energy2008;33(12):1754–69.

S.VijayaVenkataRamanetal./RenewableandSustainableEnergyReviews16 (2012) 878–897

897

[181]SovacoolBK,BrownMA.Scalingthepolicyresponsetoclimatechange.Policy

andSociety2009;27(4):317–28.

[182]BruceTonn.Anequityfirst,risk-basedframeworkformanagingglobalclimate

change.GlobalEnvironmentalChange2003;13(4):295–306.

[183]JanCorfee-Morlot,NiklasHohne.Climatechange:long-termtargets

andshort-termcommitments.GlobalEnvironmentalChange2003;13(4):277–93.

[184]MasamiOnoda.Satelliteobservationofgreenhousegases:monitoringchange

regime.SpacePolicy2008;24(4):190–8.

[185]AndreaBaranzini,MarcChesney,JacquesMorisset.Theimpactofpossible

catastrophesonglobalwarmingpolicy.EnergyPolicy2003;31(8):691–701.

[186]ScherageJD,LearyNA.ImprovingthelearningofpoliciestoreduceCO2emis-sions.EnergyPolicy1992;20(5):394–404.

[187]TonyPrato.Conceptualframeworkforassessmentandmanagementof

ecosystemimpactsofclimatechange.EcologicalComplexity2008;5(4):329–38.

[188]StakhivEZ.Policyimplicationsofclimatechangeimpactsonwaterresources

management.WaterPolicy1998;1(2):159–75.

[189]JohanSliggers.Theneedformoreintegratedpolicyforairquality,acidification

andclimatechange:reactivenitrogenlinksthemall.EnvironmentalScienceandPolicy2004;7(1):47–58.

[190]ClaudiaKemfert.Globaleconomicimplicationsofalternativeclimatepolicy

strategies.EnvironmentalScienceandPolicy2002;5(5):367–84.

[191]PeterNijkamp,ShunliWang,HansKremers.Modelingtheimpactsofinterna-tionalclimatechangepoliciesinaCGEcontext:theuseoftheGTAPEmodel.EconomicModeling2005;22(6):955–74.

[192]FabioGrazi,vandeBerghJCJM.Spatialorganization,transport,andclimate

change:comparinginstrumentsofspatialplanningandpolicy.EcologicalEconomics2008;67(4):630–9.

[193]BernsteinPM,DavidMontgomeryW,RutherfordThF.Globalimpactsofthe

Kyotoagreement:resultsfromtheMS-MRTmodel.ResourceandEnergyEconomics1999;21(3–4):375–413.

[194]AdamRose.Reducingconflictinglobalwarmingpolicy:thepotentialofequity

asaunifyingprinciple.EnergyPolicy1990;18(10):927–35.

[195]TolRSJ,RodaVerheyen.Stateresponsibilityandcompensationforcli-matechangedamages–alegalandeconomicassessment.EnergyPolicy2004;32(9):1109–30.

[196]SteinarAndresen,AgrawalaS.Leaders,pushersandlaggardsinthemakingof

theclimateregime.GlobalEnvironmentalChange2002;12(1):41–51.

[197]BarnardRC,MorganDL.TheNationalAcademyofSciencesoffersanew

frameworkforaddressingglobalwarmingissues.RegulatoryToxicologyandPharmacology2000;31(1):112–6.

[198]MossRH.Avoiding‘dangerous’interferenceintheclimatesystem:theroles

ofvalues,scienceandpolicy.GlobalEnvironmentChange1995;5(1):3–6.

[199]SandenBA,ChristianA.Near-termtechnologypoliciesforlong-termclimate

targets-economywideversustechnologyspecificapproaches.EnergyPolicy2005;33(12):1557–76.

[200]KhannaN,ChapmanD.Energyefficiencyandpetroleumdepletionincli-matechangepolicy.AdvancesintheEconomicsofEnvironmentalResources2001;3:239–64.

[201]OttoVM,AndreasLoschel,JohnReilly.Directedtechnicalchangeanddiffer-entiationofclimatechangepolicy.EnergyEconomics2008;30(6):2855–78.

[202]HenrikLund.TheKyotomechanismsandtechnologicalinnovation.Energy

2006;31(13):2325–32.

[203]ErinBaker,EkundayoShittu.Uncertaintyandendogenoustechnicalchange

inclimatepolicymodels.EnergyEconomics2008;30(6):2817–28.

[204]RobSwart,JohnRobinson,StewartCohen.Climatechangeandsustainable

development:expandingtheoptions.ClimatePolicy2003;3(1):S19–40.

[205]BertMetz,MarcelBerk,MicheldenElzen,BertdeVries,DetlefvanVuuren.

Towardsanequitableglobalclimatechangeregime:compatibilitywithArticle2oftheClimateChangeConventionandthelinkwithsustainabledevelopment.ClimatePolicy2002;2(2–3):211–30.

[206]AdilNajam,SaleemulHaq,YoubaSokona.Climatenegotiationsbeyond

Kyoto:developingcountriesconcernsandinterests.ClimatePolicy2003;3(1):221–31.

[207]AdilNajam,RahmanAA,SaleemulHaq,YoubaSokona.Integratingsustain-abledevelopmentintothefourthassessmentreportoftheIntergovernmentalPanelonClimateChange.ClimatePolicy2003;3(1):S9–17.

因篇幅问题不能全部显示,请点此查看更多更全内容

Top