一、选择题
1、 ( 2分 ) 若某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元,则符合该公司要求的购买方式有( )
A. 3种 B. 4种 C. 5种 D. 6种【答案】 A
【考点】解一元一次不等式组,一元一次不等式组的应用
【解析】【解答】设要购买轿车x辆,则要购买面包车(10-x)辆,由题意得7x+4(10-x)≤55,解得x≤5.
又因为x≥3,所以x=3,4,5.
因此有三种购买方案:①购买轿车3辆,面包车7辆;②购买轿车4辆,面包车6辆;③购买轿车5辆,面包车5辆.故答案为:A.
【分析】此题的等量关系是:轿车的数量+面包车的数量=10;不等关系为:购车款≤55;购买轿车的数量≥3,设未知数,列不等式组,解不等式组,求出不等式组的整数解,即可解答。
2、 ( 2分 ) 计算 【答案】A
【考点】实数的运算
=( )
A. -8 B. 2 C. -4 D. -14
【解析】【解答】原式=-5-3=-8.故答案为:A
【分析】负数的绝对值是正数,再根据实数的运算性质计算即可。
第 1 页,共 18 页
3、 ( 2分 ) 如图为张小亮的答卷,他的得分应是( )
A. 100分 B. 80分 C. 60分 D. 40分【答案】B
【考点】相反数及有理数的相反数,绝对值及有理数的绝对值,有理数的倒数,立方根及开立方,平均数及其计算
【解析】【解答】解:①-1的绝对值是1,故①正确;②2的倒数是,故②错误;③-2的相反数是2,故③正确;④1的立方根是1,故④正确;
⑤-1和7的平均数为:(-1+7)÷2=3,故⑤正确;小亮的得分为:4×20=80分故答案为:B
【分析】利用绝对值、相反数、倒数、立方根的定义及平均数的计算方法,对各个小题逐一判断,就可得出小亮答对的题数,再计算出他的得分。
4、 ( 2分 ) 若某数的立方根等于这个数的算术平方根,则这个数等于( ) A. 0 B. ±1 C. -1或0 D. 0或1【答案】D
【考点】算术平方根,立方根及开立方
【解析】【解答】解:∵算术平方根与立方根都等于它本身的数是0和1.
第 2 页,共 18 页
故答案为:D
【分析】根据立方根及算数平方根的意义,得出算术平方根与立方根都等于它本身的数是0和1。5、 ( 2分 ) 下列不等式中,是一元一次不等式的是( ) A.x+1>2B.x2>9C.2x+y≤5D.
>3
【答案】 A
【考点】一元一次不等式的定义
【解析】【解答】解:A.该不等式符合一元一次不等式的定义,符合题意; B.未知数的次数是2,不是一元一次不等式,不符合题意;
C.该不等式中含有2个未知数,属于二元一次不等式,不符合题意;D.该不等式属于分式不等式,不符合题意;故答案为:A.
【分析】根据一元一次不等式的定义判定.含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式.
6、 ( 2分 ) 如图,将三个相同的三角尺不重叠不留空隙地拼在一起,观察图形,在线段AB,AC,AE,ED,EC中,相互平行的线段有( )
A. 4组 B. 3组 C. 2组 D. 1组【答案】B
【考点】平行线的判定
第 3 页,共 18 页
【解析】【解答】解:∠B=∠DCE,则AB∥EC(同位角相等,两直线平行);∠BCA=∠CAE,则AE∥BC(内错角相等,两直线平行);则AE∥CD,
∠ACE=∠DEC,则AC∥DE(内错角相等,两直线平行).
则线段AB、AC、AE、ED、EC中,相互平行的线段有:AE∥BC,AB∥EC,AC∥DE共3组.故答案为:C.
【分析】∠B和∠DCE是同位角,同位角相等,两直线平行;∠ACE和∠DEC是内错角,∠BCA和∠CAE是内错角,内错角相等,两直线平行;
7、 ( 2分 ) 如图所示,点P到直线l的距离是( )
A. 线段PA的长度 B. 线段PB的长度 C. 线段PC的长度 D. 线段PD的长度【答案】B
【考点】点到直线的距离
【解析】【解答】解:∵PB⊥直线l于点B∴点P到直线l的距离是线段PB的长度故答案为:B
【分析】根据点到直线的距离(直线外一点到这条直线的垂线段的长度)的定义,即可求解。8、 ( 2分 ) 下列计算不正确的是( ) A. |-3|=3 B. 【答案】D
【考点】实数的运算
【解析】【解答】A、|-3|=3,不符合题意;
C.
D.
第 4 页,共 18 页
B、 C、 D、
故答案为:D.
,不符合题意;,不符合题意;,符合题意.
【分析】(1)由绝对值的性质可得原式=3;(2)由平方的意义可得原式=
;
(3)根据有理数的加法法则可得原式=-;(4)由算术平方根的意义可得原式=2.
9、 ( 2分 ) 小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买( )支笔
A. 1 B. 2 C. 3 D. 4【答案】D
【考点】一元一次不等式的应用 【解析】【解答】解:设可买x支笔则有:3x+4×2≤21即3x+8≤213x≤13x≤
所以x取最大的整数为4,她最多可买4支笔.故答案为:D
【分析】设出可买笔的数量,根据花费小于21元可列出一元一次不等式,解不等式即可求得买笔的最大数.10、( 2分 ) 下列各组数中互为相反数的一组是( ) A.|-2|与
第 5 页,共 18 页
B.-4与- C.-
与|
|
D.- 与
【答案】 C
【考点】立方根及开立方,实数的相反数
【解析】【解答】A选项中 B选项中 C选项中
, 所以
, 所以-4=, 与
, 错误;, 错误;
互为相反数,正确;
D选项中 故答案为:C
, 与即不相等,也不互为相反数,错误。
【分析】根据相反数的定义进行判断即可。
11、( 2分 ) 若 A.x≥1B.x≥- C.x>1
为非负数,则x的取值范围是( )
D.x>- 【答案】 B
【考点】解一元一次不等式 【解析】【解答】解:由题意得
第 6 页,共 18 页
≥0,
2x+1≥0, ∴x≥-
.
故答案为:B.
【分析】非负数即正数和0,由
为非负数 列出不等式,然后再解不等式即可求出x的取值范围。
12、( 2分 ) 已知 0.01)( )
≈3.606, ≈1.140,根据以上信息可求得 的近似值是(结果精确到
A. 36.06 B. 0.36 C. 11.40 D. 0.11【答案】B
【考点】算术平方根
【解析】【解答】解:∵ ∴
≈0.3606≈0.36.
= = × =10 ≈3.606;,
故答案为:B.
【分析】根据算术平方根的被开方数的小数点每向左或向右移动两位,其算数根的小数点就向相同的方向移动一位,即可得出答案。
二、填空题
13、( 1分 ) 如图,在铁路旁边有一村庄,现要建一火车站,为了使该村人乘火车方便(即距离最短),请你在铁路旁选一点来建火车站(位置已选好),说明理由:________.
第 7 页,共 18 页
【答案】 垂线段最短 【考点】垂线段最短
【解析】【解答】解:依题可得: 垂线段最短.
故答案为:垂线段最短.
【分析】根据垂线的性质:从直线外一点到这条直线上各点所连的线段中,垂线段最短.
14、( 3分 ) 把下列各数填在相应的横线上﹣8,π,﹣|﹣2|,
,
,﹣0.9,5.4,
,0,﹣3.6,1.2020020002…(每两个2之间多一个0)
整数________; 负分数________;无理数________.
【答案】﹣8, , ,0;﹣0.9,﹣3.6;π, ,1.2020020002….
【考点】实数及其分类
【解析】【解答】解:整数﹣8,﹣|﹣2|,
负分数﹣0.9,﹣3.6;无理数π,
,1.2020020002…;
,0;
第 8 页,共 18 页
故答案为:﹣8,﹣|﹣2|, ,0;﹣0.9,﹣3.6;π, ,1.2020020002….
【分析】考查无理数、有理数、整数、分数的定义。无理数:无限不循环小数;除无理数之外的都是有理数。另外,要记住:是无理数。
15、( 1分 ) 如果 是关于 的二元一次方程,那么 =________
【答案】
【考点】二元一次方程的定义 【解析】【解答】解:∵ ∴
解之:a=±2且a≠2 ∴a=-2
∴原式=-(-2)2- 故答案为:
【分析】根据二元一次方程的定义,可知x的系数≠0,且x的次数为1,建立关于a的方程和不等式求解即可。
16、( 1分 ) 如图,已知直线AB、CD、EF相交于点O,∠1=95°,∠2=32°,则∠BOE=________.
=
是关于
的二元一次方程
【答案】53°
【考点】对顶角、邻补角
第 9 页,共 18 页
【解析】【解答】解:∵∠2和∠COE为对顶角∴∠2=∠COE=32°
∵∠1+∠COE+∠BOE=180°即95°+32°+∠BOE=180°∴∠BOE=53°故答案为:53°。
【分析】根据对顶角相同,可求∠COE的度数,因为∠AOB为平角,根据平角等于180度,即可求得∠1+∠COE+∠BOE的和为180°,从而得出∠BOE的度数。
17、( 1分 ) 若 = =1,将原方程组化为 的形式为________.
【答案】
【考点】二元一次方程组的其他应用
【解析】【解答】解:原式可化为: 整理得,
.
=1和 =1,
【分析】由恒等式的特点可得方程组:
=1,=1,去分母即可求解。
18、( 1分 ) 已知 【答案】-11
【考点】解二元一次方程组,非负数之和为0
,那么 =________。
【解析】【解答】解: ∵ ,且 ,
第 10 页,共 18 页
∴ ∴
∴m=-3,n=-8,∴m+n=-11.故答案是:-11
,
,
【分析】根据几个非负数之和为0的性质,可建立关于m、n的方程组,再利用加减消元法求出方程组的解,然后求出m与n的和。
三、解答题
19、( 5分 ) 如图,某村庄计划把河中的水引到水池M中,怎样开的渠最短,为什么?(保留作图痕迹,不写作法和证明)理由是: ▲ .
【答案】解:垂线段最短。 【考点】垂线段最短
【解析】【分析】直线外一点到直线上所有点的连线中,垂线段最短。所以要求水池M和河流之间的渠道最短,过点M作河流所在直线的垂线即可。
第 11 页,共 18 页
20、( 5分 ) 如图, ∠ABE+ ∠DEB=180°, ∠1= ∠2.求证: ∠F= ∠G.
【答案】证明:∵∠ABE+ ∠DEB=180°,∴AC∥DE,∴∠CBO=∠DEO,又∵∠1= ∠2,∴∠FBO=∠GEO,
在△BFO中,∠FBO+∠BOF+∠F=180°,在△GEO中,∠GEO+∠GOE+∠G=180°,∴∠F=∠G.
【考点】平行线的判定与性质
【解析】【分析】根据平行线的判定得AC∥DE,再由平行线的性质内错角∠CBO=∠DEO,结合已知条件得∠FBO=∠GEO,在△BFO和△GEO中,由三角形内角和定理即可得证.
21、( 15分 ) 某市团委在2015年3月初组织了300个学雷锋小组,现从中随机抽取6个小组在3月份做好事的件数,并进行统计,将统计结果绘制成如图所示的统计
图.
第 12 页,共 18 页
(1)这6个学雷锋小组在2015年3月份共做好事多少件? (2)补全条形统计图;
(3)求第2,4和6小组做的好事的件数的总和占这6个小组做好事的总件数的百分数. 【答案】(1)13+16+25+22+20+18=114(件),这6个学雷锋小组在2015年3月份共做好事114件
(2)解:如图所示:(3)解:
×100%≈49.12%,答:第2,4和6小组做的好事的件数的总和占这6个小组做好事的总
件数的百分数约为49.12% 【考点】条形统计图,折线统计图
【解析】【分析】(1)根据折线统计图中的数据,相加可得结果;(2)根据第三组对应的数据即可补全统计图;
(3)计算第2、4、6小组做好事的件数的总和除以总件数可得百分比.22、( 5分 ) 把下列各数填在相应的大括号里:
,
,-0.101001,
,―
,0.202002…,
,0,
负整数集合:( …);负分数集合:( …);无理数集合:( …);【答案】解:
= -4,
= -2,
=
, 所以,负整数集合:(
,
第 13 页,共 18 页
,…); 负分数集合:(-0.101001,― ,…);
【考点】有理数及其分类,无理数的认识
, ,…); 无理数集合:(0.202002…,
【解析】【分析】根据实数的分类填写。实数包括有理数和无理数。有理数包括整数(正整数,0,负整数)和分数(正分数,负分数),无理数是指无限不循环小数。23、( 5分 ) 把下列各数填在相应的大括号里:
正分数集合:{ };负有理数集合:{ };无理数集合:{ };非负整数集合:{ }.
【答案】解:正分数集合:{|-3.5|,10%, …… };负有理数集合:{-(+4), 无理数集合:{
非负整数集合:{0,2013,…… }. 【考点】有理数及其分类,无理数的认识
【解析】【分析】根据有理数的分类:正分数和负分数统称为分数。正有理数、0、负有理数统称有理数。非负整数包括正整数和0;无理数是无限不循环的小数。将各个数准确填在相应的括号里。
,…… };
,……};
第 14 页,共 18 页
24、( 5分 ) 如图所示是小明自制对顶角的“小仪器”示意图:( 1 )将直角三角板ABC的AC边延长且使AC固定;
( 2 )另一个三角板CDE的直角顶点与前一个三角板直角顶点重合;
( 3 )延长DC,∠PCD与∠ACF就是一组对顶角,已知∠1=30°,∠ACF为多少?
【答案】解:∵∠PCD=90°-∠1,又∵∠1=30°,∴∠PCD=90°-30°=60°,而∠PCD=∠ACF,∴∠ACF=60°. 【考点】角的运算,对顶角、邻补角
【解析】【分析】根据题意画出图形,根据三角板各个角的度数和∠1的度数以及对顶角相等,求出∠ACF的度数.
25、( 9分 ) 某中学对本校500名毕业生中考体育加试测试情况进行调查,根据男生1 000m及女生800m测试成绩整理、绘制成如下不完整的统计图(图①、图②),请根据统计图提供的信息,回答下列问题:
(1)该校毕业生中男生有________人,女生有________人; (2)扇形统计图中a=________,b=________; (3)补全条形统计图(不必写出计算过程). 【答案】(1)300;200
第 15 页,共 18 页
(2)12;62
(3)解:由图象,得8分以下的人数有:500×10%=50人,∴女生有:50﹣20=30人.
得10分的女生有:62%×500﹣180=130人.补全图象为:
【考点】扇形统计图,条形统计图
【解析】【解答】解:⑴由统计图,得男生人数有:20+40+60+180=300人,女生人数有:500﹣300=200人.故答案为:300,200;⑵由条形统计图,得60÷500×100%=12%,∴a%=12%,∴a=12.
∴b%=1﹣10%﹣12%﹣16%,∴b=62.
故答案为:12,62;
【分析】(1)根据条形统计图对应的数据相加可得男生人数,根据调查的总数减去男生人数可得女生人数;(2)根据条形统计图计算8分和10分所占的百分比即可确定字母a、b的值;
(3)根据两个统计图计算8分以下的女生人数和得分是10分的女生人数即可补全统计图.
第 16 页,共 18 页
26、( 15分 ) 学校以班为单位举行了“书法、版画、独唱、独舞”四项预选赛,参赛总人数达480人之多,下面是七年级一班此次参赛人数的两幅不完整的统计图,请结合图中信息解答下列问题:
(1)求该校七年一班此次预选赛的总人数;
(2)补全条形统计图,并求出书法所在扇形圆心角的度数;
(3)若此次预选赛一班共有2人获奖,请估算本次比赛全学年约有多少名学生获奖? 【答案】(1)解:6÷25%=24(人).故该校七年一班此次预选赛的总人数是24人(2)解:24﹣6﹣4﹣6=8(人),书法所在扇形圆心角的度数8÷24×360°=120°;补全条形统计图如下:
(3)解:480÷24×2=20×2=40(名)
故本次比赛全学年约有40名学生获奖 【考点】扇形统计图,条形统计图
【解析】【分析】(1)先根据版画人数除以所占的百分比可得总人数;
第 17 页,共 18 页
(2)先根据(1)中的总人数减去其余的人数可得书法参赛的人数,然后计算圆心角,补全统计图即可;(3)根据总数计算班级数量,然后乘以2可得获奖人数.
第 18 页,共 18 页
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- efsc.cn 版权所有 赣ICP备2024042792号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务