ORIGINALPAPER
Radarmeasurementoftheeffectofboundary-layersaturationonmountain-waveamplitude
RichardM.Worthington
Received:21September2008/Accepted:19June2009/Publishedonline:7July2009ÓSpringer-Verlag2009
AbstractMeso-Strato-Troposphereandweatherradarsareusedtoshowtheeffectofsaturatedairnearthegroundonmountainwavesinthetroposphereandlowerstrato-sphere,at52.4°N,4.0°W.Mountainwavesareobservedabovescatteredprecipitation;however,long-termobser-vationsconfirmherethatwaveamplitudeisreducedaboveextensiveprecipitation,aspredictedfromnumericalmod-els.Ceilometermeasurementsofaveragecloudbasenearthemountaintopssuggestthatsaturatedaircouldbereducingthegenerationofmountainwaves,inadditiontotrappingorabsorbingwaves.
1Introduction
Oneprocessinvolvedinorographicprecipitation(Banta1990;Roe2005;RotunnoandHouze2007)isitsinterac-tionwithmountainwaves.Mountain-waveamplitudeispredictedtobereducedabovesaturatedair(DurranandKlemp1982,1983;Richardetal.1987)orprecipitation
¨ngl2006).However,fallingthroughunsaturatedair(Za
therehavebeenfewlong-termmeasurementstocheckthisprediction,andreducedstabilityofsaturatedaircouldhaveoppositeeffects:allowingairflowoverinsteadofaroundmountains(Buzzietal.1998;RotunnoandFerretti2001);ordowndraftsinprecipitationcouldreduceflowseparationfrommountainsandforcelargeramplitudewavesabove(Corby1957,Sect.14,21).Mountainwavescanalsocause
R.M.Worthington(&)
InstituteofMathematicalandPhysicalSciences,UniversityofWales,Aberystwyth,UKe-mail:rmw092001@yahoo.com
variationsofprecipitationrate(Bruintjesetal.1994;Reinkingetal.2000;BradyandWaldstreicher2001;Gaffinetal.2003).
ThisstudyusesseveralyearsofdatafromweatherandMeso-Strato-Troposphere(MST)radar.Weatherradargivesanindicationofboundary-layersaturationcontinu-ously,overawidearea.DataarefromaC-bandnetworkoftheUKMetOffice(3-hourlyforJune–August1999,December1999–June2000,July2001–January2003,andquarter-hourlysinceFebruary2003),suppliedassurfaceprecipitationratewith393kmresolution,correctedforbrightband,anomalouspropagation,groundclutterandorographicenhancementbelowtheradarbeams(Harrisonetal.2000).
MSTradarisoneofthefewmethodstomeasurecon-tinuouslytheverticalwindvelocity,w;large-amplitudeslowlyvaryingwnotfromconvectionusuallyindicatesmountain-waveactivity.Dataarefromthe46.5MHzAb-erystwythveryhighfrequencyradar,located52.42°N,4.00°W.wismeasuredwithaverticalbeam(w0),ormeanofradialvelocitiesinsymmetricbeampairs6°off-vertical(w6).Heightresolutionis300mandminimumheight1.7km.MSTradarechoesfromprecipitationinsteadofclearairinthelowestfewkilometresareavoidedusingechopeaktracking,outlierremoval,andlimitsonvertical-beamspectralwidth.Prichardetal.(1995)andWor-thingtonandThomas(1996)showearliermeasurementsofmountainwavesusingthesameMSTradar.Cloud-baseheightisalsomeasuredevery1minattheMSTradarsiteusingaVaisalaLD40ceilometer.
Section2showstwocasestudiesontheoccurrenceofmountainwavesabovedifferenttypesofprecipitation.Section3checksiftherearesimilarresultsfromlargeramountsofdata.Section4discussespossibleexplanations,andotherfactorsaffectingtheresults.
123
30
Fig.1Horizontalmapsofsurfaceprecipitationratefromweatherradarfortwocasestudies,(a–d)23February2002and(e–h)20September2004.TheMSTradarlocation(52.42°N,4.00°W)ismarked9,ina1009100km2arearotatedtopointupwindintheboundary-layerwinddirection(Sect.3),asusedforFig.3.aSmoothedcontoursoflandheight200m(thinner,innercontours400m)abovesealevel,andelocationsofsurfaceweatherstationsR.M.Worthington
(a)(b)(c)(d)(e)(f)(g)(h)2Casestudiesofmountainwaveresponseabovedifferentprecipitationtypes2.1Convectiveprecipitationlines,23February2002Figures1a–dand2ashowalong-windprecipitationandcloudlinesabovemountains,explainableasconvectiverolls(BrowningandBryant1975;Kirshbaumetal.2007).Abovetheconvectiverolls,Fig.2bshowsbandsofupwardanddownwardw,tensofcentimetrespersecond,forover15h.Non-zerowinthefreetroposphereabovemountainsisoftenassociatedwithweathersystemsandthunderstorms¨steretal.1998).However,Fig.2bshowsavertical(Ru
wavelengthofseveralkilometres,over[360°phase,withthewavelengthdecreasinginthestratosphere,whicharecharacteristicsofverticallypropagatingmountainwaves.Therearemountainsfor*100kmhorizontaldistanceina180°sectortonorth–east–southoftheMSTradarlocation,withmountaintops*15kmeastoftheradarasshowninFig.1a.Foranywinddirectioninthenorth–west–southsector,theradarisatleast5kmdownwindofthecoastwithlowhillsreaching[100mabovesealevel,startingnearthecoast(e.g.Fig.1ofWorthington1999b).Thebackgroundwindisnorth-westerlyon23February2002,*11ms-1atthesurfaceto[60ms-1at9kmheight.1TheMSTradaristhereforeontheupwindslope,andnot
1locatedcompletelyupwindofthemountainsandmountainwaves.
Tocheckifverticalwavelengthkzofwisreasonableformountainwaves,thiscanbeestimatedasine.g.Prichardetal.(1995,Fig.7)andWorthingtonetal.(2001,Fig.8f)usingaWentzel-Kramer-Brillouin-Jefferiesmodel.Thecomparisonisformountainwavesthatareoccurringdespite,orbeforeandafter,precipitationevents.wataheighth,
0h1Zpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðhÞ/sin@N2ðzÞ=U2ðzÞÀk2dzþ/A
0
Height-timeplotsofhorizontalwindvectorsareavailableonthe
datasetwebsitehttp://badc.nerc.ac.uk/browse/badc/mst/plots/st-mode/2002/02/.
¨isa¨la¨frequency,U(z)wherezisheight,N(z)Brunt-Va
horizontalwindspeed,khorizontalwavenumber,and/aphaseoffset.Foruntrappedmountainwavesreachingthestratosphere,thehydrostaticassumptioncanbeused(Shutts1992,Fig.9)withk=0.U(z)andtropopauseheightof*9kmaremeasuredbyMSTradar;typicallyN*0.01s-1forthetroposphereand0.02s-1forthelowerstratosphere;and/isadjustedsothephaseofw(h)ispatthelowestheight,*9km,whereaprofileofwtime-averaged0–15hfromFig.2bcrosseszero,goingnegative.Heightseparationsbetweenlevelswherewcrosseszerogivemeasuredand(predicted)kzof10(12)kmfor*9–14kmheight,decreasingto7(6)kmfor*14–17kmheight,asexpectedbecauseofdecreasingwindspeedabovethejetstreamwindmaximum.Zero-crossinglevelsaremarkedonFig.2b.Anotherprobablezerocrossinginthelowertroposphereisbelowtheheightrangemeasured
123
Radarmeasurementoftheeffectofboundary-layersaturationFig.2aNOAA–16AVHRR(advancedveryhighresolution(a)radiometer)channel2imageforthesameareaasFig.1.b,cHeight–timeplotsfromMSTradarofverticalwindwmeasuredusingaverticalradarbeam.Timeisinhoursafter0000UTC,andpositivewisupward.Dotsbelow(b,c)aremeasurementtimesofFigs.1a–h,2a.Horizontallinesshowaveragezero-crossingheightsfortimeintervalsmentionedinSects.2.1and2.2byMSTradar.UsingNfrommodeltemperatureprofilesathttp://www.ready.noaa.gov/ready/amet.htmlgenerallygivessimilarresults.Figure2bappearsconsistentwithmountainwaves,asfoundinothereventsandaboveotherprecipitationformssuchasconvectivecells.2.2Stratiformorographicprecipitation,
20September2004
Figures1e–hshowweatherradarimagesofaprecipitationbandbeforeacoldfront.ItsfrontedgereachestheMSTradar*0000UTC,anditcrossestheMSTradarby*0330UTC,followedbymorepatchyprecipitation.Precipitationrateincreasesoverthemountainsalthoughthiscouldbeoccurringbelowtheweatherradarbeams(Harrisonetal.2000).Surfacewindis*10ms-1south-westerly,andMSTradarmeasurescontinuouswesterlywindinthelowertroposphereastheprecipitationbandmovesover.
Figure2cshowsupwardanddownwardwalternatingwithheightuntil*0–2hbefore0000UTC,andagainafter*0300–0400UTC.AsinSect.2.1,measuredand(pre-dicted)kzaresimilar:18(19)and7(7)kmat6–2hbefore0000UTC;17(20)and6(6)kmat0400–0600UTC;25(23)and7(8)kmat0600–1200UTC.Tropopauseheightis*11.5km,andmaximumwindspeedis*55ms-1at9–12kmheight.Thesmallerkzvaluesareinthelowerstratosphere,whereNisincreased.Smallregionsofdownwardwbelow4kmat0100UTCareprecipitationechoinsteadofclear-airecho,withinabackgroundofupwardtroposphericwduringprecipitation(GageandNastrom1985).However,thelarge-scaleoscillationsofwwithheightareabsentwhiletheprecipitationbandisabovetheMSTradar.Theregionofmountain-waveactivitycouldhypotheticallyhaveshiftedslightlydownwindoftheMSTradarat*0000–0300UTC;or,Fig.2ccouldbeshowingalullinmountain-waveactivityinthetroposphereandlowerstratosphere,aboveextensiveprecipitation.
31
(b)(c)3Climatologyofmountain-waveamplitudeaboveprecipitationLong-termMSTandweatherradardataareusednexttocheckifmountain-waveamplitudeisgenerallyreducedaboveextensiveprecipitation,assuggestedfromSect.2.2.Over110,000weatherradarimagesduringJune1999–February2007arecategorisedfor‘percentageprecipita-tion’—thepercentageofpixelswithnon-zeroprecipitationrateina1009100km2area,aroundandupwindoftheMSTradarasinFig.1,tocoverlikelymountain-wavesourceregions.Percentageprecipitation(e.g.dry,scatteredorextensiveprecipitation)isusedratherthanprecipitationrates,whichvarywithboundary-layerwindspeed(Hilletal.1981).The1009100km2ispositionedwiththeMSTradar10kminfromthecentreofoneedgetoincludethevicinityoftheradar,andthenrotatedabouttheradarlocationtopointupwindintheboundary-layerwinddirection(estimatedfrommeansurfacewinddirectionplus15°clockwise).Resultsaresimilarusingafixed1009100km2centredontheMSTradar.Percentageprecipitationis19,28,15,14%forFig.1a–dand77,96,96,51%forFig.1e–h.
Magnitudeofverticalwind,|w|,isusedasanindicatorofmountain-waveactivity(Ecklundetal.1982;Prichard
etal.1995;Cacciaetal.1997;Re
´chouetal.1999).Con-vectionandmergedclear-air/precipitationechoesareidentifiedforremovalbasedonvelocityoutliers,orverti-cal-beamspectralwidth(correctedforbeambroadening)[1ms-1.Toreduceeffectsofshort-periodgravitywaves,wprofilesaretime-averagedfor30mincentredonweatherradartimes.
Theaveragesurfacewindvectorisobtainedfromupto17synopticweatherstationsaroundtheMSTradar(Fig.1e),givingthesynopticsurfacewindacrossthemountainsforhigherwindspeedscausingmountainwaves.Hourlysurfacewindsareinterpolatedlinearlyto
123
32R.M.Worthington
measurementtimesofweatherradar.Horizontalwindat*2km(1.7–2.3km)heightfromMSTradarisalsoused,althoughthisisapointmeasurement,oftenwithinthemountain-wavepatternwithpossiblecorrelationtothewvariations.Figure3displaysresultsbinnedinto36°and1ms-1(or2.5ms-1)intervals,giving10910arrays,for0–25,25–50,50–75,75–100%precipitation.SomeregionsofinterestinFig.3areneardatagapscausedbylowprecipitationfore.g.northerlytoeasterlywinddirections.However,thedataforeachshadedpixelareindependentofotherpixels.Heights1.7–2.3,4–7and12–15kmarechosentocontaindifferenttrappedanduntrappedmountain-wavecomponents,withvarioushori-zontalandverticalwavelengths,andforhighsignal-noiseratiofromMSTradar.
Fig.3Vertical-windmagnitudejwjfromMSTradarata–h1.7–2.3km,i–m4–7km,andn–r12–15kmheight,asafunctionofhorizontalwindspeedanddirection,andpercentageprecipitation(Sect.3)0–25%,25–50%,50–75%and75–100%.a–d,i–rUseaveragesurfacewindfromsitesinFig.1e,and(e–h)usewindat*2kmheightfromMSTradar.Winddirectionsareindegreesclockwisefromnorth(0°,90°,180°,270°windfromnorth,east,south,west).Pixelswithnodataorcontaininglessthanthreemeasurementsaremarked.Increaseofjwjwithwindspeedisgreatestintheareashownwithdottedlines,whentheMSTradarisdownwindofhighergroundForsurfacewindspeedsnearzero,jwjincreasesslightlyfromFig.3atod,whichcouldbecausedbye.g.someremainingconvection,precipitationechoes,orothergrav-itywavesindisturbed,wetweather.However,jwjinFig.3ashowsmuchmoreincreaseasafunctionofwindspeed,forallwinddirections.Thegreatestincreaseisfor*300°–180°wind,markedwithdottedlines,forwhichtherearehighermountainslocateddirectlyupwind(Prichardetal.1995)orupwindandlaterally(VosperandWorthington2002)fromtheMSTradar.
Aspercentageprecipitationincreases,theincreaseofjwjwithwindspeedbecomesless,e.g.comparingmarkedregionsofFig.3a,d.Resultsaresimilarusing:jwjfromsymmetric6°beams,jw6j;insteadofverticalbeam,jw0j;(MSTradarsignal-noiseratioisoftenhigherforw0than
(a)(b)(c)(d)(e)(f)(g)(h)(i)(j)(k)(m)(n)(p)(q)(r)123
Radarmeasurementoftheeffectofboundary-layersaturation33
w6,however,w0couldunderreadmountain-waveampli-tude(Worthingtonetal.2001),andalsofordifferenttimeofdayoryear.Stronghorizontalwindspeedshigherinthetropospherecancausemountain-wavetrapping,butwindspeedsaresimilarwhenplottedinsteadofwinFig.3.InFig.3n,|w|islessfor0–180°windthaninFig.3a,e,i,consistentwithremovalofmountainwavesbycriticallayers,aseasterlywindoftenrotatesorpassesnearzerobetweengroundand12–15kmheight(WorthingtonandThomas1996,Figs.10,11).Overall,thelong-termmea-surementsinFig.3indicatereducedmountain-waveamplitudeaboveasaturatedboundarylayer,assuggestedinthecasestudyofSect.2.2,showninFig.2c.
4Discussion
VariationsofjwjwithpercentageprecipitationinFig.3areassumedtorefertomountainwavesandnotothergravitywaves.Figure4,therefore,checksanotherwavecharac-teristic,horizontalwavevectorazimuthmeasuredbyMSTradar(Worthington1999a);waveazimuthnear90°tothewindwouldbeinconsistentwithmountainwavesbecauseofcriticallayerabsorption.Measurementsarefor5–15kmheightand30mintimeintervalswithjwj[0:05msÀ1andazimutherror\\25°.InFig.4c,arandom23%ofdatapointsareplottedsothatthenumberofpointsfor0–10%precipitationisthesameasinFig.4a,b;then,thedecreasingnumberofpointsaspercentageprecipitationincreasesinFig.4a,bcanbecompareddirectlywithFig.4c.DespitethisdecreaseinFig.4a,b,theaveragehorizontalwavevectorremainsbetweenthesurfaceand2-kmwinddirections,consistentwithmountainwaves(Worthington1999b,2006).
Effectsofboundary-layersaturationcoulddependalsoonstability.Precipitationtypecanbecategorisedasstrat-iformorconvectivefromtheformofweatherradarechoes(Steineretal.1995;YuterandHouze1997;Waltherand
Bennartz2006).Also,correlationofprecipitationdistri-butiontolandheightcouldberelevant,assomestandingwavescanbecausedbyfixedvariationsofboundary-layerstructure(MalkusandStern1953;Mauritsenetal.2005;ColleandYuter2007).Worthington(2002,2006)showsexampleswherefair-weatherconvectioncanvaryinphaseandevencontributetotheforcingofmountainwaves.However,jwjappearstobereducedgenerally,forcon-vective,stratiform,orographicandnon-orographiccate-goriesofweather-radardatawith[50%precipitation(notshown).
MechanismsfortheeffectofsaturatedaironmountainwavesincludeamodifiedScorerparameter(l2)profilesothat(DurranandKlemp1982;DoyleandSmith2003),(a)wavesaremoreverticallypropagatingandwaveamplitudeincreasesinthetroposphere;or(b)saturatedaircanincreasewavetrappinginunsaturatedairbelow,orbeaneutral‘sponge’layerabsorbingwaves;or(c)condition-allyunstableairnearthegroundcanresultinconvectioninsteadofwaves.Theheightofsaturatedairabovemountainscouldinfluencewhether(b)or(c)explainsreducedmountain-waveamplitude.Clouddowntothemountainsurfacewouldsuggest(c)insteadof(b);how-ever,weatherradarcouldbemeasuringprecipitationfall-ingthroughunsaturatedairwithincreasedl2belowcloud.SurfacehumidityattheMSTradarsite,50mabovesealevel,isunsaturatedat81,88,91,93%forFig.1e–h,andonaverage79,82,84,85%forFig.3a–d,whereasmountaintopsafewhundredmetresabovesealevelcanbewithinprecipitatingcloud.
Cloud-baseheightcanbecomparedmorequantitativelytomountainheightusingaceilometerattheMSTradarsitesinceAugust2005.Thisreplacessomeheightinformationmissingfromtheavailableweatherradardata,andshowsapossibleheightregionforthemechanismreducingjwj;althoughnotthemechanismitself.Figure5showsdistri-butionsoflowestcloudbaseheightfor0–25,25–50,50–75,75–100%precipitationcategoriesasinFig.3.Also,no
(a)(b)(c)Fig.4DifferencesofmountainwaveandwindazimuthsmeasuredbyMSTradarasafunctionofpercentageprecipitation.Greydotsshowmediandifferencesfor0–10,10–20,…,90–100%.Waveazimuthreferstohorizontalwavevectormeasuredclockwisefromnorthandpointingupwind123
34Fig.5Heightdistributionoflowestcloudbase(notcloudheight),measuredAugust2005–February2007byceilometerco-locatedwiththeMSTradar,countedin100mheightintervalsandsmoothedwitha3-pointrunningmean;also,distributionoflandheightina1509150km2areacentredontheMSTradar.Withincreasingpercentageprecipitation,cloudbasedistributionshiftsdownwardtonearorbelowthemountaintopscloudisreportedfor33,5,1,0%ofmeasurementsinthesecategories.Cloudbaseheightfallsto*500masper-centageprecipitationincreases,sotheheightgapbetweenmountainsandsaturatedairmaybesmallenoughforprocess(c),althoughsomegravitywavescanbetrappedinheightintervalsofonlytensofmetres(Duynkerke1991).Mountain-waveamplitudecanbecomparedalsotocloudamountforanyeffectofreducedstabilityinsatu-ratedairwithoutprecipitation.Figure3acanbedividedintodatawithcloudandnocloudreportedfromceilometer;however,theresultsaresimilar,maybebecauseofmea-suringthincloudlayerswithlesseffectonmountainwaves.
5Conclusions
Mountainwavesareobservedinandabovepatchypre-cipitationusingMSTradar.However,thewaveamplitudeisreducedaboveextensiveprecipitation—despitepossiblemaskingeffectsofconvection,convectionwaves,synopticverticalmotion,orprecipitationechoesincreasingthemeasuredverticalvelocities.
Reducedmountain-waveamplitudeisconsistentwithpredictionsofnumericalmodels,e.g.DurranandKlemp
(1982),Za
¨ngl(2006),althoughwithoutprovingwhichofthepossiblemechanismsareoccurring.
Cloudbasesaretypicallynearthemountaintopsinextensiveprecipitation,soeffectsofsaturatedairon
123
R.M.Worthington
mountain-waveamplitudecouldoccurat,notonlyabove,thewavelaunchingheight.
AcknowledgmentsWeatherradarandsurfacewinddataarefromtheMetOfficeandBritishAtmosphericDataCentre;NERCMSTradarandceilometerdatafromBADC;andtheNOAAAVHRRimagefromtheNERCSatelliteReceivingStation,DundeeUniversity.
References
BantaRM(1990)Theroleofmountainflowsinmakingclouds.In:
BlumenW(ed)Atmosphericprocessesovercomplexterrain,chap9.MeteorologicalMonographsno23.AmericanMeteoro-logicalSociety,Boston,pp229–283
BradyRH,WaldstreicherJS(2001)Observationsofmountainwave-inducedprecipitationshadowsovernortheastPennsylvania.WeatherForecast16:281–300
BrowningKA,BryantGW(1975)Anexampleofrainbands
associatedwithstationarylongitudinalcirculationsintheplanetaryboundarylayer.QuartJRMeteorolSoc101:3–900
BruintjesRT,ClarkTL,HallWD(1994)Interactionsbetween
topographicairflowandcloud/precipitationdevelopmentduringthepassageofawinterstorminArizona.JAtmosSci51:48–67BuzziA,TartaglioneN,MalguzziP(1998)Numericalsimulationsof
the1994Piedmontflood:roleoforographyandmoistprocesses.MonWeatherRev126:2369–2383
CacciaJ-L,CrochetM,SaadaK(1997)STradarevaluationofthe
standarddeviationoftheairverticalvelocityperturbedbythelocalorography.JAtmosSolTerrPhys59:1127–1131
ColleBA,YuterSE(2007)Theimpactofcoastalboundariesand
smallhillsontheprecipitationdistributionacrosssouthernConnecticutandLongIsland,NewYork.MonWeatherRev135:933–9
CorbyGA(1957)Airflowovermountains,notesforforecastersand
pilots.MeteorologicalOffice,MeteorologicalReportsNo.18,H.M.S.O.,London
DoyleJD,SmithRB(2003)MountainwavesovertheHoheTauern:
influenceofupstreamdiabaticeffects.QuartJRMeteorolSoc129:799–823
DurranDR,KlempJB(1982)Theeffectsofmoistureontrapped
mountainleewaves.JAtmosSci39:2490–2506
DurranDR,KlempJB(1983)Acompressiblemodelforthe
simulationofmoistmountainwaves.MonWeatherRev111:2341–2361
DuynkerkePG(1991)Observationofaquasi-periodicoscillationdue
togravitywavesinashallowradiationfog.QuartJRMeteorolSoc117:1207–1224
EcklundWL,GageKS,BalsleyBB,StrauchRG,GreenJL(1982)
VerticalwindvariabilityobservedbyVHFradarintheleeoftheColoradoRockies.MonWeatherRev110:1451–1457
GaffinDM,ParkerSS,KirkwoodPD(2003)Anunexpectedlyheavy
andcomplexsnowfalleventacrossthesouthernAppalachianregion.WeatherForecast18:224–235
GageKS,NastromGD(1985)Relationshipofprecipitationtovertical
motionobserveddirectlybyaVHFwindprofilerduringaspringupslopestormnearDenver,Colorado.BullAmMeteorolSoc66:394–397
HarrisonDL,DriscollSJ,KitchenM(2000)Improvingprecipitation
estimatesfromweatherradarusingqualitycontrolandcorrec-tiontechniques.MeteorolAppl6:135–144
HillFF,BrowningKA,BaderMJ(1981)Radarandraingauge
observationsoforographicrainoversouthWales.QuartJRMeteorolSoc107:3–670
Radarmeasurementoftheeffectofboundary-layersaturationKirshbaumDJ,BryanGH,RotunnoR,DurranDR(2007)The
triggeringoforographicrainbandsbysmall-scaletopography.JAtmosSci:1530–19
MalkusJS,SternME(1953)Theflowofastableatmosphereovera
heatedisland,Part1.JMeteorol10:30–41
MauritsenT,SvenssonG,GrisogonoB(2005)Waveflowsimulations
overArcticleads.BoundLayerMeteorol117:259–273
PrichardIT,ThomasL,WorthingtonRM(1995)Thecharacteristics
ofmountainwavesobservedbyradarnearthewestcoastofWales.AnnGeophys13:757–767
Re
´chouA,BarabashV,ChilsonP,KirkwoodS,SavitskayaT,StebelK(1999)MountainwavemotionsdeterminedbytheEsrangeMSTradar.AnnGeophys17:957–970
ReinkingRF,SniderJB,CoenJL(2000)Influencesofstorm-embeddedorographicgravitywavesoncloudliquidwaterandprecipitation.JApplMeteorol39:733–759
RichardE,ChaumerliacN,MahfoufJF,NickersonEC(1987)
Numericalsimulationoforographicenhancementofrainwithamesoscalemodel.JClimApplMeteorol26:661–669
RoeGH(2005)Orographicprecipitation.AnnRevEarthPlanetSci
33:5–671
RotunnoR,FerrettiR(2001)MechanismsofintenseAlpinerainfall.
JAtmosSci58:1732–1749
RotunnoR,HouzeRA(2007)Lessonsonorographicprecipitation
fromtheMesoscaleAlpineProgram.QuartJRMeteorolSoc133:811–830
Ru
¨sterR,NastromGD,SchmidtG(1998)High-resolutionVHFradarmeasurementsinthetropospherewithaverticallypointingbeam.JApplMeteorol37:1522–1529
ShuttsG(1992)Observationsandnumericalmodelsimulationofa
partiallytrappedleewaveovertheWelshmountains.MonWeatherRev120:2056–2066
35
SteinerM,HouzeRA,YuterSE(1995)Climatologicalcharacteriza-tionofthree-dimensionalstormstructurefromoperationalradarandraingaugedata.JApplMeteorol34:1978–2007
VosperSB,WorthingtonRM(2002)VHFradarmeasurements
andmodelsimulationsofmountainwavesoverWales.QuartJRMeteorolSoc128:185–204
WaltherA,BennartzR(2006)Radar-basedprecipitationtypeanalysis
intheBalticarea.Tellus58A:331–343
WorthingtonRM(1999a)Calculatingtheazimuthofmountain
waves,usingtheeffectoftiltedfine-scalestablelayersonVHFradarechoes.AnnGeophys17:257–272
WorthingtonRM(1999b)Alignmentofmountainwavepatterns
aboveWales:AVHFradarstudyduring1990–1998.JGeophysRes104:9199–9212
WorthingtonRM(2002)Mountainwaveslaunchedbyconvective
activitywithintheboundarylayerabovemountains.BoundLayerMeteorol103:469–491
WorthingtonRM(2006)Diurnalvariationofmountainwaves.Ann
Geophys24:21–2900
WorthingtonRM,ThomasL(1996)Radarmeasurementsofcritical-layerabsorptioninmountainwaves.QuartJRMeteorolSoc122:1263–1282
WorthingtonRM,MuschinskiA,BalsleyBB(2001)Biasinmean
verticalwindmeasuredbyVHFradars:significanceofradarlocationrelativetomountains.JAtmosSci58:707–723
YuterSE,HouzeRA(1997)Measurementsofraindropsize
distributionsoverthePacificwarmpoolandimplicationsforZ-Rrelations.JApplMeteorol36:847–867
Za
¨nglG(2006)NorthfoehnintheAustrianInnValley:acasestudyandidealizednumericalsimulations.MeteorolAtmosPhys91:85–105
123
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- efsc.cn 版权所有 赣ICP备2024042792号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务