您好,欢迎来到筏尚旅游网。
搜索
您的当前位置:首页基于社交网络的社会化推荐算法研究

基于社交网络的社会化推荐算法研究

来源:筏尚旅游网
科技・探索・争鸣 Sc科ience&Te技ch视nology界  Vision 项目钠 基于社交网络的社会化推荐算法研究 朱彦杰 (许昌学院,河南许昌461000) 【摘要】社交网络日趋活跃,基于社交网络的推荐成为电子商务推荐系统研究的热点领域之一;如何利用社交网络数据给用户进行推荐 物品.是基于社交网络的推荐算法的研究重点。对社交网络的定义、社交网络数据的分类进行概述,研究基于邻域的社会化推荐和基于图的社 会化推荐算法:结合实际推荐系统对社会化推荐算法进行改进设计。 【关键词】社交网络;社会化;推荐 Research of Social Recommendation Algorithm Based on Social Network ZHUYan-jie (Xuchang University,Xuchang Henan 461000,China) 【Abstract]As social networking has become increasingly active,Recommendations based on the social network have recently become one of the hottest topics in the domain of e—commerce recommender systems.How to recommend items to the users with socila network data is the research content of the recommendation algorithm based on socila network.With definition of socila network and the classification of socila network data.the social recommendation algorithm based on neighborhood or graph is studied.An?improved?socila recommendation algorithm is also discussed in practical recommendations system. 【Key words】Social network;Socilaization;Recommendation 美国著名的第三方调查机构尼尔森调查了影响用户相信某个推 2基于社交网络的推荐算法 荐的因素_1】,调查结果显示.90%的用户相信朋友对他们的推荐,70% 的用户相信网上其他用户对广告商品的评论 从该调查可以看到.好 2.1基于邻域的社会化推荐算法 友的推荐对于增加用户对推荐结果的信任度非常重要 在社交网站 假设给定一个社交网络及其用户行为数据集.社交网络列出了用 P 中.可以通过好友给自己过滤信息.只关注与阅读和自己有共同兴趣 户之间的好友关系.用户行为数据集给出了不同用户的历史行为和兴 = 好友分享来的信息.从而避免了很多无关的信息.自然地减轻了信息 趣数据.在这种情况、给用户推荐好友喜欢的物品集合,其算法思想: 过载问题。 用户u对物品i的兴趣 可以通过如下公式(∑ ^ 1)计算:其中ont㈤是 在社交网站方面.国外以Facebook和Twiner为代表.国内社交网 用户U的好友集合,如果用户v喜欢物品i,则r 1,否则 。另外,要注 站,以QQ空间、人人网、朋友网、新浪微博等为代表;这些社交网站形 意的是.在用户n的好友中.不同的好友和用户u的熟悉程度和兴趣相似 成了两类社交网络结构 一种是.好友一般都是自己在现实社会中认 度也是不同的 因而.应该在推荐算法中考虑好友和用户的熟悉程度以及 识的人,比如同事、同学、亲戚等,并且这种好友关系是需要双方确认 兴趣相似度,由公式(2)所示:w 由两部分相似度构成,一部分是用户n 的,如Facebook、QQ空间.这种社交网络称为社交图谱 另一种是,好 和用户v的熟悉程度.另一部分是用户u和用户v的兴趣相似度。 友往往都是现实中自己不认识的.而只是出于对对方言论的兴趣而建 立好友关系.好友关系也是单向的关注关系,如Twitter,新浪微博.这 种社交网络称为兴趣图谱。同时.也必须指出,任何一个社会化网站都 不是单纯的社交图谱或兴趣图谱。在QQ空间中大多数用户联系基于 社交图谱.而在微博上大多数用户联系基于兴趣图谱 在微博中.也会 关注现实中的亲朋好友.在QQ中也会和部分好友有共同兴趣。 pm ‘,一w ̄rvi (2) ∈ 1社交网络及其数据分类 用户u和用户v的熟悉程度主要描述用户11和v在现实生活中 的熟悉程度。这里熟悉度依据用户之间的共同好友比例来度量。熟悉 在社交网络中.需要表示用户之间的联系.可以用图G(V,E,w)定 程度由公式(3)表示。用户n和用户v的兴趣相似度的度量方法是:如 义一个社交网络,其中v是顶点集合.每个顶点代表一个用户,E是边 果两个用户喜欢的物品集合重合度很高.两个用户的兴趣相似度就很 集合,如果用户va和vb有社交网络关系.那么就有一条边e(va,vb)连 高。兴趣相似度由公式(4)表示。其中Ⅳ )是用户U喜欢的物品集合。 接这两个用户.w(va,vb)用来定义边的权重 前面提到基于社交图谱或 familiarity(“, l(3) 兴趣图谱的两种社交网络.基于社交图谱的朋友关系是需要双向确认 out(u)uout(v)l  Il……,、I 的.因而可以用无向边连接有社交网络关系的用户:基于兴趣图谱的 similiarity( 卢 (4) 朋友关系是单向的.可以用有向边代表这种社交网络上的用户关系  IL“,u1 ,l 对图G中的用户顶点u,定义ore(u)为顶点u指向的顶点集合(也就是 2.2基于图的社会化推荐算法 用户u关注的用户集合).定义in(u)为指向顶点U的顶点集合(也就是 社交网站中存在两种关系.一种是用户对物品的兴趣关系.一种 关注用户n的用户集合)。显然在无向社交网络中outfu)=in(u)。一般来 是用户之间的社交网络关系。通过图模型来表示这两种关系,便于对 说.有3种不同的社交网络数据日。 用户进行个性化推荐 用社交网络图来表示用户的社交关系,用户物 双向确认的社交网络数据:在以Facebook和人人网为代表的社 品二分图来描述用户对物品的行为.这两个图可以合并成一个图。如 交网络中.用户A和B之间形成好友关系需要通过双方的确认 因 图1,该图上有用户顶点(圆圈)和物品顶点(方块)两种顶点。若用户U 此.这种社交网络一般可以通过无向图表示 对物品i产生过行为.那么两个节点之间就有边相连。图1中用户A 单向关注的社交网络数据:在以Twitter和新浪微博为代表的社 对物品a、e产生过行为 如果用户U和v是好友.有一条边连接这两 交网络中.用户A可以关注用户B而不需要得到用户B的允许.因此 个用户,图中用户A和B、D是好友。 这种社交网络中的用户关系是单向的.可以通过有向图表示。 在社交网络中.除了常见的、用户和用户之间直接的社交网络关 基于社区的社交网络数据:还有一种社交网络数据.用户之间并 系,还有一种关系.即两个用户属于同一个社群。可以加入一种节点表 没有明确的关系.但是这种数据包含了用户属于不同社区的数据 比 示社群(如图2.最左边一列的节点.六边框),而如果用户属于某一社 如豆瓣小组,属于同一个小组可能代表了用户兴趣的相似性。 群,图中就有一条边联系用户对应的节点和社群对应的节点。 ※基金项目:许昌市科技计划攻关项目(20132128);许昌学院科研基金项目(2O13095)。 作者简介:朱彦杰(1977—),男,硕士,讲师,研究方向为web挖掘、电子商务推荐。 26 l科技视界science&Techn。 。gy Visi。n 项目与课曩 Sc科ience&Te技ch视nology界  Vision 科技・探索・争鸣 似度最高的N个好友(N取一个比较小的数).从而给该用户做推荐时 可以只查询N次用户历史行为接口。第一处截断在查询每个用户的 历史行为时,可以只返回用户最近1个月的行为,这样就可以在用户 行为缓存中缓存更多用户的历史行为数据.从而加快查询用户历史行 为接t3的速度。另一种解决方法是重新设计数据库。通过前面分析可 以发现,社会化推荐中关键的操作就是获得用户所有好友的行为数 图1 社交网络图和用户物品二分图的结合 据,然后通过一定的聚合展示给用户。如果对照一下微博.就会发现微 博中每个用户都有个信息墙,这个墙上实时展示着用户关注的所有好 友的动态。因此,只要能够实现这个信息墙,就能够实现社会化推荐算 法。Twitter给每个用户维护一个消息队列.当一个用户发表一条微博 时,所有关注他的用户的消息队列中都会加入这条微博。这样用户获 取信息墙时可以直接读消息队列,所有终端用户的读操作很快 Twitter这种架构思想【4]移植到社会化推荐系统中,其具体设计为:首 先,为每个用户维护一个消息队列,用于存储他的推荐列表:接着.当 一图2 融合两种社交网络信息的图模型 个用户喜欢一个物品时,就将(物品ID、用户ID和时间)这条记录 写入关注该用户的推荐列表消息队列中:最后.当用户访问推荐系统 在定义完图中的顶点和边后.需要定义边的权重.其中用户和用户 时,读出他的推荐列表消息队列,对于这个消息队列中的每个物品.重 之间边的权重可以定义为用户之间的相似度的0【倍f包括熟悉程度和 新计算该物品的权重。计算权重时需要考虑物品在队列中出现的次 兴趣相似度).而用户和物品之间的权重可以定义为用户对物品喜欢程 数,物品对应的用户和当前用户的熟悉程度、物品的时间戳 同时计算 度的Ot倍。 和B需要根据应用的需求确定。如果希望用户好友的行为 出每个物品被哪些好友喜欢过,用这些好友作为物品的推荐解释 对推荐结果产生比较大的影响,就选择比较大的0【。相反.如果希望用 4结束语 户的历史行为对推荐结果产生比较大的影响.就选择比较大的B 在定义完图中的顶点、边和边的权重后.可以利用PersOnalRank 社会化推荐得到许多网站的重视,一方面好友推荐可以增加推荐 算法 度量图中任两个顶点之间的相关性.从而给每个用户生成推荐 的信任度,好友往往是用户最信任的,用户往往不一定信任计算机的 结果。具体如下:假设要给用户u进行个性化推荐.可以从用户u对应 智能,但会信任好朋友的推荐。另一方面.社交网络可以解决冷启动问 的节点 开始在用户物品二分图上进行随机游走.游走到任何一个 题,当一个新用户通过微博或者Facebook账号登录网站时.可以从社 节点时,首先按照概率 决定是继续游走,还是停止这次游走并从巩 交网站中获取用户的好友列表,然后给用户推荐好友在网站上喜欢的 节点开始重新游走。如果决定继续游走.那么就从当前节点指向的节 物品。从而可以在没有用户行为记录时就给用户提供较高质量的推荐 点中按照均匀分布随机选择一个节点作为游走下次经过的节点 这 结果,部分解决了推荐系统的冷启动问题。当然.社会化推荐也有不 样,经过很多次随机游走后.每个物品节点被访问到的概率会收敛到 足,其中最主要的是就是很多时候并不一定能提高推荐算法的离线精 一个数。最终的推荐列表中物品的权重就是物品节点的访问概率。 度(准确率和召回率)。特别是在基于社交图谱数据的推荐系统中.因 3实际系统中的社会化推荐算法 为用户的好友关系不是基于共同兴趣产生的.所以用户好友的兴趣往 往和用户兴趣并不一致。● 基于邻域的社会化推荐算法比较简单.在实际系统中却是难以操 作的,因为该算法需要事先获得用户所有好友的历史行为数据.而这 【参考文献】 一操作在实际系统中是比较重的操作.因为大型网站中用户数目非常 [1]http://blog.nielsen.com/nielsenwirdconsumer/g]【obe-advertising 庞大.用户的历史行为记录也非常庞大.所以不太可能将用户的所有 real-friends-and-virtual-strangem-the-most/[OL1. 行为都缓存在内存中.只能在数据库前做一个热数据的缓存。如果需 [2]项亮.推荐系统实践[MJ.人民邮电出版社,2012,6. 要比较实时的数据.这个缓存中的数据就要比较频繁地更新.因此避 [3]Fouss Francois,Pirotte Alain.Random-walk Computation of Similarities between 免不了数据库的查询.然而,数据库查询一般是很慢的.特别是针对行 Nodes of a Graph with Application to Collaborative Recommendation[J1.IEEE Transactions on Knowledge and Data Engineering,2007. 为很多的用户更是如此。因而,若一个算法再给一个用户做推荐时。需 [4]http://www.infoq.com/news/2009/06/Twitter-Architecture[OL]. 要他所有好友的历史行为数据.这在实际环境中是比较困难的。 [5]MaayanRoth,AssafBen-David.Suggesting Friends Using the Implicit Social 为了让它能够具有比较快的响应时间.需要改进基于邻域的社会 Graph[ ̄.ACM 2010. 化推荐算法。改进的方法有两种:一种是两处截断法.第一处截断就是 在拿用户好友集合时并不拿出用户所有的好友.而是只拿出和用户相 [责任编辑:程龙] (上接第9页)阶模态的固有频率,基座的前十阶固有频率如表2所示。 1)本文采用三维设计软件SolidWorks建立了基座的几何模型: 表2基座前十阶固有频率 2)通过对基座进行模态分析,得出其前10阶固有频率和振型: 阶次 固有频率,Hz 阶次 固有频率/Hz 3)通过分析可知.基座的固有频率远大于基座的振动源主轴的频 率为334Hz.因此在工作过程中不会发生共振.基座结构设计符合要 1 860.29 6 4711.7 求: 2 1978.6 7 6976.5 4)与传统的设计方法相比.用有限元的方法来进行结构件的设计. 3 2023.4 8 7193.3 可大幅度提高设计的合理陛和经济性。e 4 3766 9 9657.5 【参考文献】 5 4l91.5 l0 9759.4 [1]张洪信,管殿柱.有限元基础理论与ANSYS11.0应用fM1.北京:机械工业出版 社.2012. 从分析的结果可以看出基座的1阶固有频率为860.29Hz.而机床 [2]沈玺,方鹏,宋小肯.浅谈ANSYS与SolidWorks的数据交换 装备制造技 主轴的频率不超过334Hz.因此基座的固有频率远大于基座的振动源 术.2006(5). 主轴的频率,所以在工作过程中不会发生共振。由于在模态分析前已经 [3]傅志芳,华宏星.模态分析理论与应用[M1.上海:上海交通大学出版社,2000. 进行了结构静力分析且符合要求,因此基座结构设计达到预期要求。 [4]ANSYS工程应用教程机械篇[M1.北京:中国铁道出版社,2003. 『51ANSYS10.0工程分析实例详解[M1.北京:人民邮电出版社.2003. 3结论 [责任编辑:程龙] science& rechn。l。g)r Visi。n科技视界l 27 

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- efsc.cn 版权所有 赣ICP备2024042792号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务