您好,欢迎来到筏尚旅游网。
搜索
您的当前位置:首页华罗庚%20逻辑推理与数学游戏[1]

华罗庚%20逻辑推理与数学游戏[1]

来源:筏尚旅游网
第十讲 逻辑推理(一)

由于数学学科的特点,通过数学的学习来培养少年儿童的逻辑推理能力是一种极好的途径.为了使同学们在思考问题时更严密更合理,会有很有据地想问题,而不是凭空猜想,这里我们专门讨论一些有关逻辑推理的问题。

解答这类问题,首先要从所给的条件中理清各部分之间的关系,然后进行分析推理,排除一些不可能的情况,逐步归纳,找到正确的答案。 例1 公路上按一路纵队排列着五辆大客车.每辆车的后面都贴上了该车的目的地的标志.每个司机都知道这五辆车有两辆开往A市,有三辆开往B市;并且他们都只能看见在自己前面的车的标志.调度员听说这几位司机都很聪明,没有直接告诉他们的车是开往何处的,而让他们根据已知的情况进行判断.他先让第三个司机猜猜自己的车是开往哪里的.这个司机看看前两辆车的标志,想了想说“不知道”.第二辆车的司机看了看第一辆车的标志,又根据第三个司机的“不知道”,想了想,也说不知道.第一个司机也很聪明,他根据第二、三个司机的“不知道”,作出了正确的判断,说出了自己的目的地。

请同学们想一想,第一个司机的车是开往哪儿去的;他又是怎样分析出来的?

解:根据第三辆车司机的“不知道”,且已知条件只有两辆车开往A市,说明第一、二辆车不可能都开往A市.(否则,如果第一、二辆车都开往A市的,那么第三辆车的司机立即可以断定他的车一定开往B市)。 再根据第二辆车司机的“不知道”,则第一辆车一定不是开往A市的.(否则,如果第一辆车开往A市,则第二辆车即可推断他一定开往B市)。 运用以上分析推理,第一辆车的司机可以判断,他一定开往B市。 例2 李明、王宁、张虎三个男同学都各有一个妹妹,六个人在一起打羽毛球,举行混合双打比赛.事先规定.兄妹二人不许搭伴。 第一盘,李明和小华对张虎和小红; 第二盘,张虎和小林对李明和王宁的妹妹。 请你判断,小华、小红和小林各是谁的妹妹。

解:因为张虎和小红、小林都搭伴比赛,根据已知条件,兄妹二人不许搭伴,所以张虎的妹妹不是小红和小林,那么只能是小华,剩下就只有两种可能了。

第一种可能是:李明的妹妹是小红,王宁的妹妹是小林;

第二种可能是:李明的妹妹是小林,王宁的妹妹是小红。

对于第一种可能,第二盘比赛是张虎和小林对李明和王宁的妹妹.王宁的妹妹是小林,这样就是张虎、李明和小林三人打混合双打,不符合实际,所以第一种可能是不成立的,只有第二种可能是合理的。

所以判断结果是:张虎的妹妹是小华;李明的妹妹是小林;王宁的妹妹是小红。

例3 “迎春杯”数学竞赛后,甲、乙、丙、丁四名同学猜测他们之中谁能获奖.甲说:“如果我能获奖,那么乙也能获奖.”乙说:“如果我能获奖,那么丙也能获奖.”丙说:“如果丁没获奖,那么我也不能获奖.”实际上,他们之中只有一个人没有获奖.并且甲、乙、丙说的话都是正确的.那么没能获奖的同学是___。

解:首先根据丙说的话可以推知,丁必能获奖.否则,假设丁没获奖,那么丙也没获奖,这与“他们之中只有一个人没有获奖”矛盾。 其次考虑甲是否获奖,假设甲能获奖,那么根据甲说的话可以推知,乙也能获奖;再根据乙说的话又可以推知丙也能获奖,这样就得出4个人全都能获奖,不可能.因此,只有甲没有获奖。

例4 数学竞赛后,小明、小华、小强各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌.王老师猜测:“小明得金牌;小华不得金牌;小强不得铜牌.”结果王老师只猜对了一个.那么小明得___牌,小华得___牌,小强得___牌。

分析 逻辑问题通常直接采用正确的推理,逐一分析,讨论所有可能出现的情况,舍弃不合理的情形,最后得到问题的解答.这里以小明所得奖牌进行分析。

解:①若“小明得金牌”时,小华一定“不得金牌”,这与“王老师只猜对了一个”相矛盾,不合题意。

②若小明得银牌时,再以小华得奖情况分别讨论.如果小华得金牌,小强得铜牌,那么王老师没有猜对一个,不合题意;如果小华得铜牌,小强得金牌,那么王老师猜对了两个,也不合题意.

③若小明得铜牌时,仍以小华得奖情况分别讨论.如果小华得金牌,小强得银牌,那么王老师只猜对小强得奖牌的名次,符合题意;如果小华得银牌,小强得金牌,那么王老师猜对了两个,不合题意。

综上所述,小明、小华、小强分别获铜牌、金牌、银牌符合题意。

例5 有三只盒子,甲盒装了两个1克的砝码;乙盒装了两个2克的砝码;丙盒装了一个1克、一个2克的砝码.每只盒子外面所贴的标明砝码重量的标签都是错的.聪明的小明只从一只盒子里取出一个砝码,放到天平上称了一下,就把所有标签都改正过来了.你知道这是为什么吗?

分析 解决本题的关键是确定打开哪只盒子:若打开标有“两个1克砝码”的盒子,则该盒的真实内容是“两个2克砝码”或“一个1克砝码,一个2克砝码”,当取出的是2克砝码时,就无法对其内容作出准确的判断.同样,打开标有“两个2克砝码”的盒子时,也会出现类似的情况.所以,应打开标有“一个1克砝码,一个2克砝码”的盒子.而它的真实内容应该是“两个1克砝码”或“两个2克砝码”。

①若取出的是1克砝码,则该盒一定装有两个1克砝码,从而标有“两个2克砝码”的盒子里,不可能是两个2克或两个1克的砝码,而只能是一个1克,一个2克的砝码了;标有“两个1克砝码”的盒子自然装有两个2克砝码。

②若取出的是2克砝码,同理可知,此盒装有两个2克砝码;标有“两个1克砝码”的盒子里实际上是一个1克和一个2克的砝码;标有“两个2克砝码”的盒子里实际上是两个1克砝码.

按以上的推理结果,小明就将全部标签改正过来了。

例6 四人打桥牌,某人手中有13张牌,四种花色样样有;四种花色的张数互不相同.红桃和方块共5张;红桃与黑桃共6张;有两张将牌(主牌).试问这副牌以什么花色的牌为主?

解:①假设红桃为主.那么红桃有2张;方块有3张;黑桃有4张,因为共13张牌,所以草花有4张,这样,黑桃为草花张数相同.与已知条件“四种花色的张数互不相同”矛盾,即红桃不是主牌。

②假设方块为主牌.那么方块有2张;红桃有3张;则黑桃也有3张,亦与已知矛盾。

③假设草花为主牌.那么草花有2张.并且推得红桃+方块+黑桃共有11张牌.而已知“红桃和方块共5张,红桃与黑桃共6张”,即得红桃+方块+红桃+黑桃共11张牌.由此得到红桃的张数应为零.与已知条件“四种花色样样有”相矛盾.说明草花不是主牌。

由以上推理得知,黑桃必为主牌.即黑桃有2张;红桃有4张;方块有1张.那么草花有6张。

例7 S、B、J、R四人分别获数学、英语、语文和逻辑学四个学科的奖学金,但他们都不知道自己获得的是哪一门获学金.他们相互猜测:

S:“R得逻辑学奖”; B:“J得英语奖”; J:“S得不到数学奖”; R:“B得语文奖”。

最后发现,数学和逻辑学的获奖者所作的猜测是正确的,其他两人都猜错了.那么他们各得哪门学科的奖学金?

分析 假设S猜对,即R得逻辑学奖.由已知条件“逻辑学获奖者所作的猜测是正确的”,则R猜对,那么B得语文奖,并且J、B均猜错.而由B猜错,可知J得数学奖,S只好得英语奖,这又说明J猜“S得不到数学奖”是正确的.与前面的推理(J猜错)矛盾.所以S的猜测是错误的。 解:S猜错,即R得不到逻辑学奖,S不得数学奖且不得逻辑学奖.由此可知,J的猜测是正确的.则J得数学或逻辑学奖.于是推得,B猜错,故R猜对,即B得语文奖,S得英语奖,所以R得数学奖,J得逻辑学奖。 例8 A、B、C三人进行小口径步射击比赛,每个人射击6次,并且都得了71分.三人共18次的得分情况,从小到大排列为:

1,1,1,2,2,3,3,5,5,10,10,10,20,20,20,25,25,50。

已知A首先射击两次,共得22分;C第一次射击只得3分,请根据条件判断,是谁击中了靶心(击中靶心得50分)?

解:我们先来推断A6次射击的情况.已知前两次得22分,6次共得71分,从 71-22=49

可知,击中靶心的决不会是A.另一方面,在上面18个数中,两数之和等于22的只可能是20和2.再来推算一下四个数之和等于49的可能性.首先,在这四个数中,如果没有25,是绝不可能组成49的.其次,由于49-25=24,则如果没有20,任何三个数也不能组成24.而24-20=4,剩下的两个数显然只能是1和3了.所以A射击6次的得分(不考虑得分顺序)应该是

20,2,25,20,3,1。

(可在前面18个数中,划去上述6个数)。 再来推断击中靶心的人6次得分的情况.从

71-50=21

可知,要在前面12个未被划去的数中,取5个数,使其和是21.可以断定,这5个数中,必须包括一个10,一个5,一个3,一个2,一个1.即6次得分情况为 50,10,5,3,2,1。

在前面12个未被划去的数中,划去上面这6个数。 剩下的6个数

25,20,10,10,5,1 就是第三个人的得分情况了。

从这6个数中没有3,而C第一次得了3分,可知这6个数是B射击的得分数.因此C是击中靶心的人。

例9 在一个俱乐部里,有老实人和骗子两类成员,老实人永远说真话,骗子永远说假话.一次我们和俱乐部的四个成员谈天,我们便问他们:“你们是什么人,是老实人?还是骗子?”这四个人的回答如下: 第一个人说:“我们四个人全都是骗子.” 第二个人说:“我们当中只有一个人是骗子.” 第三个人说:“我们四个人中有两个人是骗子.” 第四个人说:“我是老实人.” 请判断一下,第四个人是老实人吗?

解:①四个人当中一定有老实人.因为如果四个人都是骗子,则谁也不会说“我们四个人全都是骗子”.所以第一个人为骗子。

②第二个人为骗子.因为如果他是老实人,说实话,由于我们已经判断了第一个人是骗子,则第二、三、四个人都是老实人.但第三个人的回答与他矛盾,两人不可能是同类的,故第二个人说的是假话,他是骗子。 下面再看第三个人的回答:如果第三个人是编子,则由①可知,第四个人一定是老实人;若第三个人是老实人,那么由他的话知他和第四个人是老实人.因而无论第三个人是骗子还是老实人,都可以推出第四个人是老实人。

所以,第四个人是老实人。

例10 某医院内科病房,A、B、C、D、E、F、G七名护士每周轮流安排一个夜班.已经知道:A的夜班比C的夜班晚一天,D的夜班比E的夜班的前一天晚三天,B的夜班比G的夜班早三天;F的夜班在B和C的夜班的正中间,而且是在星期四.问每个护士分别在星期几值夜班?

解:除F以外,可将已知条件归纳如下:CA,E__D,B____G.这里的横线表示空位。

可见CA不能排在B____G中间,否则F就无法排在BC的正中间了.又F必排在三个空位之一,因此还有两个空位必定是E__D和B__G交叉填空.于是可排出:EBDFG或BFEGD两种情况,而CA只能加在任何一端,那么就有CAEBDFG,EBDFGCA,CABFEGD和BFEGD-CA四种排位.其中只有排位EBDFGCA才能满足已知条件“F在BC的正中间”.所以七名护士值班排序是:E星期一值班,B星期二值班,D星期三值班,F星期四值班,G星期五值班,C星期六值班,A星期日值班.

习题十

1.有一个珠宝店发生了一起盗窃案,被盗走了许多珍贵的珠宝.经过

几个月的侦破,查明作案的人肯定是A、B、C、D中的一个,把这四个人当作重大嫌疑犯进行审讯,这四个人有这样的口供:

A:“珠宝店被盗那天,我在别的城市,所以我是不可能作案的.” B:“D是罪犯.”

C:“B是盗窃犯,他曾在黑市上卖珠宝.” D:“B与我有仇,陷害我.”

因为口供不一致,无法判断谁是罪犯,经过进一步调查知道,这四个人只有一个说的是真话.你知道罪犯是谁吗?

2.甲、乙、丙、丁四位同学的运动衫上印有不同的号码。 赵说:“甲是2号,乙是3号.” 钱说:“丙是4号,乙是2号.” 孙说:“丁是2号,丙是3号.” 李说:“丁是4号,甲是1号.”

又知道赵、钱、孙、李每人都只说对了一半,那么丙的号码是几?

3.对某班同学进行了调查,知道如下情况: ①有哥哥的人没有姐姐; ②没有哥哥的人有弟弟; ③有弟弟的人有妹妹。 试问:

(1)有姐姐的人一定没有哥哥,对吗? (2)有弟弟的人一定没有哥哥,对吗? (3)没有哥哥的人一定有妹妹,对吗?

4.某校办数学竞赛,A、B、C、D.E五位同学得了前五名,发奖前,老师让他们猜一猜各人的名次排列情况。 A说:B第三名,C第五名。 B说:E第四名,D第五名。 C说:A第一名,E第四名。 D说:C第一名,B第二名。 E说:A第三名,B第四名。

老师说:每个名次都有人猜对.那么,这五名同学的名次是怎样排列的?

习题十解答

1.根据B、D两人的话矛盾,可知两句话中必有一句真话,一句假话.

假设B说真话,那么D是罪犯,而A也说了真话,产生了矛盾,所以只有D说真话,其余三人均说假话,则A偷了珠宝。

2.直接推理可得,由于每人只说对一半,且只有李提到了1号,故甲是1号,从而逐步推出:乙是3号,丙是4号,丁是2号。 3.根据条件①得到(1)是对的;

“有弟弟且有哥哥”并不与①②③矛盾,因此得到(2)是不对的;根据条件②③得到(3)是对的;

4.名次排列为:C、B、A、E、D解法如第2题.

第十一讲 逻辑推理(二)

上一讲我们介绍了有关逻辑推理问题的简单例子,它并没有用到专门

的数学原理,而是直接运用正确推理,解决逻辑问题的.这一讲我们将利用图表解决一些较为复杂的逻辑推理问题。

例11 一次数学考试,共六道判断题.考生认为正确的就画“√”,认为错误的就画“×”.记分的方法是:答对一题给2分;不答的给1分;答错的不给分.已知A、B、C、D、E、F、G七人的答案及前六个人的得分记录在表中,请在表中填出G的得分,并简单说明你的思路。

分析 由于E得了9分,说明他只答错了一道题.先假定答错的是第1题,这样就有一个标准答案,并由此可分析其他人的得分.如出现矛盾,再假定E答错的是第2题,„,直到判断出E答错的题号为止.有了正确的答案,就可以写出G的得分。

解:假设E的第1题答错,那么A至少错3道题,一题未答,最多得5分,与A得7分矛盾.所以E第1题答对。

假设E第2题答错,可知A最多得3分,矛盾.所以E第2题答对。 假设E第3题答错,则B最多得3分,矛盾.所以E第3题答对。 假设E第6题答错,则D最多得3分,矛盾.所以E第6题答对。 由于E得9分,因此E只答错一题,因此E第4题答错,于是A的第2、4两题对,3、6两题错.而A得7分,说明A的第5题是对的.由A、E两人的答案,可得一标准答案如下表:

按此标准评分,与题中所给A、B、C、D、E、F得分相符合,所以E的第4题确实答错了.上表的答案是正确的.故可知G得8分。

例12 李英、赵林、王红三人参加全国小学生数学竞赛,他们是来自金城、沙市、水乡的选手,并分别获得一、二、三等奖.现在知道: ①李英不是金城的选手; ②赵林不是沙市的选手; ③金城的选手不是一等奖; ④沙市的选手得二等奖; ⑤赵林不是三等奖。

根据上述情况,王红是__的选手,他得的是__等奖。 解:为了便于分析,我们画表帮助思考.

根据条件①②,在相应的格中打上“×”。

由条件④得出:如果王红是沙市的选手,他得二等奖,那么由条件③可知:金城选手不是一等奖,只能是三等奖.又因为李英不是金城选手,只有赵林得三等奖.这与条件⑤矛盾.所以王红不是沙市选手,沙市选手应该是李英,他得二等奖.这样金城的选手只能是王红,他得三等奖。 例13 李云和他哥哥参加一次集会,同时出席的还有其他两对兄弟.见面后有的人握手问候,没有人和自己的兄弟问候,也没有人和同一个人握两次手.事后李云发现除自己外每个人握手次数互不相同,问李云握了几次手?李云的哥哥握了几次手?

解:设除李云(用0表示)之外的五个人分别是A、B、C、D、E,他们握手的次数分别是0次、1次、2次、3次、4次,那么他们的握手情况可以用右图来表示,其中一条连线表示握过手一次,没有连线即表示没握过手。

从图中很容易看出:李云握手2次。

那么,谁是李云的哥哥呢?因为A是唯一没有和E握过手的人,所以A、E是一对兄弟.D只和A、B没握过手,而A已经是E的兄弟了,所以B、D也是一对兄弟.这样只剩下C是李云的哥哥,他握手的次数也为2次.

例14 红、黄、蓝、白、紫五种颜色的珠子各一颗,分别用纸包着,在桌子上排成一行,有A、B、C、D、E五个人,猜各包珠子的颜色,每人只猜两包。

A猜:第二包是紫的,第三包是黄的; B猜:第二包是蓝的,第四包是红的; C猜:第一包是红的,第五包是白的; D猜:第三包是蓝的,第四包是白的; E猜:第二包是黄的,第五包是紫的。

猜完后,打开各纸包一看发现每人都只猜对了一包,并且每包只有一人猜对.请你判断他们各猜对了哪一包?

解:我们把题目中的条件列成一个表,就更清楚了。

根据已知条件,每一包都只有一人猜对,而第一包只有C猜,所以C猜对了第一包,是红的;又根据每人只猜对了一种,所以C猜第五包是白的,猜错了;第五包只有C、E两人猜,所以E猜第五包是紫的,猜对了;那么E猜第二包是黄的,猜错了;紫颜色的珠子,只有A、E两人猜,那么A猜第二包是紫的,猜错了;第二包有A、B、E三人猜,其中A、E都猜错了,所以B猜第二包是蓝的,猜对了;那么B猜第四包是红的,猜错了;D猜第三包是蓝的,也猜错了;所以A猜对的是第三包,是黄的;D猜对的是第四包,是白的。

总结以上推理判断,A猜对了第三包是黄的,B猜对了第二包是蓝的,C猜对了第一包是红的,D猜对了第四包是白的,E猜对了第五包是紫的。 注如果题中只给了一个条件:“每人都只猜对了一包”,你能判断他们都猜对了哪包吗?

例15 有A、B、C三个足球队,每两队都比赛一场,比赛结果是:A有一场踢平,共进球2个,失球8个;B两战两胜,共失球2个;C共进球4个,失球5个,请你写出每队比赛的比分。 分析 解决本题首先要明白两点常识:

①一个队踢进一个球,对方就失去一个球,所以三个队的总进球数应等于总失球数;

②两个队踢平,显然该场球的进、失球的总数应相等。 根据已知条件,可以列成表格如下:

解:已知每两个队要赛一场,一共要赛三场球.B是两战两胜,显然一场胜A,另一场胜C;A踢平一场无疑是与C比赛的这场球。 由总进球数等于总失球数,则B队的进球数应为9个。

因为A与C两队进球总数是6个,那么除去A、C对B的那两场球赛中,踢进B队的那2球外,剩下的4个球便是A与C踢平那一场中双方各自踢进对方的进球数的和,因此A与C踢成2比2。

现在从C的进球数分析,由于C进球4个,除去与A两平外,另外进的两个球是对B比赛进的球数;再从C的失球数分析,因为C对A失两球,表中C共失了5个球,因此另外失的3个球就是对B失的球数.所以C对B是2比3。

再因为B进球共9个,除去对C进的3个球,那么对A就进了6个球,A对B没有进球,所以B对A是6比0。

例16 北京至福州列车里坐着6位旅客:A、B、C、D、E、F.分别来自北京、天津、上海、扬州、南京和杭州,已知

①A和北京人是医生;E和天津人是教师;C和上海人是工程师。 ②A、B、F和扬州人参过军,而上海人从未参军。 ③南京人比A岁数大;杭州人比B岁数大;F最年轻。 ④B和北京人一起去扬州;C和南京人一起去广州。 试根据已知条件确定每位旅客的住址和职业。

分析 由于职业可由住址确定,所以只需考虑确定旅客的住址。

解:下面我们利用表格进行推理.表格中记号“√”表示这个人是来自这个城市;记号“×”表示这个人不来自这个城市。

由①可知,A、C、E既不是北京人,也不是天津、上海人;由②可知,A、B、F不是上海人,也不是扬州人.于是得到D是上海人.那么他不是其他城市的人.如图(a)。

由③知,A和F不是南京人,那么A一定是杭州人.而其他旅客都不是杭州人.如下图(b)。

由④可知,B不是北京人,也不是南京人;C不是南京人,那么B是天津人,C是扬州人;故F是北京人,E是南京人.如下图(c)。

综合上述推理,我们得到:

A是医生,来自杭州;B是教师,来自天津; C是工程师,来自扬州;D是工程师,来自上海; E是教师,来自南京;F是医生,来自北京。

例17 甲、乙、丙三人分别在北京、天津、上海的中学教数学、物理、化学.已知

①甲不在北京; ②乙不在天津;

③在北京的人不教化学; ④在天津的人教数学; ⑤乙不教物理。

根据以上情况判断,甲、乙、丙三人分别在何处教何课程? 分析 根据已知条件,我们把人、地区、科目这三类分别用点表示在三个集合内.规定:两者之间有关系用实线连接,没有关系用虚线连接.这样把问题转化为用图进行推理(如图(a)).据此,下面的结果是显然的:①如果某一点用虚线连接某一个集合的两个点,则这点与这一集合内的第三个点应连实线;②如果在以不同集合内的点为顶点的三角形中两条边是实线,则第三条边也应该是实线.这样,上述三角形中若一条边为虚线,另一条边为实线,则第三条边一定为虚线.这两条结论是解题的依据.解题的关键是找到三个以实线为边的三角形。

解:根据题意,甲与北京、乙与天津、乙与物理、北京与化学之间连虚线;天津与数学之间连实线(如上图(b)).这样,根据上面的结论,乙与数学应连虚线,乙与化学应连实线。

从而天津与化学连虚线,上海与化学连实线,乙与上海连实线(如下页图(c)),即乙在上海教化学.由图(c)进一步可以看出,甲与上海应连虚线,甲与天津连实线.因而甲与数学连实线(如下页图(d)).由此得出:甲在天津教数学,而余下就是丙在北京教物理.

习题十一

1.A、B、C、D四位同学参加60米赛跑的决赛.赛前,四位同学对比

赛结果各说了如下的一句话: A说:“我会得第一名.”

B说:“A、C都不会取得第一名.” C说:“A或B会得第一名.” D说:“B会得第一名.”

结果有两位同学说对了.试问:谁会获得这次决赛的第一名? 2.A、B、C、D四人同住一间寝室,其中一人在修指甲,一人在洗头,一人在画画,另一人在看书,已知: ①A不在修指甲,也不在看书; ②B不在画画,也不在修指甲; ③若A不在画画,则D不在修指甲; ④C既不在看书,也不在修指甲; ⑤D不在看书,也不在画画。 请问:他们各自在干什么?

3.张、王、李三人分别出生在北京、上海和武汉,他们分别是歌唱演员、相声演员和舞蹈演员.已知:①小王不是歌唱演员,小李不是相声演员;②歌唱演员不出生在上海;③相声演员出生在北京;④小李不出生在武汉.试分别确定他们的出生地和职业。

4.有甲、乙、丙、丁四人同住在一座四层的楼房里,他们之中有工程师、工人、教师和医生.如果已知:

①甲比乙住的楼层高,比丙住的楼层低,丁住第四层; ②医生住在教师的楼上,在工人的楼下,工程师住最低层。 试问:甲、乙、丙、丁各住在这座楼的几层?各自的职业是什么?

习题十一解答

1.利用图表可得A是第一名。

2.方法1:由①②③④⑤知,既不是A、B在修指甲,也不是C在修

指甲,以及A、C.D不在看书,所以B在看书,修指甲的是D.但“D修指甲”与③的有条件的结论矛盾.所以③的条件是不成立的.这就得到A在画画.由④知C在洗头。

方法2:可用图表法进行推理。

3.小李是上海人,舞蹈演员;小王是北京人,相声演员; 小张是武汉人,歌唱演员。

4.甲:教师,住二层;乙:工程师,住一层;丙:医生,住三层;丁:工人,住四层.

第九讲 数学游戏

游戏对策问题因常与智力游戏相结合,因此具有很大的趣味性.又由

于解题方法灵活,技巧性强,所以对开阔解题思路,提高分析问题解决问题的能力是很有益处的。

例1 在一个3×3的方格纸中,甲乙两人轮流(甲先)往方格纸中填写1、3、4、5、6、7、8、9、10九个数中的一个,数不能重复.最后甲的得分是不计中间行的上下两行六个数之和,乙的得分是不计中间列的左右两列六个数之和,得分多者为胜.请你为甲找出一种必胜的策略。

分析 把题中的九个格标上字母:a、b、c、d、e、f、g、h、 i。

甲的得分为:a+b+c+g+h+i =(a+c+g+i)+(b+h); 乙的得分为:a+d+g+c+f+i =(a+c+g+i)+(d+f)

要想使甲的得分高于乙的得分,必须且只需使b+h>d+f.要想使b+h>d+f,甲有两种策略:一是增强自己的实力——使b、h格内填的数尽可能地大;二是削弱对方的实力——使d、f格内填的数尽可能地小.下面分两种情况进行讨论:取胜的总策略是“增强自己,削弱对方”两者兼顾。

为了使叙述方便起见,我们分别用(甲2)和(a5)分别表示“甲第二轮”和“在a处填数字5”,其余如(乙1),(甲1,b10)等含义类同。

一、甲首先使b、h处填的数尽可能大.譬如,(甲1,b10)。 1.乙为了不输,(乙1)必须在h处填数.(否则,即如(乙1)不在h处填数,(甲2)在h处填余下来的最大数后,无论(乙2)怎么填,最后总有b+h≥10+8=18>16=9+7≥d+f,甲胜).这样,必须(乙1,h1).(乙当然在h处填最小数)

2.(甲2)不能在d处或f处填数.(否则,如(甲2,dx),x为任一数,则(乙2)在f处填余下来的最大数后,即有d+f≥3+9=12>11=10+1=b+h,乙胜).当然(甲2)填9,譬如(甲2,eg).(以后,只要甲不填错,即只要把余下数中的最小者填入d或f,就不会输了) 3.显然,(乙2,d8),乙就不会输了.因此不分胜负(此时(甲3)必须(f3))。

同样,若(甲1,h10),只要乙应对正确,乙就不会输。 因此,只有

二、甲首先使d、f处填的数尽可能小(才有可能必胜).譬如,(甲1,d1)。

1.若(乙1)不在f处填数时,(甲2)在f处填余下来的最小数,则最后必有

b+h≥3+5=8>5=1+4≥d+f,甲胜。

2.若(乙1,f10)(乙当然在f处填最大数),则(甲2,b9),最后必有

b+h≥9+3=12>11=1+10=d+f,甲胜.

因此,只要(甲1,d1),且以后甲每次应对正确,则甲必胜。 解:甲第一轮采用削弱对方策略,把1填入d格(或f格)内,以后无论乙怎样填,甲第二轮“随机应变”,只要把尽可能大的数填入b或h格内,或者把尽可能小的数填入f格(或d格)内(在乙没有在f或d格内填数的情况下),甲都能获胜。

例2 在4×4的方格纸上有一粒石子,它放在左下角的方格里.甲乙二人玩游戏,由甲开始,二人交替地移动这粒石子,每次只能向上、向右或向右上方移动一格,谁把石子移到右上角谁胜.问甲能取胜吗?如果要取胜,应采取什么办法?

分析 见右图,采用倒推法.甲要取胜,就必须使乙在移动最后一次石子后,石子落在再移动一次就能移到右上角的那些方格中,即动一次石子,石子必定落在这三个方格之一的方格只有

必须由甲来占领。

.而移,即

这样,如一开始分析的那样,就必须使乙在某一次移动石子后,石子落在再移动一次就能移到格(除了只有用

的那些方格中,即

.而从哪些方之一中呢?

中。

外)中移动一次石子,石子必定落在

.因此甲第一次移动石子就必须把石子从左下角移到

这样,所有的格子被分成“胜位”()和“负位”().自

然,上图中的和 也是负位.即,谁占据胜位,谁将获胜(若此后他不失误);谁占负位,谁将失败(若此后对方不失误)。

解:由以上的分析和上图知,甲要取胜,必须向右上走一格.然后,乙如果向上走,甲也向上走;乙向右走,甲也向右走;乙向右上走,甲也向右上走.总之,甲走完第一步以后,乙朝哪个方向走,甲就朝哪个方向走,这样甲就能取胜。

如果是5×5的方格,甲要取胜,应采取怎样的策略呢?

根据例2的分析,我们仍用 表示胜位,表示负位,如右图所示.因此,先移动石子者必输——第一次他只能把石子移动到负位。 例3 甲乙两人玩下面的游戏:有两堆玻璃球,一堆8个,另一堆9个,甲乙两人轮流从中拿取,每次只能从同一堆中拿,个数(>0)不限.规定拿到最后一个球的人为输.问如果甲先拿,他有无必胜的策略? 分析 解这类题的一个常用的方法是从简单的情形讨论起,逐渐找出规律或找出解来。

为了便于叙述,我们用(m,n)表示两堆球,其中一堆有m个,另一堆有n个。

我们从最简单的情况(1,0)开始讨论。

显然,谁拿过球后两堆球成为(1,0)的状况,则对方必败,因为此时对方只有唯一的一种选择——拿走最后一个球.因此(1,0)是胜位,即谁造成这个局面谁必胜.把这种情形简记为 ①(1,0),胜位。

②(a)(n,0),负位,其中n>1;

(对方只需在n个球的那堆中拿走n—1个,对方就造出(1,0)局面,因而对方胜)。

显然,(b)(1,1),负位; (c)(n,1),负位,其中n>1。

(对方只需在n个球的那堆中的球全拿走,就造出(1,0)局面.)此外,

③(2,2),胜位.(对方拿走1个变(2,1),即②(c)中的情形;拿走2个变(2,0),即②(a)中的情形.对方均负).因此 ④(n,2),负位,其中n>2。

(对方只需在n个球的那堆中拿走n—2个,对方就占据了胜位(2,2).)

与③类似,有

⑤(3,3),胜位.(对方一次拿走任意多个后必变为②(a),②(c),④三种负位之一.)因此

⑥(n,3),负位,其中n>3。

(对方只需在n个球的那堆中拿走n—3个,对方就占据了胜位(3,3).)还有

⑦(4,4),胜位.(对方一次拿走任意多个后必变为②(a),②(c),④,⑥四种负位之一.)因此 ⑧(n,4),负位,其中n>4。

(对方只需在n个球的那堆中拿走n—4个,对方就占据了胜位(4,4).)如此等等,

因此,当两堆球的个数相等但不等于1,或只有一堆球,其中只有一个球时,先拿的必输;当个数不相等但不是(1,0),或两堆各有1个球时,先拿的必胜(当为(n,0)时,拿走n-1个球;当为(n,1)时,拿走n个球;否则,从多的一堆中拿走一些,使两堆个数相等)。 解:如果甲先拿,甲有必胜的策略.甲的具体做法是:从9个球的那一堆中拿1个,使两堆球数相等,都是8个。

此后,乙从一堆中拿球,甲就从另一堆中拿.如果乙把一堆中的球全拿走,那么甲就比乙少拿一个即可(即就剩下一个球);如果乙使得一堆球就剩下一个球,那么甲就把另一堆球都拿走;否则,当乙拿几个时,甲也拿同样多的个数.在前两种情形,因为只剩下一堆球,而且这堆中只有一个球,因此乙必输;在后一种情形两堆球的个数相同,只是比原来少了。 这样,如果每次都是后一种情形,那么甲总能使得乙面临两堆各有2个球的局面.这时,乙只有两种选择:拿2个或拿1个,然后,甲拿1个或拿2个,乙也必输。

说明:我们也可用例2的分析中的思考方法来解这道题。

先如右图画一表格.其中有“*”的格子表示两堆球的个数分别为3和5.这个方格记为(3,5)(第四行第六列).显然.(5,3)(第六行第四列)的含义与(3,5)一样(行、列分别为从下到上、从左到右编序).我们的问题转化为:

在(8,9)格中有一石子(即“有两堆玻璃球,一堆8个,另一堆9个”),甲乙两个轮流移动石子(即“甲乙两人轮流从中拿球”),每次只能向下或向左移动(即“每次只能从一堆中拿”),格数不限(即“个数不限”).规定把石子移到(0,0)格(即左下角)的人为输(即“规定拿到最后一个球的人为输”).问如果甲先移(即“甲先拿”),他有无必胜的策略?

按照例2分析中的思路,我们把解答填在右面的表格里,其中的“+”、“-”分别表示该格为“胜位”和“负位”.如,(1,0)格中的“+”表示谁把石子移动到这一格即会胜.在表格中除了(1,0),(0,1)是胜位外,其余所有的胜位为(n,n),n=2,3,4,„.而(8,9)格是负位.因此,开始时石子在(8,9)格中时,如甲先移,甲有必胜的策略,即甲必胜——把石子移到一个标有“+”的格子,即移到(8,8)格中.此时,无论乙怎样移动石子(只要按规定移),他必把石子移到负位.接着,甲又能把石子移到胜位,„.最后,甲必能把石子移到(1,0)格或(0,l)格.因此甲必胜。

请同学们自己推导一下上述填“+”、“-”的过程,并把“移石子”的必胜策略“翻译”成“取玻璃球”的策略.

习题九

1.如果把例1中的九个数改为1、2、3、4、5、6、7、8、10(注意

缺少9),得分少者为胜,甲先填,请你为甲找出一种必胜的策略。 2.甲乙两人玩轮流从右图中选数的游戏,谁选的数中有三个在同一条直线上(即和为15),谁就胜.先选的人有没有必胜的方案?

3.把例2分别改成在8×8和9×9方格纸上,甲乙两人交替将右上角石子移到左下角,其他规则不变,问谁能有必胜策略?

4.甲乙两人玩下面的游戏:有三堆玻璃球,A堆有29个,B堆有16个,C堆有16个,甲乙两人依次从中拿取,每次只许从同一堆中拿,至少拿一个,多拿不限,规定拿最后一个者为输.问如果甲先拿,他有无必胜的策略?

习题九解答

1.解:为了叙述方便,在右图中标上字母a、b、c、d、e、f、g、h、

i。此题与例1几乎完全一样,只是把1改为10,把3~10改为8~1,把得分多者胜改为得分少者胜.因此,甲在必胜策略上也相仿,只需把填大(小)数改为填小(大)数.具体如下(记号见例1):

(甲1,d10).①若(乙1)不在f处填数,则(甲2)在f处填余下来的最大数.甲胜。

②若(乙1,f1)(乙当然在已方f处填最小数),则(甲2,b2).甲胜。

2.解:1、3、7、9这四个数各有两种可能使三个数在一条直线上,2、4、6、8各有三种可能,5有四种可能。

设甲先选.为了取胜,甲自然选5.乙选2.有以下几种可能: ①甲选4,乙必选6,甲必选7,乙必选3.无胜负.(甲选6与选4类似)。

②甲选9,乙必选1,甲选任一已不能获胜.(甲选7与选9类似)。 ③甲选1,3是类似的,显然不能获胜。 ④甲选8也显然不能获胜。

如果甲不先选5,而先选其他任一数,乙即选5.显然无胜负.因此先选者无必胜策略.

3.由例2知,采用倒推法分析得下图

我们仍然用“+”表示胜位,“-”表示负位。 对于8×8的棋盘,先走的人有必胜的策略。 对于9×9的棋盘,后走的人有必胜的策略。

4.解:根据例3,当只有两堆球,且两堆球的个数相同且个数不等于1时,先拿的必败.所以甲先取时,甲把A堆中的29个球全部取走,这时留给乙的是两堆球数相同且个数不等于1的局面.然后按照两堆球游戏的策略,甲就能获胜.

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- efsc.cn 版权所有 赣ICP备2024042792号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务