您好,欢迎来到筏尚旅游网。
搜索
您的当前位置:首页古城区一中2018-2019学年上学期高三数学10月月考试题

古城区一中2018-2019学年上学期高三数学10月月考试题

来源:筏尚旅游网
古城区一中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________

一、选择题

1. 抛物线x=﹣4y2的准线方程为( ) A.y=1 B.y=

C.x=1 D.x=

2. 设集合S=|x|x<﹣1或x>5},T={x|a<x<a+8},且S∪T=R,则实数a的取值范围是( ) A.﹣3<a<﹣1 B.﹣3≤a≤﹣1

C.a≤﹣3或a≥﹣1

D.a<﹣3或a>﹣1

3. 《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织390尺布”,则从第2天起每天比前一天多织( )尺布. A.

B.

C.

D.

4. 已知是虚数单位,若复数Z2ai在复平面内对应的点在第四象限,则实数的值可以是( ) 2i=2(+i),则z=( )

A.-2 B.1 C.2 D.3 5. 设i是虚数单位,是复数z的共轭复数,若z

A.﹣1﹣i B.1+i C.﹣1+i D.1﹣i

6. 已知三个数a1,a1,a5成等比数列,其倒数重新排列后为递增的等比数列{an}的前三 项,则能使不等式a1a2an11a1a21成立的自然数的最大值为( ) anA.9 B.8 C.7 D.5 7. 若集合A={-1,1},B={0,2},则集合{z|z=x+y,x∈A,y∈B}中的元素的个数为( )

A5 B4 C3 D2

8. 已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是( ) A.4x+2y=5

B.4x﹣2y=5

C.x+2y=5

D.x﹣2y=5

9. 在数列{an}中,a1=3,an+1an+2=2an+1+2an(n∈N+),则该数列的前2015项的和是( ) A.7049 B.7052 C.14098 D.14101

10.若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为( )

第 1 页,共 17 页

A.1:2:3 A.0

B.2:3:4 B.1

C.0∈{0}

C.3:2:4 C.2 D.∅={0}

D.3:1:2

D.3

11.设等差数列{an}的前n项和为Sn,已知S4=﹣2,S5=0,则S6=( ) 12.下列关系式中,正确的是( ) A.∅∈{0} B.0⊆{0}

二、填空题

13.已知过球面上 A,B,C 三点的截面和球心的距离是球半径的一半,且

ABBCCA2,则

球表面积是_________.

14.已知定义域为(0,+∞)的函数f(x)满足:(1)对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时,f(x)=2﹣x.给出如下结论:

①对任意m∈Z,有f(2m)=0;②函数f(x)的值域为[0,+∞);③存在n∈Z,使得f(2n+1)=9;④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在k∈Z,使得(a,b)⊆(2,2

k

k+1

)”;其中所有正确

结论的序号是 .

15.已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f′(x)g(x)>f(x)g′(x),且f(x)=axg(x)(a>0且a≠1),为 . 16.

+

=.若数列{

= .

}的前n项和大于62,则n的最小值

三、解答题

17.(本小题满分12分)

如图(1),在三角形PCD中,AB为其中位线,且2BDPC,若沿AB将三角形PAB折起,使

PAD,构成四棱锥PABCD,且

(1)求证:平面 BEF平面PAB; (2)当 异面直线BF与PA所成的角为

PCCD2. PFCE时,求折起的角度. 3第 2 页,共 17 页

18.f(x)sin2x

3sin2x. 2A2(1)求函数f(x)的单调递减区间;

(2)在ABC中,角A,B,C的对边分别为a,b,c,若f()1,ABC的面积为33,求的最小值.

19.直三棱柱ABC﹣A1B1C1 中,AA1=AB=AC=1,E,F分别是CC1、BC 的中点,AE⊥ A1B1,D为棱A1B1上的点. (1)证明:DF⊥AE;

(2)是否存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为若不存在,说明理由.

?若存在,说明点D的位置,

第 3 页,共 17 页

20.如图在长方形ABCD中,

(1)若M是AB的中点,求证:

是CD的中点,M是线段AB上的点,

共线;

(2)在线段AB上是否存在点M,使得与垂直?若不存在请说明理由,若存在请求出M点的位置;

(3)若动点P在长方形ABCD上运动,试求的最大值及取得最大值时P点的位置.

21.在ABC中已知2abc,sinAsinBsinC,试判断ABC的形状.

2第 4 页,共 17 页

22.(本小题满分12分)1111]

1已知函数fxalnxa0,aR.

x(1)若a1,求函数fx的极值和单调区间;

(2)若在区间(0,e]上至少存在一点x0,使得fx00成立,求实数的取值范围.

23.如图,四面体ABCD中,平面ABC⊥平面BCD,AC=AB,CB=CD,∠DCB=120°,点E在BD上,且CE=DE.

(Ⅰ)求证:AB⊥CE;

(Ⅱ)若AC=CE,求二面角A﹣CD﹣B的余弦值.

第 5 页,共 17 页

古城区一中2018-2019学年上学期高三数学10月月考试题(参)

一、选择题

1. 【答案】D

2

【解析】解:抛物线x=﹣4y即为

y2=﹣x, 可得准线方程为x=故选:D.

2. 【答案】A

【解析】解:∵S=|x|x<﹣1或x>5},T={x|a<x<a+8},且S∪T=R, ∴

,解得:﹣3<a<﹣1.

故选:A.

3. 【答案】D

【解析】解:设从第2天起每天比前一天多织d尺布m 则由题意知解得d=

故选:D.

【点评】本题考查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的通项公式的求解.

4. 【答案】A 【解析】 试题分析:

4a02ai2ai2i4a(2a2)i,对应点在第四象限,故,A选项正确. 2i52i2i2a20考点:复数运算. 5. 【答案】B

【解析】解:设z=a+bi(a,b∈R),则=a﹣bi, 由z

=2(+i),得(a+bi)(a﹣bi)=2[a+(b﹣1)i],

22

整理得a+b=2a+2(b﹣1)i.

所以z=1+i.

,解得.

第 6 页,共 17 页

故选B.

【点评】本题考查了复数代数形式的混合运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,是基础题.

6. 【答案】C 【解析】

试题分析:因为三个数a1,a1,a5等比数列,所以a1a1a5,a3,倒数重新排列后恰

2好为递增的等比数列{an}的前三项,为,11111,,公比为,数列是以为首项,为公比的等比数列,则8422an不等式a1a2an11a1a211n811212n8,整理,得等价为1an12122n27,1n7,nN,故选C. 1

考点:1、等比数列的性质;2、等比数列前项和公式. 7. 【答案】C

【解析】由已知,得{z|z=x+y,x∈A,y∈B}={-1,1,3},所以集合{z|z=x+y,x∈A,y∈B}中的元素的个数为3. 8. 【答案】B

,kAB=

=﹣,

【解析】解:线段AB的中点为∴垂直平分线的斜率 k=

=2,

∴线段AB的垂直平分线的方程是 y﹣=2(x﹣2)⇒4x﹣2y﹣5=0, 故选B.

【点评】本题考查两直线垂直的性质,线段的中点坐标公式,以及用直线方程的点斜式求直线方程的求法.

9. 【答案】B

+

【解析】解:∵an+1an+2=2an+1+2an(n∈N),∴(an+1﹣2)(an﹣2)=2,当n≥2时,(an﹣2)(an﹣1﹣2)=2,

,可得an+1=an﹣1,

因此数列{an}是周期为2的周期数列. a1=3,∴3a2+2=2a2+2×3,解得a2=4, ∴S2015=1007(3+4)+3=7052.

第 7 页,共 17 页

【点评】本题考查了数列的周期性,考查了计算能力,属于中档题.

10.【答案】D 【解析】解:设球的半径为R,则圆柱、圆锥的底面半径也为R,高为2R, 则球的体积V球=

3圆柱的体积V圆柱=2πR

3

=3:1:2

圆锥的体积V圆锥=

故圆柱、圆锥、球的体积的比为2πR:故选D

【点评】本题考查的知识点是旋转体,球的体积,圆柱的体积和圆锥的体积,其中设出球的半径,并根据圆柱、圆锥的底面直径和高都等于球的直径,依次求出圆柱、圆锥和球的体积是解答本题的关键.

11.【答案】D 【解析】解:设等差数列{an}的公差为d, 则S4=4a1+联立解得∴S6=6a1+故选:D

d=3

d=﹣2,S5=5a1+,

d=0,

【点评】本题考查等差数列的求和公式,得出数列的首项和公差是解决问题的关键,属基础题.

12.【答案】C

【解析】解:对于A∅⊆{0},用“∈”不对,

对于B和C,元素0与集合{0}用“∈”连接,故C正确; 对于D,空集没有任何元素,{0}有一个元素,故不正确.

二、填空题

13.【答案】【解析】111]

 9第 8 页,共 17 页

考点:球的体积和表面积.

【方法点晴】本题主要考查了球的表面积和体积的问题,其中解答中涉及到截面圆圆心与球心的连线垂直于截面,球的性质、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记球的截面圆圆心的性质,求出球的半径是解答的关键. 14.【答案】 ①②④ .

【解析】解:∵x∈(1,2]时,f(x)=2﹣x. ∴f(2)=0.f(1)=f(2)=0. ∵f(2x)=2f(x),

kk

∴f(2x)=2f(x).

①f(2m)=f(2•2m﹣1)=2f(2m﹣1)=…=2m﹣1f(2)=0,故正确; ②设x∈(2,4]时,则x∈(1,2],∴f(x)=2f()=4﹣x≥0. 若x∈(4,8]时,则x∈(2,4],∴f(x)=2f()=8﹣x≥0. …

mm+1

一般地当x∈(2,2),

则∈(1,2],f(x)=2

m+1

﹣x≥0,

从而f(x)∈[0,+∞),故正确;

③由②知当x∈(2m,2m+1),f(x)=2m+1﹣x≥0,

nn+1nnn

∴f(2+1)=2﹣2﹣1=2﹣1,假设存在n使f(2+1)=9, nn

即2﹣1=9,∴2=10,

∵n∈Z,

n

∴2=10不成立,故错误;

④由②知当x∈(2k,2k+1)时,f(x)=2k+1﹣x单调递减,为减函数, ∴若(a,b)⊆(2,2

k

k+1

)”,则“函数f(x)在区间(a,b)上单调递减”,故正确.

故答案为:①②④.

第 9 页,共 17 页

15.【答案】 1 .

【解析】解:∵x为实数,[x]表示不超过x的最大整数, ∴如图,当x∈[0,1)时,画出函数f(x)=x﹣[x]的图象,

再左右扩展知f(x)为周期函数. 故答案为:1.

结合图象得到函数f(x)=x﹣[x]的最小正周期是1.

【点评】本题考查函数的最小正周期的求法,是基础题,解题时要认真审题,注意数形结合思想的合理运用.

16.【答案】 2 . 【解析】解:故答案为:2.

=2+lg100﹣2=2+2﹣2=2,

【点评】本题考查了对数的运算性质,属于基础题.

三、解答题

17.【答案】(1)证明见解析;(2)【解析】

2. 3BAAD从而得到BA平面PAD,试题分析:(1)可先证BAPA,再证CDFE,CDBE可得CD平面BEF,由CD//AB,可证明平面BEF平面PAB;(2)由PAD,取BD的中点G,连接FG,AG,可得PAG即为异面直线BF与PA所成的角或其补角,即为所折起的角度.在三角形中求角即可. 1 试题解析:

第 10 页,共 17 页

(2)因为PAD,取BD的中点G,连接FG,AG,所以FG//CD,FG1CD,又AB//CD,21ABCD,所以FG//AB,FGAB,从而四边形ABFG为平行四边形,所以BF//AG,得;同时,

22因为PAAD,PAD,所以PAD,故折起的角度.

3考点:点、线、面之间的位置关系的判定与性质. 18.【答案】(1)k【解析】

3,k5(k);(2)23. 6第 11 页,共 17 页

试题分析:(1)根据2k得A22x62k3可求得函数f(x)的单调递减区间;(2)由2Af1可23,再由三角形面积公式可得bc12,根据余弦定理及基本不等式可得的最小值. 1

1131cos2xsin2xsin(2x), 2226235令2k2x2k,解得kxk,kZ,

262365](kZ). ∴f(x)的单调递减区间为[k,k36试题解析:(1)f(x)

考点:1、正弦函数的图象和性质;2、余弦定理、基本不等式等知识的综合运用. 19.【答案】

【解析】(1)证明:∵AE⊥A1B1,A1B1∥AB,∴AE⊥AB, 又∵AA1⊥AB,AA1⊥∩AE=A,∴AB⊥面A1ACC1, 又∵AC⊂面A1ACC1,∴AB⊥AC,

以A为原点建立如图所示的空间直角坐标系A﹣xyz,

则有A(0,0,0),E(0,1,),F(,,0),A1(0,0,1),B1(1,0,1), 设D(x,y,z),则 D(λ,0,1),所以∵

=(0,1,),∴

•=(=

且λ∈,即(x,y,z﹣1)=λ(1,0,0),

,,﹣1), =0,所以DF⊥AE;

第 12 页,共 17 页

(2)结论:存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为理由如下:

设面DEF的法向量为=(x,y,z),则∵

=(

,,),

=(

,﹣1),

∴,即,

令z=2(1﹣λ),则=(3,1+2λ,2(1﹣λ)). 由题可知面ABC的法向量=(0,0,1), ∵平面DEF与平面ABC所成锐二面角的余弦值为∴|cos<,>|=解得

=

,即

=

(舍),所以当D为A1B1中点时满足要求.

【点评】本题考查空间中直线与直线的位置关系、空间向量及其应用,建立空间直角坐标系是解决问题的关键,属中档题.

20.【答案】

【解析】(1)证明:如图,以AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系,

当M是AB的中点时,A(0,0),N(1,1),C(2,1),M(1,0),

,可得

共线;

垂直,

(2)解:假设线段AB上是否存在点M,使得

第 13 页,共 17 页

设M(t,0)(0≤t≤2),则B(2,0),D(0,1),M(t,0),

=﹣2(t﹣2)﹣1=0,解得t=,

,使得

垂直; 在

∴线段AB上存在点

(3)解:由图看出,当P在线段BC上时,则

有最大值为4.

上的投影最大,

【点评】本题考查平面向量的数量积运算,考查了向量在向量方向上的投影,体现了数形结合的解题思想方法, 是中档题.

21.【答案】ABC为等边三角形. 【解析】

试题分析:由sinAsinBsinC,根据正弦定理得出abc,在结合2abc,可推理得到abc,即可可判定三角形的形状.

22

考点:正弦定理;三角形形状的判定.

1a,1;22.【答案】(1)极小值为,单调递增区间为1,,单调递减区间为0,(2)

e

e,.

【解析】

试题分析:(1)由a1f'x11x12.令f'x0x1.再利用导数工具可得:极小值和x2xx第 14 页,共 17 页

11,再将命题转化为fx在区间(0,e]上的最小值小于.当x0,aa即a0时,f'x0恒成立,即fx在区间(0,e]上单调递减,再利用导数工具对的取值进行分类讨论.111] 单调区间;(2)求导并令f'x0x①

1e]成立,所以fx在区间(0,e]上单调递减, ,则f'x0对x(0,a11则fx在区间(0,e]上的最小值为fealnea0,

ee显然,fx在区间(0,e]的最小值小于0不成立. 若e11e,即a时,则有 ae 10, a- f'x ②若0fx 1 a0 极小值 1,e a+ ↘ ↗ 11所以fx在区间(0,e]上的最小值为faaln,

aa第 15 页,共 17 页

11由faalna1lna0,得1lna0,解得ae,即ae,,

aa1综上,由①②可知,a,e,符合题意.……………………………………12分

e考点:1、函数的极值;2、函数的单调性;3、函数与不等式.

【方法点晴】本题考查导数与函数单调性的关系、不等式的证明与恒成立问题,以及逻辑思维能力、等价转化能力、运算求解能力、分类讨论的思想与转化思想. 利用导数处理不等式问题.在解答题中主要体现为不等式的证明与不等式的恒成立问题.常规的解决方法是首先等价转化不等式,然后构造新函数,利用导数研究新函数的单调性和最值来解决,当然要注意分类讨论思想的应用. 23.【答案】

【解析】解:(Ⅰ)证明:△BCD中,CB=CD,∠BCD=120°, ∴∠CDB=30°,

∵EC=DE,∴∠DCE=30°,∠BCE=90°, ∴EC⊥BC,

又∵平面ABC⊥平面BCD,平面ABC与平面BCD的交线为BC, ∴EC⊥平面ABC,∴EC⊥AB.

(Ⅱ)解:取BC的中点O,BE中点F,连结OA,OF, ∵AC=AB,∴AO⊥BC,

∵平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,

∴AO⊥平面BCD,∵O是BC中点,F是BE中点,∴OF⊥BC, 以O为原点,OB为y轴,OA为z轴,建立空间直角坐标系, 设DE=2,则A(0,0,1),B(0,C(0,﹣∴

,0),D(3,﹣2

,﹣1),

=(0,﹣

=(3,﹣

,0), ,0),

,0),

设平面ACD的法向量为=(x,y,z), 则

,取x=1,得=(1,

,﹣3),

又平面BCD的法向量=(0,0,1), ∴cos<

>=

=﹣

, .

∴二面角A﹣CD﹣B的余弦值为

第 16 页,共 17 页

【点评】本小题主要考查立体几何的相关知识,具体涉及到线面以及面面的垂直关系、二面角的求法及空间向量在立体几何中的应用.本小题对考生的空间想象能力与运算求解能力有较高要求.

第 17 页,共 17 页

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- efsc.cn 版权所有 赣ICP备2024042792号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务