初中数学总复习(几何知识点整理)
(一):【知识梳理】
1.直线、射线、线段之间的区别: 联系:射线是直线的一部分。线段是射线的一部分,也是直线的一部分. 2.直线和线段的性质:
(1)直线的性质:①经过两点 直线,即两点确定一条直线;
②两条直线相交,有 交点.
(2)线段的性质:两点之间的所有连线中,线段最短,即两点之间,线段最短.
3.角的定义:有公共端点的 所组成的图形叫做角;角也可以看成是由一条射线绕着它
的端点旋转而成的图形.
(1) 角的度量:把平角分成180份,每一份是1°的角,1°=6 0′,1′= 6 0″ (2)角的分类:
(3)相关的角及其性质:
①余角:如果两个角的和是直角, 那么称这两个角互为余角.
②补角:如果两个角的和是平角,那么称这两个角互为补角.
③对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.
④互为余角的有关性质:①∠1+∠2=90°∠1、∠2互余;②同角或等角的余角相等,如
○○
果∠l十∠2=90 ,∠1+∠3= 90,则∠2 ∠3.
⑤互为补角的有关性质:①若∠A +∠B=180∠A、∠B互补;②同角或等角的补角相
○
等.如果∠A+∠C=180,∠A+∠B=180°,则∠B ∠C. ⑥对顶角的性质:对顶角相等.
(4)角平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做
这个角的平分线.
4.同一平面内两条直线的位置关系是:相交或平行
5.“三线八角”的认识:三线八角指的是两条直线被第三条直线所截而成的八个角.正确认识这
八个角要抓住:同位角即位置相同的角;内错角要抓住“内部,两旁”;同旁内角要抓住“内部、同旁”. 6.平行线的性质:(1)两条平行线被第三条直线所截, 角相等, 角相等,同旁内角互
补.(2)过直线外一点 直线和已知直线平行.(3)两条平行线之间的距离是指在一条直线上
7.任意找一点向另一条直线作垂线,垂线段的长度就是两条平行线之间的距离. 8.平行线的定义:在同一平面内. 的两条直线是平行线。 9.如果两条直线都与第三条直线平行,那么.这两条直线互相平行.
10.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果内错角相等.那么
这两条直线平行;如果同旁内角互补,那么这两条直线平行.这三个条件都是由角的数量关系(相等或互补)来确定直线的位置关系(平行)的,因此能否找到两直线平行的条件,关键是能否正确地找到或识别出同位角,内错角或同旁内角.
11.常见的几种两条直线平行的结论:
(1)两条平行线被第三条直线所截,一组同位角的角平分线平行.
(2)两条平行线被第三条直线所截,一组内错角的角平分线互相平行. (二):【练习】
○
1
1.如果线段AB=5cm,BC= 3cm,那么A、C两点间的距离是( ) A.8 cm B、2㎝ C.4 cm D.不能确定
2.计算:⑴132°19′42″+ 2 6°3 0′28″=_____⑵34.51°= 度 分 秒.
⑶92 o3″-5 5°2 0′4 4″=_______;⑷33 °15′16″×5=_____
3.下列说法中正确的个数有( )
①线段AB和线段BA是同一条线段;②射角AB和射线BA是同一条射线;③直线AB和直
线BA是同一条直线;④射线AC在直线AB上;⑤线段AC在射线AB上. A.1个 B.2个 C.3个 D.4个 4. 如图,直线a ∥b,则∠A CB=________
○
5.如果一个角的补角是150 ,那么这个角的余角是____________
三角形 (一):【知识梳理】
1.三角形中的主要线段
(1)三角形的角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之
间的线段叫做三角形的角平分线.
(2)三角形的中线:连结三角形的一个顶点和它的对边中点的线段叫做三角形的中线.
(3)三角形的高:从三角形的一个顶点向它的对边(或其延长线)引垂线,顶点和垂足间的线段
叫做三角形的高.
(4) 三角形的中位线:连接三角形两边的中点的线段。 2.三角形的边角关系
(1)三角形边与边的关系:三角形中两边之和大于第三边;三角形任意两边之差小于第三边;
o
(2)三角形中角与角的关系:三角形三个内角之和等于180. 3.三角形的分类
不等边三角形三角形底和腰不等的等腰三角形等腰三角形等边三角形 (1)按边分: 直角三角形三角形锐角三角形斜三角形钝角三角形 (2)按角分:
4.特殊三角形
(1)直角三角形性质
0
①角的关系:∠A+∠B=90;②边的关系:abc
AEcDhBabCC222ADBC9001C9001BCABCEAB022A30AEBE ③边角关系:;④
Aca+b-c外接圆半径R;内切圆半径r=22 ⑤chab2s;⑥
(2)等腰三角形性质
BDC 2
ACBCADBDCDABACDBCD
①角的关系:∠A=∠B;②边的关系:AC=BC;③
④轴对称图形,有一条对称轴。 (3)等边三角形性质
0
①角的关系:∠A=∠B=∠C=60;②边的关系:AC=BC=AB;
ABACBDCDADBCBADCAD;④轴对称图形,有三条对称轴。 ③
A1ADBDDEBC2AEBEDE∥BC (4)三角形中位线:
DBEC 5.两个重要定理:
(1)角平分线性质定理及逆定理:角平分线上的点到角的两边的距离相等;到角的两边的距离相
等的点在这个角的平分线上;三角形的三条角平分线相交于一点(内心)
(2)垂直平分线性质定理及逆定理:线段垂直平分线上的点到两个端点的距离相等;到线段两端
点的距离相等的点在这条线段的垂直平分线上;三角形的三边的垂直平分线相交于一点(外心)
(二):【练习】
1.以下列各组线段长为边,能组成三角形的是( )
A.1cm,2cm,4 cm B.8 crn,6cm,4cm C.12 cm,5 cm,6 cm D.2 cm,3 cm ,6 cm
2.若线段AB=6,线段DC=2,线段AC= a,则( ) A.a =8 B.a =4 C.a =4或8 D.4<a<8
3.等腰三角形的两边长分别为5 cm和10 cm,则此三角形的周长是( ) A.15cm B.20cm C.25 cm D.20 cm或25 cm
4.一个三角形三个内角之比为1:1:2,则这个三角形的三边比为_______.
○
5.如图,四边形ABCD中,AB=3,BC=6,AC=35,AD=2,∠D=90,
求CD的长和四边形 ABCD的面积. 三:【经典考题剖析】
1.三角形中,最多有一个锐角,至少有_____个锐角,最多有______个钝角(或直角),三角形外角
中,最多有______个钝角,最多有______个锐角.
2.两根木棒的长分别为7cm和10cm,要选择第三根棒,将它钉成一个三角形框架,那么第三根木棒长xcm的范围是__________
3.已知D、E分别是ΔABC的边AB、BC的中点,F是BE的中点.若面ΔDEF的面积是10,则ΔADC的面积是多少?
4.正三角形的边长为a,则它的面积为_____.
5.如图,DE是△ABC的中位线, F是DE的中点,BF的延长线交AC于点H,则AH:HE等于( ) A.l:1 B.2:1 C.1:2 D.3:2 6. 已知△ABC,
190A2(1)如图1-1-27,若P点是ABC和ACB的角平分线的交点,则 P=;
(2)如图1-1-28,若P点是ABC和外角ACE的角平分线的交点,则P=90A;
3
190A2(3)如图1-1-29,若P点是外角CBF和BCE的角平分线的交点,则P=。
7.已知:如图,正△ABC的边长为a,D为AC边上的一个动点,延长 AB至 E,使 BE=CD,连结DE,交BC于点P.
(1)求证:PD=PE;
(2)若D为AC的中点,求BP的长.
全等三角形
(一):【知识梳理】
1.全等三角形的判定方法
(1)三边对应相等的两个三角形全等,简写成“边边边”或“SSS”.
(2)两角和它们的夹边对应相等的两个二角形全等,简写成“角边角”或\"ASA”
(3)两角和其中一角的对边对应角相等的两个三角形全等,简写成“角角边”或“AAS”. (4)两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”.
(5)有斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜过直角边定理”或
“HL”.
2.全等三角形的性质:全等三角形的对应边相等,对应角相等. 3.注意事项:
(1)说明两个三角形全等时,应注意紧扣判定的方法,找出相应的条件,同时要从实际图形出
发,弄清对应关系,把表示对应顶点的字母写在对应的位置上.
(2)注意三个内角对应相等的两个三角形不一定全等,另外已知两个三角形的两边
与一角对应相等的两个三角形也不一定全等.
(二):【练习】
1.如图,若 △ABC≌△DEF,∠E等于()
A.30° B.50° C.60° D、100°
2.如图,在△ABC中,AD⊥BC于 D,再添加一个条件____,就可确定△ABD≌△ACD
3.在下列各组几何图形中,一定全等的是( )
A.各有一个角是45°的两个等腰三角形;B.两个等边三角形 C.腰长相等的两个等腰直角三角形
D.各有一个角是40°腰长都是5cm的两个等腰三角形
4.下列说法中不正确的是()
A.有两角和其中一角的对边对应相等的两个三角形全等 B. 有两边和其中一边上的中线对应相等的两个三角形全等 C. 有一边对应相等的两个等边三角形全等 D. 面积相等的两个直角三角形全等
5.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这个
4
100°角对应的角是( )
A.∠A B.∠B C.∠C或∠C 三:【经典考题剖析】
1.如图,CB=CD,∠ABC=∠ADC=90°,∠BAC=35°,
则∠BCD的度数为()
A.145° B.130° C、110° D.70° 2.两个直角三角形全等的条件是( )
A.一锐角对应相等 B.两锐角对应相等 C.一条边对应相等 D.两条边对应相等
3.如图,点D、E、F分别为△ABC三边的中点,且 S△DEF=2, 则△ABC的面积为( )
A.4 B.6 C.8 D.12
4.如图,已知 AB=CD,AE⊥ BD于 E,CF⊥ BD于 F, AE=CF,则图中全等三角形有( )
A.1对 B.2对 C.3对 D.4对 5.如图,△ABC是等边三角形,点D、E、F分别是线 段AB、DC、CA上的点,
(1)若 AD=BE=CF,问△DEF是等边三角形吗?试证明你的结论; (2)若△DEF是等边三角形,问AD=BE=CF成立吗?试证明你的结论.
平行四边形及密铺
(一):【知识梳理】
1.平行四边形是四边形中应用广泛的一种图形,它是研究特殊四边形的基础,是研究线段相等、
角相等和直线平行的根据之一.
2.平行四边形的定义:两组对边分别平行的四边形是平行四边形,平行四边形的定义要抓住两点,
即“四边形”和“两组对边分别平行”.
四边形的边角按位置关系可分为两类:
对边(没有公共端点的两条边);邻边(有一个公共端点的两条边) 对角(没有公共边的两个角);邻角(有一条公共边的两个角) 对角线:不相邻的两个顶点连成的线段
3.两条平行线间的距离:两条平行线中,一条直线上任意一点到另一条直线的距离,叫做两条平
行线间的距离.两条平行线间的距离是一个定值,不随垂线段位置改变而改变,两条平行线间的距离处处相等.
4.平行四边形的性质:
平行四边形的两组对边分别平行;
平行四边形的两组对边分别相等; 符号语言表达: 平行四边形的两组对角分别相等; 平行四边形的对角线互相平分.
5.平行四边形的判定:
两组对边分别平行的四边形是平行四边形. 两组对边分别相等的四边形是平行四边形. 一组对边平行且相等的四边形是平行四边形.
5
两组对角分别相等的四边形是平行四边形. 对角线互相平分的四边形是平行四边形. 符号语言表达:
AB∥CD.BC∥AD四边形ABCD是平行四边形 AB=CD,BC=AD四边形ABCD是平行四边形.
AB平行且相等CD或BC平行且相等AD四边形ABCD是平行四边形. OA=OC,OB=OD四边形ABCD是平行四边形.
∠ABC=∠ADC,∠DAB=∠DCB边形ABCD是平行四边形.
6.平面的密铺定义:把形状、大小完全相同的一种或几种平面图形拼接在一起,使得平面上不留空隙,不重叠,这就是平面图形的密铺,也叫平面图形的镶嵌.
7.对于限于用一种图形密铺的问题,有三角形、四边形和正六边形,如果能实现平面图形的密铺,密铺图的每个顶点都必须集中在几个多边形的顶角,于是在每个顶点集中的顶角刚好拼成一个周角.
(二):【练习】
1.四边形任意两个相邻的角都互补,那么这个四边形是________. 2.在四边形ABCD中,给出下列条件:
①AB∥CD,②AD=BC,③∠A=∠C,④AD∥BC.能判断四边形是平行四边形的组合是_______ 3.当围绕一点拼接在一起的几个多边形的内角加在一起恰好组成__________时,多边形可以密铺.
4.请在能够进行平面图形的密铺的图形后打“√”若不能打“ ×” (1)正方形( ); (2)正七边形( );(3)正六边形( ); (4)正三角形与正十边形( );
(5)正方形与 正八边形( );(6)正三角形、正方形与正六边形( );(7)任意四边形( );(8)任意三角形( ).
○
5.n边形的每个内角等都等于120 ,则n等于_____. 三:【经典考题剖析】
1.下面给出四边形ABCD中∠A、∠B、∠C、∠D的度数之比,其中能判别四边形ABCD是平行四边形的是()
A.l:2:3:4 B.2:3:2:3 C.2:3:3:2 D.1:2:2:3 2.以不在同一直线上的三点作平行四边形的三个顶点,则可作出平行四边形( ) A.1个 B.2个 C.3个 D.4个
3.如图,□ABCD中,对角线AC和 BD相交于点O,如果AC=12,BD=10,AB=m,那么m的取值范围是( )
A.1<m<11;B.2<m<22;C.10<m<12;D.5<m<6
○
4.一个正多边形的每个外角都是36 ,则这个多边形是_________边形.
5.已知一个多边形的内角和是它的外角和的3倍,那么这个多边形的边数是_________.
矩形、菱形、正方形 (一):【知识梳理】 1.性质:
(1)矩形:①矩形的四个角都是直角.②矩形的对角线相等.③矩形具有平行四边形的所有性
质.
(2)菱形:①菱形的四条边都相等.②菱形的对角线互相垂直,并且每条对角线平分一组对
角.③具有平行四边形所有性质.
6
(3)正方形:①正方形的四个角都是直角,四条边都相等.②正方形的两条对角线相等,并且互
相垂直平分,每条对角线平分一组对角.
2.判定:
(1)矩形:①有一个角是直角的平行四边形是矩形.②对角线相等的平行四边形是矩形.③有三
个角是直角的四边形是矩形.
(2)菱形:①对角线互相垂直的平行四边形是菱形.②一组邻边相等的平行四边形是菱形.③四
条边都相等的四边形是菱形.
(3)正方形:①有一个角是直角的柳是正方形.②有一组邻边相等的矩形是正方形.③对角线相
等的菱形是正方形.④对角线互相垂直的矩形是正方形.
3.面积计算:
S (1)矩形:S=长×宽;(2)菱形:
2
1l1l2l、l2(12是对角线)
(3)正方形:S=边长
4.平行四边形与特殊平行四边形的关系 (二):【练习】
1.下列四个命题中,假命题是( )
A.两条对角线互相平分且相等的四边形是正方形
B.菱形的一条对角线平分一组对角
C.顺次连结四边形各边中点所得的四边形是平行四边形 D.等腰梯形的两条对角线相等
2.将矩形ABCD沿AE折叠,得到如图所示的图形,已知∠CED=60°,则∠AED的大小是( )
A.60°. B.50°. C.75°. D.55°
3.正方形的对角线长为a,则它的对角线的交点到各边的距离为( )
22a
a B、 a C、 D、22 a 242
4.如图,是根据四边形的不稳定性制作的边长均为15㎝的可活动菱 形衣架.若墙上钉子间的距离AB=BC=15㎝,则∠1=_____度 5.师傅做铝合金窗框,分下面三个步骤进行 (1)如图,先裁出两对符合规格的铝合金
窗料(如图①),使AB=CD,EF= GH; (2)摆放成如图②的四边形,则这时窗框
的形状是 ,根据的数学道理是____.
(3)将直角尺靠紧窗框的一个角(如图③)调整窗框的边框,当直角尺的两条直角边与窗框无缝隙
时(如图④)说明窗框合格,这时窗框是_________,根据的数学道理是______________
三:【经典考题剖析】
1.下列四边形中,两条对角线一定不相等的是( )
A.正方形B.矩形C.等腰梯形D.直角梯形
2.周长为68的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为( ) A.98 B. 96 C.280 D.284
3.如图,在菱形ABCD中,∠BAD=80 ,AB的垂直平分线EF交 对角线A C于点F、E为垂足,连结DF,则∠CDF等于( ) A.80° B.70° C.65° D.60°
4.如图,小明想把平面镜MN挂在墙上,要使小明能从镜子里看
A、
7
见自己的脚?问平面镜至多离地面多高?(已知小明身高1.60米)
5.如图,在四边形ABCD中,E、F、G、H分别是边AB、BC、CD、
DA的中点,请添加一个条件,使四边形EFGH为菱形,并说明理由, 添加的条件__________,理由:
梯形及多边形
(一):【知识梳理】 1.多边形:
(1)多边形的定义:在平面内,由若干条不在同一条直线上的线段;首尾顺次相接组成的封闭图
形叫做多边形,在多边形中,组成多边形的各条线段叫做多边形的边,每相邻两条边的公共点叫做多边形的顶点,连接不相邻两个顶点的线段叫做多边形的对角线.
(2)多边形的内角和:n边形的内角和=(n-2)180°
(3)正多边形:在平面内,内角都相等,边也相等的多边形叫做正多边形.
(4)多边形的外角:多边形内角的一边与另一边的反向延长线所组成的角,叫做这个多边形的外
角.在多边形的每个顶点处取这个多边形的一个外角,它们 的和叫做多边形的外角和,多边形的外角和都等于360°
n(n3)2 (5)过n边形的一个顶点共有(n-3)条对角线,n边形共有条对角线.
(6)过n边形的一个顶点将n边形分成(n-2)个三角形.
2.梯形:
(1)定义:一组对边平行,另一组对进不平行的四边形叫梯形.两腰相等的梯形叫等腰梯形.一
腰和底垂直的梯形叫做直角梯形.
(2)等腰梯形的性质:等腰梯形同一底上的两个角相等;等腰梯形的对角线相等.
(3)等腰梯形的判定:①同一底上的两个角相等的梯形是等腰梯形.②对角线相邻的梯形是等腰
梯形.
(4)等腰梯形常见的作辅助线的方法.
①作等腰梯形的两条高,将等腰梯形分成一个矩形和两个全等直角三角形,
如图l-4-26
②平移一腰,将等腰梯形化成一个平行四边形和一个等腰三角形.
如图l-4-27.
③平移对角线,将等腰梯形转化为等腰三角形,如图l-4-28.
④如果题中有一腰的中点,则可连结上底的一个顶点和一腰的中点并延长交下底一点,如图1-4-29.
(二):【练习】
1.四边形的内角和 ;外角和 。
2.等腰梯形上底与高相等,下底是高的3倍,则底角为( )
o o o o
A.30 B.45 C.60 D.75
3.顺次连结梯形四边中点,所成的四边形是( ) A.梯形 B.矩形 C.平行四边形D.菱形
4.在学校的大操场,小明从A点出发向前直走50m,向左转18°继续向前走50m,再左转18°他
8
以同样走法回到A点时,共走了________m. 5.如图,已知等腰梯形ABCD中,AD∥BC,
(1)若AD=5,BC=11,梯形的高是4,求梯形的周长; (2)若AD=a,BC=b,梯形的高是 h,梯形的周长为C,
则C=___________(请用含a、b 、c的代数式表示,答案直接填在空格上,不要求证明) (3)若AD=3,BC=7,BD=5 5 ,求证:AC⊥BD. 三:【经典考题剖析】
1.当多边形的边数由n增加到n+1时,它的内角和增加( )
○ ○ ○ ○
A.180B.270C.360D.120
2.下面角度中,不能成为多边形内角和的只有( )
○ ○ ○ ○
A.0B.280 C.1800D.900
3.若等腰梯形两底之差等于一腰的长,则腰与下底的夹角为( )
o o o o
A.60 B.30 C.45 D.15
4.一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是( ) A.5 B.6 C.7 D.8
5.某中学新科技馆铺设地面,已有正三角形形状的地砖,现打算购买另一种不同形状的正多边形地砖,与正三角形地砖在同一顶点处作平面镶嵌,则该学校不应该购买的地砖形状是( ) A.正方形B.正六边形C.正八边形 D.正十二边形
6.如图,矩形ABCD中,AB=3,BC=4,如果将该矩形沿对角线BD折叠, 那么图中阴影部分的面积是_________
7. 如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G的和.
○
8.如图,在梯形ABCD中,AD∥BC,∠B= 90 ,AD=24cm,AB=8cm,BC=26cm,动点P从A点开始沿边AD向D以1cm/秒的速度运动,动点Q从C点开始沿CB边向B以3cm/秒的速度运动,P、Q分别从A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒,t分别为何值时,四边形PQCD是平行四边形、等腰梯形?
9.如图,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,过点A作AG⊥EB,垂足为G,AG交BD于F,则OE=OF.
o
证明:因为四边形ABCD是正方形,所以∠BOE=∠AOF=90,BO=AO,又因为AG⊥EB,所以∠l+∠3 =90°=∠2+∠3,所以∠l=∠2,所以 Rt△BOE≌Rt△AOF,所以OE=OF.
解答此题后,某同学产生了如下猜测:对上述命题,若点E在AC的延长线上,AG⊥EB,AG交 EB的延长线于 G,AG的延长线交DB的延长线于点F,其他条件不变,则仍有OE=OF.问:猜测所得结论是否成立?若成立,请给出证明;若不成立,请说明理由.
9
相似图形
一:【课前预习】 (一):【知识梳理】
1.比例基本性质及运用
(1)线段比的含义:如果选用同一长度单位得两条线段a、b的长度分别为m、n,那么就说这两
am=bn,和数的一样,两条线段的比a、b中,a叫做比的条线段的比是a:b=m:n,或写成
前项 b叫做比的后项.
注意:①针对两条线段;②两条线段的长度单位相同,但与所采用的单位无关;
③其比值为一个不带单位的正数.
(2)线段成比例及有关概念的意义:在四条线段中,如果其中两条线段的比等于另外两条线段的
比,那么这四条线段叫做成比例线段,简称比例线段。
2. 相似三角形的性质和判定
(1)相似三角形定义:对应角相等,对应边成比例的两个三角形叫做相似三角形,
相似三角形的对应边的比叫做相似比.相似比为1的两个三角形是全等三角形。
(2)相似三角形的性质:①相似三角形的对应角相等,对应边成比例.②相似三角
形对应高的比,对应中线的比和对应角平分线的比都等于相似比.③相似三角 形周长的比等于相似比.④相似三角形面积的比等于相似比的平方.
(3)相似三角形的判定:①两角对应相等的两个三角形相似.②两边对应成比例,且夹角相等的
两个三角形相似.③三边对应成比例的两个三角形相似.④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.
注意:①直角三角形被斜边上的高分成的两个三角形和原三角形相似.②在运用三角形相似的
性质和判定时,要找对对应角、对应边,相等的角所对的边是对应边.
(二):【课前练习】
xxy 1.已知y=3,那么y的值是____________
2. 下列各组线段中.能成比例的是( )
A.3,6,7,9 B.2,5,6,8 C.3,6,9,18 D.1,2,3,4
3.已知三个数1,2,3 ,请你再添上一个(只填一个)数,使它们能构成一个比例式,则这个数是 。
4.两直角边的长分别为3和4的直角三角形的斜边与斜边上的高的比为( ) A.5:3 B.5:4 C.5:12 D.25:12 5. 如图,各组图形中相似的是
___________________(只填序号).
10
三:【经典考题剖析】
1.雨后初晴,一学生在运动场上玩耍,从他前面2m远一块小积水处,他看到旗杆顶端的倒影,如果
旗杆底端到积水处的距离为40m,该生的眼部高度是1.5m,那么旗杆的高度是___________m. 2.在比例尺为1:8000的南京市城区地图上,太平南路的长度约为25 cm,它的实际长度约为( )
A.320cm B.320m C.2000cm D.2000m
3.如图,D、E两点分别在△CAB上,且 DE与BC不平行,
请填上一个你认为适合的条件_________,使得△ADE∽△ABC. 4.如图,AD⊥BC于D,CE⊥AB 于E,交 AD于F,图中相似 三角形的对数是( )
A.3 B.4 C.5 D.6
5.创新实验学校设计的矩形花坛的平面图,这个花坛的长为10m,宽为6m. ⑴ 在比例尺为1:50的平面图上,这个矩形花坛的长和宽各是多少cm? ⑵ 在平面图上,这个花坛的长和宽的比是多少? ⑶ 花坛的长和宽的比为多少? ⑷ 你发现这两个比有什么关系?
6.如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿AB以每秒4cm的速度向B点运动,同时点Q从C点出发,沿CA以每秒3㎝的速度向A点运动,设运动的时间为x. ⑴当x为何值时,PQ∥BC?
SBCQ⑵当SABCSBPQ1时,求的值。3SABC
⑶ΔAPQ能否与ΔCQB相似?若能,求出AP的长,若不能,请说明理
由.
相似三角形应用
(一):【知识梳理】
1.相似多边及位似图形
(1) 定义:对应角相等,对应边成比例的两个多边形叫做相似多边形. (2) 相似多边形的性质:(1)相似多边形的周长的比等于相似比;(2)相似多边形的对应对角线
的比等于相似比;(3)相似多边形的面积的比等于相似比的平方;(4)相似多边形的对应对角线相似,相似比等于相似多边形的相似比.
(3) 位似图形的定义:如果两个图形不仅是相似图形.而且每组对应点所在的直线都经过同一
点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又叫做位似比.
2.相似的应用: 相似形的性质与识别在日常生活中有非常广泛的应用,如可应用其对应边成比例
来求一些线段的长;可运用相似三角形的原理来进行测量等
(二):【课前练习】
1.下列说法正确的是( )
A.所有的矩形都是相似形 B.所有的正方形都是相似形
C.对应角相等的两个多边形相似 D.对应边成比例的两个多边形相似
11
2.用作位似图形的方法,可以将一个图形放大或缩小,位似中心的位置可选在( ) A.原图形的外部 B.原图形的内部 C.原图形的边上 D.任意位置 3.如图是小明做的一个风筝的支架,AB=40cm,BP=60cm, △ABC∽△APQ的相似比是( )
A.3:2 B.2:3 C.2:5 D.3:5
4.如图,正方形的网格中,∠1+∠2+∠3+∠4+∠5 等于( )
A.175° B.180° C.210 ° D.225° 5.如图,Rt△ABC中,有三个内接正方形,DF=9cm, GK=6cm,求第三个正方形的边长PQ. 三:【经典考题剖析】
1.小华同学自制了一个简易的幻灯机,其工作情况如图所示,
幻灯片与屏幕平行,光源到幻灯片的距离是30cm,幻灯片
到屏幕的距离是30㎝,幻灯片上小树的高度是10cm,则屏幕上小树的高度是( )
A.50cm B.500cm C.60cm D、600cm
2.如图是跷跷板的示意图.支柱OC与地面垂直,点O是横板AB的中点 ,AB可以绕着点O上下转动,当A端落地时,∠OAC=20°,横板上下可转动的最大角度(即∠A′OA)是( ) A.80° B.60° C.40° D.20°
3.一条河的两岸是平行的,在河的这一岸每隔5m有一棵树,在河的对岸每隔50m有一根电线杆,在这岸离开岸边25m处看对岸,看到对岸相邻的两根电线杆恰好被这岸的两棵树遮住,并且在这两棵树之间还有两棵树,求河的宽度. 4.如图,在两个直角三角形中,∠ACB=∠ADC=90°,AC=6 ,AD=2, 那么当AB 的长等于 时,使得两个直角三角形相似.
5.如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒. (1)求直线AB的解析式;
(2)当t为何值时,△APQ与△AOB相似?
24(3)当t为何值时,△APQ的面积为5个平方单位?
12
圆的有关概念和性质
(一):【知识梳理】
1.圆的有关概念和性质 (1) 圆的有关概念
①圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点为圆心,定长为半
径.
②弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.
③弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径. (2)圆的有关性质
①圆是轴对称图形;其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.
②垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧. 推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.
③弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.
推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;90”的圆周角所对的弦是直径. ④三角形的内心和外心
ⓐ:确定圆的条件:不在同一直线上的三个点确定一个圆.
ⓑ:三角形的外心:三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆
心就是三角形三边的垂直平分线的交点,叫做三角形的外心.
ⓒ:三角形的内心:和三角形的三边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形
三条角平分线的交点,叫做三角形的内心
2.与圆有关的角
(1)圆心角:顶点在圆心的角叫圆心角。圆心角的度数等于它所对的弧的度数.
(2)圆周角:顶点在圆上,两边分别和圆相交的角,叫圆周角。圆周角的度数等于它所对的弧的
度数的一半.
(3)圆心角与圆周角的关系:
同圆或等圆中,同弧或等弧所对的圆周角等于它所对的圆心角的一半. (二):【练习】
1.如图,A、B、C是⊙O上的三点,∠BAC=30°
则∠BOC的大小是( )
○ ○○ ○
A.60B.45 C.30D.15
2.如图,MN所在的直线垂直平分弦A B,利用这样的工 具最少使用__________次,就可找到圆形工件的圆心. 3.如图,A、B、C是⊙O上三个点,当 BC平分∠ABO时, 能得出结论_______(任写一个).
4.如图是中国主义青年团团旗上的图案,点A、B、C、D、E五等分圆, 则∠A+∠B+∠C+∠D+∠E的度数是( )
A.180° B.15 0° C.135° D.120°
5.如图,PA、PB是⊙O的切线,切点分别为A 、B,点C在
13
⊙O上.如果∠P=50 ,那么∠ACB等于( )
○ ○
A.40 B.50
○ ○
C.65D.130 三:【经典考题剖析】
○
1.如图,在⊙O中,已知∠A CB=∠CDB=60 ,AC=3,
则△ABC的周长是____________.
2.“圆材埋壁”是我国古代《九章算术》中的问题:“今有
圆材,埋在壁冲,不知大小,以锯锯之,深一寸,锯道长一尺, 间径几何”.用数学语言可表述为如图,CD为⊙O的直径,弦 AB⊥CD于点E,CE=1寸,AB=10寸,则直径CD的长为( ) A.12.5寸 B.13寸 C.25寸 D.26寸
3.如图,已知AB是半圆O的直径,弦AD和BC相交于点P,
CD
那么 等于( )
AB
A.sin∠BPD B.cos∠BPD C.tan∠BPD D.cot∠BPD
4.⊙O的半径是5,AB、CD为⊙O的两条弦,且AB∥CD,AB=6,CD=8,求 AB与CD之间的距离.
0
5.如图,在⊙M中,弧AB所对的圆心角为120,已知圆的半径为2cm,并建立如图所示的直角坐标系,点C是y轴与弧AB的交点。 (1)求圆心M的坐标;
Y(2)若点D是弦AB所对优弧上一动点,求四边形ACBD的最大面积 D M
AOBXC
6.如图,⊙O的直径AB=10,DE⊥AB于点H,AH=2. (1)求DE的长;
(2)延长ED到P,过P作⊙O的切线,切点为C,
若PC=225,求PD的长.
7.某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面. (1)请你补全这个输水管道的圆形截面;
(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4,求这个圆形截面的半径.
○
AB14
点与圆、直线与圆、圆与圆的位置关系
(一):【知识梳理】
1.点与圆的位置关系: 有三种:点在圆外,点在圆上,点在圆内.
设圆的半径为r,点到圆心的距离为d,则点在圆外d>r.点在圆上d=r.点在圆内d<r.
2.直线和圆的位置关系有三种:相交、相切、相离.
设圆的半径为r,圆心到直线的距离为d,则直线与圆相交d<r,直线与圆相切d=r,直
线与圆相离d>r 3.圆与圆的位置关系
(1)同一平面内两圆的位置关系:
①相离:如果两个圆没有公共点,那么就说这两个圆相离. ②若两个圆心重合,半径不同观两圆是同心圆.
③相切:如果两个圆只有一个公共点,那么就说这两个圆相切. ④相交:如果两个圆有两个公共点,那么就说这两个圆相交. (2)圆心距:两圆圆心的距离叫圆心距.
(3)设两圆的圆心距为d,两圆的半径分别为R和r,则
①两圆外离d>R+r;有4条公切线; ②两圆外切d=R+r;有3条公切线;
③两圆相交R-r<d<R+r(R>r)有2条公切线; ④两圆内切d=R-r(R>r)有1条公切线; ⑤两圆内含d<R—r(R>r)有0条公切线.
(注意:两圆内含时,如果d为0,则两圆为同心圆)
4.切线的性质和判定
(1)切线的定义:直线和圆有唯一公共点门直线和圆相切时,这条直线叫做圆的切线. (2)切线的性质:圆的切线垂直于过切点的直径.
(3)切线的判定:经过直径的一端,并且垂直于这条直径的直线是圆的切线. (二):【练习】
1.△ABC中,∠C=90°,AC=3,CB=6,若以C为圆心,以r为半径作圆,那么:
⑴ 当直线AB与⊙C相离时,r的取值范围是____; ⑵ 当直线AB与⊙C相切时,r的取值范围是____; ⑶ 当直线AB与⊙C相交时,r的取值范围是____.
2.两个同心圆的半径分别为1cm和2cm,大圆的弦AB与小圆相切,那么AB=( ) A.3 B.23 C.3 D.4
3.已知⊙O1和⊙O2相外切,且圆心距为10cm,若⊙O1的半径为3cm,则⊙O2的半径 cm. 4.两圆既不相交又不相切,半径分别为3和5,则两圆的圆心距d的取值范围是( ) A.d>8 B.0<d≤2 C.2<d<8 D.0≤d<2或d>8
5.已知半径为3 cm,4cm的两圆外切,那么半径为6 cm且与这两圆都外切的圆共有_____个. 三:【经典考题剖析】
1.Rt△ABC中,∠C=90°,∠AC=3cm,BC=4cm,给出下列三个结论:
①以点C为圆心1.3 cm长为半径的圆与AB相离;②以点C为圆心,2.4cm长为半径的圆与AB
相切;③以点C为圆心,2.5cm长为半径的圆与AB相交.上述结论中正确的个数是( ) A.0个 B.l个 C.2个 D.3个
15
2.已知半径为3cm,4cm的两圆外切,那么半径为6cm且与这两圆都外切的圆共有___个.
3.已知⊙O1和⊙O2的半径分别为3crn和5 cm,两圆的圆心距是6 cm,则这两圆的位置关系是( ) A.内含 B.外离 C.内切 D.相交
4.如图,PA为⊙O的切线,A为切点,PO交 ⊙O于点B,PA=4,OA=3, 则cos∠APO的值为( )
3344A. B. C. D.553 45.如图,已知PA,PB是⊙O的切线,A、B为切点,AC是⊙O的直径,
∠P=40°,则∠BAC度数是( )
A.70° B.40° C.50° D.20°
6.如图,已知两同心圆,大圆的弦AB切小圆于M,若环形的面
积为9π,求AB的长.
7.如图,PA切⊙O于A,PB切⊙O于B,∠APB=90°,OP=4, 求⊙O的半径.
8.如图,△ABO中,OA= OB,以O为圆心的圆经过AB中点C, 且分别交OA、OB于点E、F. (1)求证:AB是⊙O切线;
(2)若△ABO腰上的高等于底边的一半,且AB=43 ,求ECF的长
9.如图,CB、CD是⊙O的切线,切点分别为B、D,CD的延长线与⊙O的直径BE的延长线交于A点,连OC,ED.
(1)探索OC与ED的位置关系,并加以证明; (2)若OD=4,CD=6,求tan∠ADE的值.
10.如图,⊙O的半径为1,过点A(2,0)的直线切⊙O于点B,交y轴于点C (1)求线段AB的长
y (2)求以直线AC为图象的一次函数的解析式
CB
A
xO
弧长、扇形的面积和圆锥侧面积
(一):【知识梳理】
16
1.弧长公式:
lnR180(n
为圆心角的度数上为圆半径)
为圆心角的度数,R为圆的半径).
nR21lR 2.扇形的面积公式S=3602(n
3.圆锥的侧面积S=πRl ,(l为母线长,r为底面圆的半径),圆锥的侧面积与底面积之和称为圆锥
的全面积.
(二):【课前练习】
1.在半径为3的⊙O中,弦AB=3,则AB的长为
2.扇形的周长为16,圆心角为’,则扇形的面积为( ) A.16 B.32 C. D.16π 3.如图是小芳学习时使用的圆锥形台灯灯罩的示意图,
2
则围成这个灯罩的铁皮的面积为________cm (不考虑接缝等因素,计算结果用π表示). 4.底面半径为人高为h的圆柱,两底的面积之和与它们的侧面积相等中与r的关系为__________ 5.已知扇形的圆心角为120°,弧长为10π㎝,则这个扇形的半径为___cm 三:【经典考题剖析】
1.制作一个底面直径为30cm,高40cm的圆柱形无盖铁桶,所需铁皮至少为( ),
222 2
A.1425πcm B.1650πcm C.2100πcmD.2625πcm2.如图,在⊙O中,AB是直径,半径为R,
AC3R.求:
(1)∠AOC的度数.
(2)若D为劣弧BC上的一动点,且弦AD与半径OC交于E点. 试探求△AEC≌△DEO时,D点的位置.
3.如图,把直角三角形 ABC的斜边AB放在定直线l上,按 顺时针方向在l上转动两次,使它转到△A″B′C″的位置,
设BC=1,AC=3 ,则顶点A运动到 A″的位置时,点A经
过的路线与直线l所围成的面积是____________(计算结果不取近似值) 4.如图,粮仓顶部是圆锥形,这个圆锥的底面圆的周长为36m,
母线长为8m.为防雨需在粮食顶部铺上油毡,需要铺油毡的面积是_________好. 5.如图,⊙O的半径为1,圆周角∠ABC=30°,则图中阴影部分的面积是________.
6.如图,⊙A,⊙B,⊙C两两不相交,且它们的半径都是0.5cm,图中的三个扇形(即三个阴影部分)
的面积之和是多少? A
BC
图形的对称 (一):【知识梳理】
17
1. 轴对称及轴对称图形的意义
(1) 轴对称:两个图形沿着一条直线折叠后能够互相重合,我们就说这两个图形成轴对称,这条
直线叫做对称轴,两个图形中的对应点叫做对称点,对应线段叫做对称线段.
(2) 如果一个图形沿某条直线对折后,直线两旁的部分能够互相重合,那么这个图形就叫做轴对
称图形,这条直线叫做对称轴.
(3) 轴对称的性质:如果两个图形关于某广条直线对称,那以对应线段相等,对应角相等,对应
点所连的线段被对称轴垂直平分.
(4) 简单的轴对称图形:① 线段:有两条对称轴:线段所在直线和线段中垂线. ②角:有一条对称轴:该角的平分线所在的直线.
③等腰(非等边)三角形:有一条对称轴,底边中垂线. ④等边三角形:有三条对称轴:每条边的中垂线. 2. 中心对称图形
○
(1)定义:在平面内,一个图形绕某个点旋转180 ,如果旋转前后的图形互相重合,那么这个
图形叫做中心对称图形,这个点叫做它的对称中心.
(2)性质:中心对称图形上的每一对对应点所连成的线段都被对称中心平分.
o
(3)中心对称与旋转对称的关系:中心对称是旋转角是180的旋转对称.
(4)中心对称的判定:如果两个点的连线被某一点M平分,则这两个点关于点M成中心对称. (二):【练习】
1. 如右图,既是轴对称图形,又是中心对称图形的是( )
2. 下列图形中对称轴最多的是( ) A.圆B.正方形C.等腰三角形D.线段 3. 数字______在镜中看作
4. 如右图的图案是我国几家银行标志,其中轴对称图形有( )
A.l个 B.2个 C.3个 D.4个 三:【经典考题剖析】 1.如图,已知直线l1⊥l2,垂足为O,作线段PM关于直线l1、l2的对称
线段M1P1、M2P2 ,并说明M1P1和M2P2关于点O成中心对称.
2.如图,一张矩形纸片,要折叠出一个最大的正方形,小明把矩形的一个角沿折痕AE翻折上去,使AB和AD边上的AF重合,则四边形ABEF就是一个最大的正方形,他的判断方法是______
3.如图,将标号为A、B、C、D的正方形沿图中的虚线剪开后得到标号为P、Q、M、N的四组图形,试按照“哪个正方形剪开后得到哪组图形”的对应关系,
18
填空: A与_____对应, B与______对应, C与____对应, D与______对应. 4. 如图所示图案中有且只有三条对称轴的是( )
5. 已知四边形ABCD,如图,求作四边形 ABCD关于点A的对称图形.
6.如图,请在ABCDE中,以线段DE所在的直线为对称轴,画出它的轴对称图形.
7.小明发现:如果将4棵树栽于正方形的四个顶点上,如图⑴所示,恰好构成一轴对称图形.你还能找到其他两种栽树的方法,也使其组成一个轴对称图形吗?请在图⑵、⑶上表示出来.如果是栽5棵,又如何呢?6棵、7棵呢?请分别在⑷、⑸、⑹上表示出来.
图形的平移与旋转
(一):【知识梳理】 1.图形的平移
(1) 平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平
移,平移不改变图形的形状和大小.
注意:①平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形
在同一平面内的变换.
②图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离,这两个要素是图形平移 的依据.
③图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改变图形的大小,这个特征是得出图形平移的基本性质的依据.
(2)平移的基本性质:由平移的基本概念知,经过平移,图形上的每一个点都沿同一个方向移动
相同的距离,平移不改变图形的形状和大小,因此平移具有下列性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
注意:①要正确找出“对应线段,对应角”,从而正确表达基本性质的特征.
②“对应点所连的线段平行且相等”,这个基本性质既可作为平移图形之间的性质,又可作为平移作图的依据.
19
(3)简单的平移作图
平移作图:确定一个图形平移后的位置所需条件为:①图形原来的位置;②平移的方向;③
平移的距离.
2. 图形的旋转
(1)旋转的概念:图形绕着某一点(固定)转动的过程,称为旋转,这一固定点叫做旋转中心。
理解旋转这一概念应注意以下两点:①旋转和平移一样是图形的一种基本变换;②图形旋转的决定因素是旋转中心和旋转的角度.
(2)旋转的基本性质:图形中每一个点都绕着旋转中心旋转了同样大小的角度,对应点到旋转中
心的距离相等,对应线段、对应角都相等,图形的形状、大小都不发生变化.
(3)简单图形的旋转作图
两种情况:①给出绕着旋转的定点,旋转方向和旋转角的大小;
②给出定点和图形的一个特殊点旋转后的对应点.
作图步骤:①作出图形的几个关键点旋转后的对应点;
②顺次连接各点得到旋转后的图形.
(4)图案设计:图案的设计是由基本图形经过适当的平移、旋转、轴对称等图形的变换而得到
的。其中中心对称是旋转变换的一种特例。
(二):【练习】
1.如图,四边形ABCD平移后得到四边形 EFGH,
填空(1)CD=______, (2)∠ F=______
(3)HE= ,(4)∠D=_____, (5)DH=_________
2.如图,若线段CD是由线段AB平移而得到的, 则线段CD、AB关系是__________.
3.将长度为3cm的线段向上平移20cm,所得线段的长度是( ) A.3cm B.23cm C.20cm D.17cm 4.关于平移的说法,下列正确的是( )
A.经过平移对应线段相等; B.经过平移对应角可能会改变 C.经过平移对应点所连的线段不相等; D.经过平移图形会改变
o
5.在“党”“在”“我”“心”“中”五个汉字中,旋转180后不变的字是_______
在字母“X”、“V”、“Z”、“H”中绕某点旋转(旋转度数不超过180)后不能与原图形重合的是____
二:【经典考题剖析】
1.下列说法正确的是( )
A.由平移得到的两个图形的对应点连线长度不一定相等
B.我们可以把“火车在一段笔直的铁轨上行驶了一段距离”看作“火车沿着铁轨方
向的平移”
C.小明第一次乘观光电梯,随着电梯向上升,他高兴地对同伴说:“太棒了,我现在比大楼还高呢,我长高了!”
D.在图形平移过程中,图形上可能会有不动点
2.如图,已知△ABC,画出△ABC沿 PQ方向平移2cm后的△A′B′C′.
20
3.如图⑴,两块完全重合的正方形纸片,如果上面的一块统正方形的中心O作0~90的旋转,那么旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化而变化,下面表示S与n的关系的图象大致是图⑵中的( )
(图1) (图2)
4.如图,在方格纸上,有两个形状、大小一样的三角形,请指出如何运用轴对称、平移、旋转这三种运动,将方格中的△ABC重合到△DEF上.
○
5.如图是跷跷板示意图,模板AB通过点O,且可以绕点O上下转动,如果∠OCA=90,∠CAO=
○
25,
(1)画出在空中划过的线;
(2)上下最多可以转动多少角度?
视图与投影
高(一):【知识梳理】 左主平视视齐图 1.三视图 图(1)主视图:从 看到的图;
宽(2)左视图:从 看到的图;
长对正相俯(3)俯视图:从 看到的图;
等视图2.画三视图的原则(如图)
长对正,高平齐,宽相等;在画图时,看得见部分的轮廓线通常画成实线,看不见的轮廓线通常画成虚线。 3.投影
物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是 ;投影分 投影和 投影。
(1)平行投影:太阳光线可以看成 光线,像这样的光线所形成的投影称为 投
影;物体的三视图实际上就是该物体在垂直于投影面的平行光线下的平行投影。
(2)中心投影:手电筒、路灯和台灯的光线可以看成是由一点出发的光线,像这样的光线所形
成的投影称为 投影。
(3)像眼睛的位置称为 ,由视点出发的线称为 ,两条视线的夹角称
为 ,看不到的地方称为 。
(二):【练习】
1.小明从正面观察图(1)所示的两个物体,
看到的是图(2)中的( )
○o
21
(图1) (图2)
2.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( ) A.小明的影子比小强的影子长; B.小明的影子比小强的影子短 C.小明的影子和小强的影子一样长; D.无法判断谁的影子长
3.你在路灯下漫步时,越接近路灯,其影子成长度将( ) A.不变B.变短C.变长D.无法确定
4.一个矩形窗框被太阳光照射后,留在地面上的影子是________ 5.将如图1-4-22所示放置的一个直角三角形 ABC( ∠C=90°),绕斜边AB旋转一周所得到的 几何体的主视图是图1-4-23四个图形中的 _________(只填序号). 三:【经典考题剖析】
1.某物体的三视图是如图所示的3个图形,
那么该物体的形状是( )
A.长方体B.圆锥体C.立方体D.圆柱体
2.在同一时刻,身高1.6m的小强的影长是1.2m,旗杆的影长是15m,则旗杆高为( ) A.16m B.18m C.20m D.22m
3.一天上午小红先参加了校运动会女子100m比赛,过一段时间又参加了女子400m比赛,如图是摄影师在同一位置拍摄的两张照片,那么下列说法正确的是() A.乙照片是参加100m的 B.甲照片是参加 400m的 C.乙照片是参加 400m的
D.无法判断甲、乙两张照片
4.已知:如图,AB和DE是直立在地面上的两根立柱.AB=5m,某一时刻AB在阳光下的投影BC=3m. (1)请你在图中画出此时DE在阳光下的投影;
(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.
5.某居民小区有一朝向为正南方向的居民楼(如图),该居民楼的一楼是高6米的小区超市,超市以上是居民住房.在该楼的前面15米处要盖一栋高20米的新楼,当冬季正午的阳光与水平线的夹角为32°时. (1)问超市以上的居民住房采光是否有影响,为什么? (2)若要使超市采光不受影响,两楼应相距多少米? (结果保留整数,参考数据:
sin32鞍531065,cos32,tan32?1001258)
锐角三角函数
(一):【知识梳理】
1.直角三角形的边角关系(如图)
222
(1)边的关系(勾股定理):AC+BC=AB;
22
(2)角的关系:∠A+∠B=∠C=90; (3)边角关系:
0
C9001BCAB02A30①:
②:锐角三角函数: ∠A
∠A的对边a,即sinA=c; 的正弦=斜边∠A的邻边b,即cosA=c , ∠A的余弦=斜边∠A的对边a,即tan=b ∠A的正切=∠A的邻边注:三角函数值是一个比值.
2.特殊角的三角函数值. 3.三角函数的关系
(1) 互为余角的三角函数关系.
○○○
sin(90-A)=cosA, cos(90-A)=sin A tan(90-A)= cotA (2) 同角的三角函数关系.
22
平方关系:sin A+cosA=l 4.三角函数的大小比较
①正弦、正切是增函数.三角函数值随角的增大而增大,随角的减小而减小.
②余弦是减函数.三角函数值随角的增大而减小,随角的减小而增大。 (二):【练习】
1.等腰直角三角形一个锐角的余弦为( )
1 A.2
B.32 C.22 D.l
2.点M(tan60°,-cos60°)关于x轴的对称点M′的坐标是( ) 3.在 △ABC中,已知∠C=90°,sinB=0.6,则cosA的值是( )
4.已知∠A为锐角,且cosA≤0.5,那么( )
A.0°<∠A≤60° B.60°≤∠A<90° C.0°<∠A≤30° D.30°≤∠A<90° 三:【经典考题剖析】
1.如图,在Rt△ABC中,∠C=90°,∠A=45°,点D在AC上,∠BDC=60°,AD=l,求BD、DC的长.
x1(x2)x2其中x=tan45-cos30° 3A.3443 B. C. D.4355
2.先化简,再求其值,xx2
223
3. 计算:①sin248+ sin242-tan44×tan45×tan 46 ②cos55+ cos35
4.比较大小(在空格处填写“<”或“>”或“=”)
○
若α=45,则sinα________cosα;
○
若α<45,则sinα cosα; 若α>45°,则 sinα cosα.
5.如图 ,某风景区的湖心岛有一凉亭A,其正东方向有一棵大树B,小明想测量A/B之间的距离,他从湖边的C处测得A在北偏西45°方向上,测得B在北偏东32°方向上,且量得B、C之间的距离为100米,根据上述测量结果,请你帮小明计算A山之间的距离是多少?(结果精确至1米.参考
○○
数据:sin32≈0.5299,cos32≈0.8480)
解直角三角形应用
○
○
○
○
○
2
○
2
○
(一):【知识梳理】
1. 直角三角形边角关系.
222 (1)三边关系:勾股定理:abc
(2)三角关系:∠A+∠B+∠C=180°,∠A+∠B =∠C=90°.
aab (3)边角关系tanA=b,sinA=c,cosA=c,
2.解法分类:(1)已知斜边和一个锐角解直角三角形;
(2)已知一条直角边和一个锐角解直角三角形; (3)已知两边解直角三角形.
3.解直角三角形的应用:关键是把实际问题转化为数学问题来解决 (二):【练习】
1.如图,两条宽度都是1的纸条,交叉重叠放在一起,且夹角为山则重叠部分的面积为( )
cosa sina
2.如上图,铁路路基横断面为一个等腰梯形,若腰的坡度为2:3,顶宽为3米,路基高为4米,则路基的下底宽是( ) A.15米 B.12米 C.9米 D.7米
3.我市东坡中学升国旗时,余露同学站在离旗杆底部12米行注目礼,当国旗升到旗杆顶端时,该同学视线的仰角为45°,若他的双眼离地面1.3米,则旗杆高度为_________米。
4.太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时,测得大树在地面上的影长为10米,则大树的高为_________米.
5.如图,为测一河两岸相对两电线杆A、B间的距离,在距A点15米 处的C点(AC⊥BA)测得∠A=50°,则A、B间的距离应为( )
A.1 ; B.1; C.sina; D.1 24
15 A.15sin50°米;B.15cos50°米;C.15tan50°米;D.tan50米
三:【经典考题剖析】
1.如图,点A是一个半径为300米的圆形森林公园的中心,在森林公园附近有B、C两个村庄,现在B、C两村庄之间修一条长为1000米的笔直公路将两村连通,经测得∠ABC=45°,∠ACB=30°,问此公路是否会穿过森林公园?请通过计算进行说明.
2.在一次实践活动中,某课题学习小且用测倾器、皮尺测量旗杆的高度,他们设计如下方案如图①所
A 示;
(1)在测点A处安置测倾器,测得旗杆顶部M的角∠MCE=α; (2)量出测点A到旗杆底部N的水平距离A N=m;
(3)量出测倾器的高度AC=h,根据上述测量数据,即可求出旗杆
α 的高度MN. D 如果测量工具不变,请你仿照上述过程,设计一个测量某小山高度
C B ①在图②中,画出你测量小山高度MN的示意图(标上适当的字母); ②写出你的设计方案.
3.已知如图,某同学站在自家的楼顶A处估测一底部不能直接到达的宝塔的高度(楼底与宝塔底部在同一水平线上),他在A处测得宝塔底部的俯角为30°,测得宝塔顶部的仰角为45°,测得点A到地面的距离为 18米,请你根据所测的数据求出宝塔的高.(精确到0.01米)
0 25
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- efsc.cn 版权所有 赣ICP备2024042792号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务