搜索
您的当前位置:首页正文

The Role of a Hot Gas Environment on the Evolution of Galaxies

来源:筏尚旅游网
2002 nJu 21 1v3026020/hp-ortsa:viXraTheRoleofaHotGasEnvironmentontheEvolutionofGalaxies

DavidBurstein1,GeorgeBlumenthal2

Received

–2–ABSTRACT

Mostspiralgalaxiesarefoundingalaxygroupswithlowvelocitydispersions;mostE/S0galaxiesarefoundingalaxygroupswithrelativelyhighvelocitydis-persions.ThemassofthehotgaswecanobserveintheE/S0groupsviatheirthermalX-rayemissionis,onaverage,asmuchasthebaryonicmassofthegalax-iesinthesegroups.Bycomparison,galaxyclustershaveasmuchormorehotgasthanstellarmass.HotgasinS-richgroups,however,isoflowenoughtem-peratureforitsX-rayemissiontosufferheavyabsorptionduetoGalacticHIandrelatedobservationaleffects,andhenceishardtodetect.Wepostulatethatsuchlowertemperaturehotgasdoesexistinlowvelocitydispersion,S-richgroups,andexploretheconsequencesofthisassumption.Forawiderangeofmetallicityanddensity,hotgasinS-richgroupscancoolinfarlessthanaHubbletime.Ifsuchgasexistsandcancool,especiallywheninteractingwithHIinexistinggalaxies,thenitcanhelplinktogetheranumberofdisparateobservations,bothGalacticandextragalactic,thatareotherwisedifficulttounderstand.Subjectheadings:galaxies:formation—galaxies:evolution—intergalacticmedium

1.Introduction

BoththeNearbyGalaxiesCatalog(Tully1987)andthediscoveryofX-rayemittinghotgasingalaxygroups(Mulchaey,etal.1993;Heldson&Ponman2000;Mulchaey2000,hereafterJSM00)haveprovidedstrongevidencethatmostgalaxiesresideingalaxygroups,notunlikeourownLocalGroup(e.g.,allof∼2500galaxiesintheNearbyGalaxiesCatalogarewithin1Mpcofagalaxygrouporcluster).Indeed,theevidencesuggeststhatupto

–3–

90%ofgalaxiesresideingalaxygroups,ratherthaninthebetter–studiedgalaxyclusters(cf.Tully1987;Nolthenius1993).

Galaxygroupscanbedividedintotwotypesbythemorphologyoftheirgiantgalaxies(Mulchaey,etal.1996a;Burstein,etal.1997).ThedividinglinechosenbyMulchaey,etal.(1996b)isthatanygroupthathasmorethan1/3ofitsgiantgalaxiesoftypesgEorS0iscalledE/S0-rich;allothersarecalledS-rich.Two-thirdsoftheNolthenius(1993)nearbysampleofgalaxygroupsareS-richbythisdefinition;1/3areE/S0-rich(Burstein,etal.1997).ThemeanobservedvelocitydispersioninthegalaxygroupsclassifiedbyNoltheniusdecreasesbyafactoroftwofromE/S0-richtoS-richgroups(Mulchaey,etal.1996b).Subsequently,Zabludoff&Mulchaey(1998)andMulchaey&Zabludoff(1998)foundthatwhileE/S0-richgroupscancontain30ormoregalaxiesmoreluminousthanMB∼−16,typicalS-richgroups,suchasourownLocalGroup,containonly4-8galaxiesthisluminous.

Mulchaey,etal.(1996b)pointoutthatthehighervelocitydispersionofE/S0-richgroupscorrespondstoahotgastemperatureof∼0.9keV,whichiseasilyseenwithROSAT.Incontrast,forS-richgroups,thepredictedtemperaturebasedontheirlowervelocitydispersionaverages1/4ofthisvalue,makinganyX-rayemissionfromhotgassubjecttosevereextinctionbymetalsassociatedwithHIgasinourownGalaxy(Raymond&Smith1977).

Herewemakethereasonableassumptionthatlowvelocitydispersion,S-richgalaxygroupsdocontainhotgas(insomeS-richgroupssuchhotgashasbeenfound;cf.JSM00;Xu&Wu,2000).InSection2weshowthat,forarangeoftemperature,metallicityanddensity,muchofthehotgasingalaxygroupscancoolinfarlessthanaHubbletime.InSection3,webrieflydiscusstheconsequencesoftheinterrelationshipthatmustexistamongthedarkmatterdistributionandhotgasingalaxygroups,andtheconsequencesthatrelationshipholdsfortheformationandevolutionofgalaxiesinthegroups.Section4

–4–

discussessomeofthevariedobservationsofgalaxiesandgalaxygroupsthattheassumptionsofthisLettercanhelpexplainorpredict.

2.CoolingTimesforHotGasinGalaxyGroups

ThemeasuredtemperaturesofX-rayemittinggasingalaxygroupsrangefromT∼0.3−1.0keV,withastrongcorrelationbetweenthevelocitydispersionofthegroupsandtheirhotgastemperatures(e.g.,JSM00).Thislowertemperaturelimitarisesnotfromtheabsenceofgroupswithlowvelocitydispersions(predominantlyS-rich),butratherfromtheHeandmetalnucleiabsorption(associatedwithGalacticHI)ofX-rayemissionfromhotgaswithT≤0.3keV(T≤3.5×106K)(e.g.,Raymond&Smith1977).Thefactthatlowerhotgastemperaturemeanslowerluminosity,andthattheX-raybackgroundishigherforT<0.5keV,alsocontributetothelackofX-raydetectedlowvelocitydispersiongroups.

Itiswell-knownthatX-rayemittinggaswithT∼106−107Kcancoolefficientlyunderthe“right”circumstancesofgasdensity,metallicityandtemperature(Nulsen,Stewart&Fabian1984).InFigure1weplotthegascoolingtimesasafunctionoftemperatureforarangeoftemperatureandmetallicityrelevantforgasingalaxygroups,usingtheresultsgivenbySutherland&Dopita(1993).Coolingtimesareinverselyproportionaltothedensityofgas;thedensity(nH=10−3cm−3)usedforFigure1correspondstothetypicalgasdensitiesseenintheinteriorsoftheE/S0-richgalaxygroups(cf.Mulchaey,etal.1996a).JSM00findsthatmostgalaxygroupshavehotgaswithmetallicitiesz>0.1.EvenforgasdensitiesafactoroftenlessthanusedforFigure1,coolingtimesarestilllessthanaHubbletimeforz>0.1,especiallyforthegastemperatures(T<3.5×106K)weexpecttofindinS-richgroups.

–5–

3.

HotGasandGalaxyEvolution

TheexistingdataisconsistentwiththemassofhotX-rayemittinggasbeingcomparabletothevisiblemassofgalaxies,starsandgas(cf.discussioninJSM00).Thefactthathotintragroup/intraclustergascontainsmetalsimpliesthatanyprimordialgasthatwasoriginallytherewassubsequentlyenrichedfromstarformation.Consequently,duringthehistoryofthesegalaxies,theirstarformationprocessesmusthaveproducedacomparableamountofmassinhotgasreleasedintotheintragroupmediumasthereismassinthestarsthemselvestoday.ThecorrespondingproductionrateforhotgasinstellarevolutionimpliesanaveragestarformationratenotwildlydifferentfromwhatweseeinourGalaxytoday(cf.Bachiller1996).

Bycreatingthishotgasviastellarevolution,galaxiesareputtingasubstantialamountoftheirmassinto“hotstorage”,wheresubsequentcoolingandinteractionswithgalaxiesmaysignificantlyaffectthegalaxies’structureandevolution.Thisisyetanotherreason(cf.thedensity-morphologyrelationforgalaxies,Dressler1980)toviewtheformationandevolutionofgalaxiesnotinindividualterms,butratherinthecontextofthegalaxygroupsandclusterstowhichtheybelong.

Themass-to-lightratiosforgalaxygroups,derivedfromtheX-rayobservations,aresimilartothoseforgalaxyclusters,100-120insolarunits,Bmag(cf.JSM00),implyingdarkmatterdomination.ThemeanvelocitydispersionforS-richgroupsis1/2thatofE/S0-richgroups(cf.above),andE/S0-richgroupsalsohaveeffectiveradiithatare50%largerthanS-richgroups(cf.datainBurstein,etal.1997).Onaverage,E/S0-richgroupsaremoremassive(6×)anddenser(1.7×)thanS-richgroups.Becauseofitstightcorrelationwithvelocitydispersion,thehotgastemperatureingalaxygroupsisdeterminedbythedensityandmassofthegroup,whichinturnisdominatedbydarkmatter.

Itisalsonoteworthythatthevelocitydispersionswithinlargegalaxiesingroups

–6–

tendtobecomparabletothevelocitydispersionsofthegalaxiesintheirgroups:E/S0galaxieshavetypicalvelocitydispersions(atL∗)of250kms−1,whilegiantspiralstypicallyhaveequivalentvelocitydispersionsof150-200kms−1(Burstein,etal.1997).Obviously,thistrendbreaksdownatthehighermassesofclusterswiththeirmuchhighervelocitydispersion,butthereisevidencethatclustersrepresenttheendpointoftheclusteringofgroupsindenseenvironments(Blumenthaletal.1984).Withingalaxygroups,the“darkmatter/visiblematterconspiracy”correspondingtothesimilarityofstellarmotionsanddarkmattervelocitydispersionthereforeappliestoboththeenvironmentofgalaxiesandtothegalaxiesthemselves(cf.Burstein&Rubin1985).

Thisviewisconsistentwiththehierarchical-clustering-merging(HCM)picture(Burstein,etal.1997)inwhichE/S0galaxiesareformedindenser,moremassiveenvironments,whilespiralsareformedinlowermass,lessdenseenvironments.ThenewwrinklehereissomethingthattheHCMscenariohastroublepredictingquantitatively(owingtoalackofphysicalunderstandingoftheoriginoftheinitialmassfunctionforstars).Namely,galaxiesputmuchoftheirbaryonicmassinto“hot”storage.Someofthishotgaswillbeinstorageinthehaloofthegalaxiesthemselves,whilesomewillbewithinthegeneralgroupmedium.

ThefactthatmuchofthishotgascancoolefficientlytocoldgasinlessthanaHubbletimecanhaveimportantobservationalimplications.Theinteractionofhotintragroupgaswiththecoldgasingalaxiesmovingwithinthegroupscanleadtocomplexhydrodynamicaleffectsincludingshocksandphasetransitions,withsubsequentcooling.Thisinteractionofhotandcoldgascanleadtoseveralinterestinggalacticphenomena(e.g.,tidaltails,galacticfountains,small,HI-richdwarfgalaxiesinorbitabouttheirparentgalaxies,suchasintheLocalGroup).Infact,shocksthatformintheinteractionregionleadtohigherdensitiesforthehotgas,withconsequentlyshortercoolingtimes.Quantitativelyaddressingthese

–7–

complicationswillinvolvedetailedmodelingwithyet-to-be-writtenN-bodyhydrocodes,butitisreasonabletoassumethatthecoolingofthishotgasanditsinteractionswithextantgalaxiescansignificantlyaffecttheevolutionofthesegalaxies.Wenowexploresomeoftheplausibleobservationalconsequencesofthisinteraction.

4.ObservationalConsequencesofGalaxyInteractionswithIntragroupGasForthefollowing,wemakethreeassumptions:a)hotgasexistsinallgalaxygroups;b)

muchofthisgascancoolinmuchlessthanaHubbletime;andc)thecoolingrateisevenfasterwhenthereareshocksassociatedwiththeinterstellarmediumingalaxies.Theseassumptionsleadtoawiderangeoflinkedobservationalimplications.

1.Thedensity/morphologyrelationforgalaxies:Ithaslongbeenknown(e.g.Dressler1980)thatgalaxymorphologycorrelateswithlocalinitialconditionssuchasmassdensity.Almostcertainly,partofthiscorrelationiscausal,sincehigherdensityimpliesmoremajormerging,whichprobablyleadstoellipticals.Atthesametime,higherinitialdensitiesleadtogroupswithhighervelocitydispersionandgastemperature.WhilethegasinS-richgroupswillthereforebeabletocoolinlessthanaHubbletime,thehottergasE/S0-richgroupsmaybetoohot(∼107K,cf.JSM00andFig.1)toefficientlycool.

2.Galaxywarps,tidaltailsandHImasssurfacedensitydistributions:Mostedge-onspiraldiskshavewarpsthatpersistwellintotheirextendedHIdistribution(Sancisi1976),whichisconsistentwiththewarpmodeldevelopedtomatchtheHIdistribution(Bosma1981).Surprisingly,thereisevidencethattheratioofmasssurfacedensity(mostlydarkmatter)toHIsurfacedensityintheouterregionsofspiralsisaconstantoverseveralscalelengths(Bosma1981;Hoekstra,Sancisi,&vanAlbada2001),withasharpoutercut-offintheHIsurfacedensity(Hoekstraetal.).SomeHI-dominatedtidaltailsextending

–8–

fromspiralgalaxieshavemoregasthanlikelyjustfromthegalaxiesfromwhichtheyareextended(Hibbard&Yun2001).

TheseobservationsofspiralgalaxiesareconsistentwithastrongcontinuinginterplaybetweencoldHIingalacticdisksandacooling,hotintragroupmedium.Inparticular,hotgasmaycooltoformapartoftheHIdisk,ortheremaybeapressureequilibriumbetweenthecolderdiskmaterialandthehotgas.Tidally-extrudedHIfromgalaxiescanpossiblystimulateformationofHIfromthehotgasthatsurroundsthegalaxies,likelyformingtheHIinpressureequilibriumwiththehotgas.Onlydetailedhydromodelingcantellusmoreabouthowthisinteractionmightwork,buttheprimafacieevidenceisthatthereissimplytoomuchmassinHItidaltailstohavecomejustfromtheouter,lowHIsurfacedensitypartsofspirals.TheobservedsharpcutoffsintheHIdisksofgalaxiesmightalsoarisefromdynamicalpressureorcoolingfromthehotgassurroundingthegalaxy.

3.HighvelocityHIclouds:TheseexistnearourGalaxy,withtheirdistancesandoriginstillhotlydebated(Blitzetal.1997;Sembach2002a,b).Recentobservations(cf.Sembach2002a,b)indicatethatthehighvelocitycloudsnearourGalaxyareenvelopedinhotgasoftemperature∼106K.Similarkindsof“highvelocityclouds”areobservednearthedisksofotherspiralgalaxies(Sancisi,etal.2001),suggestingthatthisphenomenonisnotisolated.Itispossiblethatthesecoldcloudscouldarisefromthermalcoolingstimulatedbythepassageofdwarfgalaxiesorbyanoutflowingwinddrivenbystarformationingalaxydisks.Similarly,whenwelookattheGalacticpolesinbothdirections,weseeHIgasinfallingtowardtheGalacticplane(cf.Tolbert1971).Thisisconsistentwiththeideathatalocalblowoutforagalaxydiskcanstimulatecoldgastoformfromthehotgasinthegalaxy’shalo,andfallbacktotheGalacticplane.

4.UltravioletspectroscopicobservationsofhighionizationabsorptionfeaturesindistantobjectsshowthepresenceofhotgasnearourGalaxyalongdifferentlinesofsight

–9–

(e.g.,Dixon,Davidsen,&Ferguson1995;Savageetal.2002;Sembach2002b)aswellasinothergalaxygroups(e.g.,Tripp2002).AspointedoutbyMulchaey,etal.(1996b),thisispreciselywhathotgasinS-richgroups(orinourgalactichaloand/orinourLocalGroup)wouldproduce.

5.GalaxygroupswhichshowstrongtidalinteractionsamongtheirmembersoftenhaveasubstantialfractionoftheirHIoutsidetheirgalaxies.Forexample,theM81grouphas25%ofitsHIgasinitsintragroupmedium,ratherthaninthegalaxies(Appleton,Davies,&Stepenson1981).ThisdoesnotincludetheHIgasfromtheintragroupmediumthathasalreadybeendumpedonM82andNGC3077andformedstarsthere.ItisunlikelythattidaltailsalonecanproducesuchahighpercentageofHIgasinthegeneralgroupmedium(again,theyarisefromtherelativelylowdensityouterpartsofgalaxies).MuchoftheintragroupgasintheM81groupcouldhavecomefromcoolingofthehotgasinthatgroup,stimulatedbythetidalinteractionsofthegalaxies,aswellaswithsubsequentstarformationinM82andNGC3077.

6.Thesolutionofthe“G-dwarfproblem”inourGalaxymostlikelyrequiresaconstantinfalloflowmetallicitygas(cf.Chiappina,Matteucci,&Gratton1997).Similarly,semi-analyticmodelsofgalaxyevolutionseemtoimplytheneedforcontinuousinfallofgasfromoutsidegalaxiestoproducethegalaxiesweseetoday(cf.Sembach2002a).Hotgasinthehaloortheimmediateenvironmentofspiralgalaxies,whichisofmoderatelylowmetallicity,andwhichcancooltocoldgas,canprovidejustsuchareservoir.

7.SpiralarmsappearinHIdisksofspiralsoutsidethedisksofstars(e.g.,Bosma1981).Giventhatgalaxiesmoveatroughlythespeedofsoundthoughtheirintragroupgas,theshocksthatareproducedcanhelpstimulatespiralarmformationintheHIgasintheouterpartsofgalaxies.

8.TherelationshipbetweenkinematicvelocityfieldsandHIdistributionsinspiral

–10–

galaxiesiscomplicated.Whilethekinematicvelocityfieldsinmanynon-interactingspiralgalaxiesaretypicallyveryregular,theangulardistributionofHIgas(and,tosomeextent,thediskstars)canbeveryirregular(e.g.,Bosma1981).Inextremecases,theHIdensitydistributionwithinaspiralgalaxydiskcanbeverylopsided,whilepreservingaregularvelocityfield.Thereareexceptionalcasesinwhichthekinematicvelocityfieldscanalsobelopsided(Swaters,etal.1999).Ifcoldgasisbeingproducedbycoolingofhottergasduetointeractionswith,forexample,gasproducedbystarformationinthegalaxydisks,thiscouldeasilyleadtoahighlyvariablegasdensitywithoutsignificantlyaffectingthekinematicvelocityfield.Thisalsosuggeststhatthedisksformfromtheinsideout(highergasdensityinthegalaxyinteriors),producingbluecolorgradientsowingbothtolowermetallicityandyoungerstarsasafunctionofincreasingradius(cf.Courteau&Holtzman1995).

Ofcourse,theaboveisnotanexhaustivelistofobservationalconsequencesofourassumptions.Moreover,noteveryoneoftheseobservationsisnecessarilyaconsequenceofourassumptions.Rather,wesuggestthatalloftheobservationslistedhereareconsistentwithourassumptions.Basedonthisdiscussion,wehaveestionsforfutureinvestigation:

i.Densityinfluencestheformationandevolutionofgalaxiesinmorethanjustdefiningthecircumstancesoftheirbirth.Rather,thetemperatureofthehotgastheyproduceintheirgroupsalsocandictatetheirsubsequentevolution.Hydromodelingofgalaxiesmusttakeintoaccounttheenvironmentsinwhichwefindthem,whicharegroup-dominated.

ii.Observationsindicatearangeingasmassingalaxygroups(JSM00),someofwhichmaybeobservationally-driven,butsomeofwhichmaybereal.Separately,spiralgalaxiesarefoundwithawiderangeinsurfacebrightness(cf.Impeyetal.1996).Therecouldbearelationshipbetweengasmass/gastemperaturerangesingalaxygroupsandthesurfacebrightnessoftheirspiralgalaxiesthatshouldbeexplored.

–11–

iii.Similarly,HIcontentandpropertiesofspiralgalaxieswoulddependonthegalaxygroupsinwhichwefindthem.TheknownlargevariationofHIpropertiesamongspiralgalaxies(Bosma1981;Hoekstra,Sancisi,&vanAlbada2001)makesthispredictiononlytestablewithalargestatisticalsampleofgalaxiesinawiderangeofgroupenvironments.Unfortunately,mostofthenearby,largespiralswhichhavebeenwell-studiedfortheirHIdistributionarepartoftheComa-SculptorCloud,whichiscompletelycomprisedofS-richgroups(Tully1987).

iv.Ofcourse,directdetectionofhotgasinlowdispersiongalaxygroupswoulddirectlyproveourassumptions.Unfortunately,theverylongexposuretimesnecessaryforthistohappenmakesuchobservationshardtodo.

IfthewaygalaxyformationandevolutionproceedsaswehaveoutlinedinthisLetteriscorrect,thentwokeypiecesofinformationaremissingfromhigh-zgalaxyimages:thethree-dimensionaldistributionofdarkmatterandthekindsofhotgasthatarefoundateachstageofgalaxyformationandevolution.Knowingthetemperatureanddensityofhotgasingroupsasafunctionofredshiftwouldallowonetomakebetterobservationalpredictionsfordifferentrangesoftime.

Inclosing,itisclearthatmanyofthepossibleobservationalconsequenceswehaveidentifiedcanbemodelednumerically.Inprinciple,N-bodyhydrocodescanadequatelymodeltheinteractionsofhotgasingalacticgroupswiththedisksofspiralgalaxies.However,thestarformationprocessandthewaythatstarformationrelatestogalaxy(andsurroundinggroup)propertiesmayturnouttobeanessentialelement.Untilweunderstandthephysicsthatproducestheinitialmassfunctionsofstars,anyhypothesessuchasoursthatinvolveinteractionofhotgasingalaxygroupswithcoldgasandstarformationingalaxiesmustremainatleastpartlyspeculative.

–12–

WewishtothankDr.GeorgeCoyne,SJ,Dr.Jose’Funes,SJ,Dr.EnricoCorsiniandProfessorFrancescoBertolafororganizingtheJune2000meetingon“GalaxyDisksandDisksinGalaxies”,andconversationswithRenzoSancisi,whichgreatlystimulatedourideas.

–13–REFERENCES

Appleton,P.N,Davies,R.D.,&Stepenson,R.J.,1981,MNRAS,195,327Bachiller,R.1996,ARA&A,34,111

Blitz,L,Spergel,D.N.,Teuben,P.J.,Hartmann,L.,&Burton,W.B.,1997,BAAS,28,1349Blumenthal,G.,Faber,S.Primack,J.&Rees,M.,1984,Nature,311,517Bosma,A.,1981,AJ,86,1825

Burstein,D.,Bender,R.,Faber,S.M.,&Nolthenius,R.,1997,AJ,114,1365Burstein,D.&Rubin,V.C.,1985,ApJ,297,423

Chiappina,C.,Matteucci,F.,&Gratton,R.,1997,ApJ,477,765

Courteau,S.&Holtzman,J.1995,inTheOpacityofSpiralDisks,eds.Davies,J.I.&

Burstein,D.,Kluwer,Netherlands,211

Dixon,W.V.,Davidsen,A.F.,&Ferguson,H.C.,1995,BAAS,27,1452Dressler,A.,1980,ApJ,236,351

Dressler,A.&Shectman,S.A.,1988,AJ,95,985Heldson,S.F.&Ponman,T.J.,2000,MNRAS,315,356

Hibbard,J.&Yun,M.S.,2001,privatecommunication,seefigureat

˜www.cv.nrao.edu/hibbard/LIRpaper/LIR2

–14–

Mulchaey,J.S.,2000,ARA&A,38,289

Mulchaey,J.S.,Davis,D.S.,Mushotzky,R.F.,&Burstein,D.,1993,ApJ,404,9Mulchaey,J.S.,Davis,D.S.,Mushotzky,R.F.,&Burstein,D.,1996a,ApJ,456,80Mulchaey,J.S.,Davis,D.S.,Mushotzky,R.F.,&Burstein,D.,1996b,ApJ,456,5Mulchaey,J.S.&Zabludoff,A.I.,1998,ApJ,496,73Nolthenius,R.,1993,ApJS,85,1

Nulsen,P.E.J.,Stewart,G.C.,&Fabian,A.C.,1984,MNRAS,208,185Raymond,J.C.&Smith,B.W.,1977,ApJS,419Sancisi,R.,1976,A&A,53,159

Sancisi,R.,Fraternali,F.,Oosterloo,T.,&vanMoorsel,G.,2001,inGalaxyDisksand

DiskGalaxies,ASPConf.Ser.230,editedbyJ.G.Funes,S.J.&E.M.Corsini,(ASP,SanFrancisco),p.111

Savage,B.D.,Sembach,K.R.,Wakker,B.P.,Richter,P.,&Meade,M.,2002,BAAS,33,

1407

Sembach,K.R.,2002,BAAS,33,1478

Sembach,K.R.,2002,SpaceTelSciNewsletter,19,2,19(Spring2002)Sutherland,R.S.&Dopita,M.A.,1993,ApJS,88,253

Swaters,R.A.,Schoenmakers,R.H..M.,Sancisi,R.,&vanAlbada,T.S.,1999,MNRAS,

304,330

Tolbert,C.R.,1971,A&AS,3,349

–15–

Tripp,T.M,2002,BAAS,34,689

Tully,R.B.,1987,NearbyGalaxiesCatalog,CambridgeUniversityPress,NewYork,N.Y.Xue,Y.-J.&Wu,X.-P.,2000,ApJ,538,65Zabludoff,A.I.&Mulchaey,J.S.,1998,ApJ,496,39

–16–

Fig.1.—Thelogarithmofthecoolingrates(inyears)ofhotgasasafunctionofthelogarithmofitstemperature(givenbothintermsofKandinkeV),forfourvaluesofmetallicityrelativetosolar(z);1.0,0.1,0.01and0.00.Dottedlinesaredrawnbetweenthez=1.0andz=0.1curvesatvaluesofLogT=5.78and6.5,correspondingtotherangeofobservedvelocitydispersionsinlow-σgalaxygroups,foragasdensityofnH=10−3cm−3.Adottedlineatacoolingtimeof1Gyrisdrawntoguidetheeye.

因篇幅问题不能全部显示,请点此查看更多更全内容

Top