--- -------------绝密★启用前
在 ------------------2020年四川省遂宁市初中毕业暨高中阶段学校招生考试
数 学
__此本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.总分150分.考试时间120
_------------------分钟.
____第Ⅰ卷(选择题,满分40分)
___注意事项:
___1.答题前,考生务必将自己的学校、姓名用0.5毫米的黑色墨水签字笔填写在答题___卷号 生__考__ _ _ _ _ ___------------------卡上,并检查条形码粘贴是否正确.
2.准考证号、选择题使用2B铅笔填涂在答题卡对应题目标号的位置上,非选择题用0.5毫米黑色水签字笔书写在答题卡对应框内,超出答题区城书写的答案无效;在草稿纸、试题卷上答题无效.
____上3.保持卡面清洁,不折叠、不破损.考试结束后,将答题卡收回.
___ _ _ _ ______________-------------------一、选择题(本大题共10个小题,每小题4分,共40分,在每个小题给出
的四个选项中,只有一个符合题目要求.)
1.5的相反数是
( )__A.5
B.5
C.
1名_答_5
D.1
姓__ _ _ _ _) ___A.8.2310 B.8.2310
C.8.2310
D.8.23107
__-------------------52.已知某种新型感冒病毒的直径约为0.000 000 823米,将0.000 000 823用科学记数法表示为
( 67 6 _题3.下列计算正确的是
( )__-------------------2___A.7ab5a2b
B.__a1aa21a2
校学C.3a2b26a4b2
D.3a2bb3a2
业毕无4.下列图形中,既是轴对称图形,又是中心对称图形的是
( )-------------------A.等边三角形 B.平行四边形
C.矩形
D.正五边形 5.函数yx2x1中,自变量x的取值范围是
( )
A.x>2
B.x≥2
C.x>2且x≠1
D.x≥2且x≠1 效m-------------6.关于x的分式方程x232x1有增根,则m的值
( )A.m2
B.m1
C. m3
D. m3
数学试卷 第1页(共28页) 7.如下图,在平行四边形ABCD中,ABC的平分线交AC于点E,交AD于点F,交
CD的延长线于点G,若AF2FD,则
BEEG的值为 ( )
A.
1
2
B.13
C.23 D.34
8.二次函数y=ax2bxca0的图象如下图所示,对称轴为直线x1,下列结论
不正确的是
( )
A.b2>4ac
B.abc>0
C. ac<0
D.am2bm≥ab(m为任意实数) 9.如下图,在Rt△ABC中,C90°,ACBC,点O在AB上,经过点A的O与BC相切于点D,交AB于点E,若CD2,则图中阴影部分面积为
( )
A.42 B.22
C.2
D.14
10.如下图,在正方形ABCD中,点E是边BC的中点,连接AE、DE,分别交BD、AC于点P、Q,过点P作PFAE交CB的延长线于F,下列结论:
①AEDEACEDB90,②APFP,③AE102AO,
④若四边形OPEQ的面积为4,则该正方形ABCD的面积为36,⑤CEEFEQDE.
其中正确的结论有
( )
A.5个
B.4个
C.3个
D.2个
数学试卷 第2页(共28页)
第Ⅱ卷(非选择题,满分110分)
注意事项:
1.请用0.5毫米的黑色墨水签字笔在第Ⅱ卷答题卡上作答,不能答在此试卷上.
二、填空题(本大题共5个小题,每小题4分,共20分)
11.下列各数3.1415926,9,1.212212221…,17,2,2020,34中,无理数的个数有________个.
12.一列数4、5、4、6、x、5、7、3中,其中众数是4,则x的值是________. 13.已知一个正多边形的内角和为1 440°,则它的一个外角的度数为________度.
x214.若关于x的不等式组4<x13有且只有三个整数解,则m的取值范围是
2xm≤2x________.
15.如下图所示,将形状大小完全相同的“”按照一定规律摆成下列图形,第1幅图中“”的个数为a1,第2幅图中“”的个数为a2,第3幅图中“”的个数为
a2222n3,……,以此类推,若a…(n为正整数),则n的值为1a2a3an2020________.
三.计算或解答题(本大题共10小题,共90分,解答应写出必要的文字说
明、证明过程或演算步骤)
216.(本小题满分7分)计算:82sin30°121022020.
17.(本小题满分7分)先化简,x24x4x24x2x2,然后从2≤x≤2范围内x2选取一个合适的整数作为x的值代入求值.
18.(本小题满分8分)
如下图,在△ABC中,ABAC,点D、E分别是线段BC、AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,
(1)求证:△BDE≌△FAE; (2)求证:四边形ADCF为矩形.
数学试卷 第3页(共28页) 19.(本小题满分8分)
在数学实践与综合课上,某兴趣小组同学用航拍无人机对某居民小区的1、2号楼进行测高实践,如下图为实践时绘制的截面图.无人机从地面点B垂直起飞到达点A处,测得1号楼顶部E的俯角为67°,测得2号楼顶部F的俯角为40°,此时航拍无人机的高度为60米,已知1号楼的高度为20米,且EC和FD分别垂直地面于点C和D,点B为CD的中点,求2号楼的高度.(结果精确到0.1) (参考数据sin40°0.,cos400.77,tan400.84,sin670.92,cos670.39,tan672.36)
20.(本小题满分9分)
新学期开始时,某校九年级一班的同学为了增添教室绿色文化,打造温馨舒适的学习环境,准备到一家植物种植基地购买A、B两种花苗.据了解,购买A种花苗3盆,
B种花苗5盆,则需210元;购买A种花苗4盆,B种花苗10盆,则需380元.
(1)求A、B两种花苗的单价分别是多少元?
(2)经九年级一班班委会商定,决定购买A、B两种花苗共12盆进行搭配装扮教室.种植基地销售人员为了支持本次活动,为该班同学提供以下优惠:购买几盆B种花苗,B种花苗每盆就降价几元,请你为九年级一班的同学预算一下,本次购买至少准备多少钱?最多准备多少钱? 21.(本小题满分9分)
阅读以下材料,并解决相应问题: 小明在课外学习时遇到这样一个问题:
定义:如果二次函数ya21xb1xc1(a10,a1、b1、c1是常数)与
ya2x2b2xc2(a20,a2、b2、c2是常数)满足a1a20,b1b2,c1c20,则这两个函数互为“旋转函数”.求函数y2x23x1的旋转函数,小明是这样思考的,
由函数y2x23x1可知,a12,b13,c11,根据a1a20,b1b2,c1c20,
求出a2,b2,c2就能确定这个函数的旋转函数.
请思考小明的方法解决下面问题:
(1)写出函数yx24x3的旋转函数.
(2)若函数y5x2m1xn与y5x2nx3互为旋转函数,求mn2020的值.
(3)已知函数y2x1x3的图象与x轴交于两点,与y轴交于点C,点
A、B、C关于原点的对称点分别是A1、B1、C1,试求证:经过点A1、B1、C1的二次函数
与y2x1x3)互为“旋转函数”.
数学试卷 第4页(共28页)
--- -------------在------------------ _此____________------------------__卷_号 生__考__ _ _ _ _ _------------------____上_____ _ _ _ ____________-------------------____答名__姓__ _ _ _ _ ____-------------------__题_______校学业-------------------毕无-------------------效-------------
22.(本小题满分10分)
端午节是中国的传统节日.今年端午节前夕,遂宁市某食品厂抽样调查了河东某居民区市民对A、B、C、D四种不同口味粽子样品的喜爱情况,并将调查情况绘制成如下两幅不完整统计图:
(1)本次参加抽样调查的居民有________人.
(2)喜欢C种口味粽子的人数所占圆心角为________度.根据题中信息补全条形统计图.
(3)若该居民小区有6 000人,请你估计爱吃D种粽子的有________人. (4)若有外型完全相同的A、B、C、D棕子各一个,煮熟后,小李吃了两个,请用列表或画树状图的方法求他第二个吃的粽子恰好是A种粽子的概率. 23.(本小题满分10分)
如下图,在平面直角坐标系中,已知点A的坐标为0,2,点B的坐标为1,0,连结AB,以AB为边在第一象限内作正方形ABCD,直线BD交双曲线ykxk0于D、E两点,连结CE,交x轴于点F.
(1)求双曲线ykxk0和直线DE的解析式. (2)求△DEC的面积.
数学试卷 第5页(共28页) 24.(本小题满分10分)
如下图,在Rt△ABC中,C90°,D为AB边上的一点,以AD为直径的⊙O交
BC于点E,交AC于点F,过点C作CGAB交AB于点G,交AE于点H,过点E
的弦EP交AB于点Q(EP不是直径),点Q为弦EP的中点,连结BP,BP恰好为⊙O的切线.
(1)求证:BC是⊙O的切线. (2)求证:EFED.
(3)若sinABC35,AC15,求四边形CHQE的面积.
25.(本小题满分12分)
如下图,抛物线yax2bxca0的图象经过A1,0,B3,0,C0,6三点.
(1)求抛物线的解析式.
(2)抛物线的顶点M与对称轴l上的点N关于x轴对称,直线AN交抛物线于点D,直线BE交AD于点E,若直线BE将△ABD的面积分为1:2两部分,求点E的坐标.
(3)P为抛物线上的一动点,Q为对称轴上一动点,抛物线上是否存在一点P,使
A、D、P、Q为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请
说明理由.
数学试卷 第6页(共28页)
2020年四川省遂宁市初中毕业暨高中阶段学校招生考试
数学答案解析
一、 1.【答案】A
【解析】只有符号不同的两个数叫做互为相反数,据此即可得答案.
∵只有符号不同的两个数叫做互为相反数,
∴5的相反数是5,
故选:A.
【提示】本题考查了相反数的定义,只有符号不同的两个数叫做互为相反数;熟练掌握定义是解题关键. 【考点】相反数的定义 2.【答案】B
【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
0.0000008238.23107.
故选B.
【提示】本题考查用科学记数法表示较小的数,一般形式为a10nn,其中1≤a<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定. 【考点】用科学记数法表示较小的数 3.【答案】D
【解析】根据合并同类项、完全平方公式、积的乘方、单项式除单项式分别进行计算,再判断即可.
7ab与5a不是同类项,不能合并,因此选项A不正确;
2根据完全平方公式可得a1aa21a22,因此选项B不正确;
3a2b29a4b2,因此选项C不正确;
数学试卷 第7页(共28页) 3a2bb3a2,因此选项D正确;
故选:D.
【提示】本题考查了合并同类项、完全平方公式、积的乘方、单项式除单项式,掌握运算法则是正确计算的前提.
【考点】合并同类项,完全平方公式,积的乘方,单项式除单项式 4.【答案】C
【解析】根据轴对称图形与中心对称图形的概念求解.
A.是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.故错误;
B.不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义.是中心对称图形.故错误; C.是轴对称图形,又是中心对称图形.故正确;
D.是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.故错误. 故选C.
【提示】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.
【考点】中心对称图形,轴对称的定义 5.【答案】D
【解析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不为0,列不等式组可求得自变量x的取值范围.
根据题意得:x2≥0x10,
解得:x≥2且x1.
故选:D.
【提示】本题考查了函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.
数学试卷 第8页(共28页)
【考点】函数自变量取值范围的求法 6.【答案】D
【解析】分式方程去分母转化为整式方程,由分式方程有增根,确定出m的值即可. 解:去分母得:m3x2,
由分式方程有增根,得到x20,即x2, 把x2代入整式方程得:m30, 解得:m3, 故选:D.
【提示】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值. 【考点】分式方程的增根 7.【答案】C
【解析】由AF2DF,可以假设DFk,则AF2k,AD3k,证明
ABAF2k,DFDGk,再利用平行线分线段成比例定理即可解决问题.
解:由AF2DF,可以假设DFk,则AF2k,AD3k,
∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,ABCD,
∴AFBFBCDFG,ABFG, ∵BE平分ABC,
∴ABFCBG,
∴ABFAFBDFGG, ∴ABCD2k,DFDGk, ∴CGCDDG3k, ∵AB∥DG,
∴△ABE∽△CGE, ∴BEEGAB2k2CG3k3, 故选:C.
数学试卷 第9页(共28页) 【提示】本题考查了比例的性质、相似三角形的判定及性质、等腰三角形的性质、角平分线的性质、平行四边形的性质、平行线分线段成比例定理,熟练掌握性质及定理是解题的关键.
【考点】比例的性质,相似三角形的判定及性质,等腰三角形的性质,角平分线的性质,平行四边形的性质,平行线分线段成比例定理 8.【答案】C
【解析】根据二次函数的图象与系数的关系即可求出答案. 解:由图象可得:a>0,c>0,△b2-4ac>0,-b2a-1, ∴b2a>0,b2>4ac,故A选项不合题意,
∴abc>0,故B选项不合题意,
当x1时,y<0,
∴abc<0,
∴ac<0,即ac>0,故C选项符合题意,
当xm时,yam2bmc,
当x1时,y有最小值为abc,
∴am2bmc≥abc,
∴am2bm≥ab,故D选项不合题意,
故选:C.
【提示】本题考查二次函数的图象和性质,结合图形确定a,b,c的符号和它们之间的关系是解题的关键.
【考点】二次函数的图象和性质 9.【答案】B
【解析】连接OD,OHAC于H,如图,根据切线的性质得到ODBC,则四边形
ODCH为矩形,所以OHCD2,则OA2OH2,接着计算出
BOD45,BDOD2,然后利用扇形的面积公式,利用图中阴影部分面积
S△OBDS扇形DOE进行计算.
解:连接OD,过O作OHAC于H,如图,
数学试卷 第10页(共28页)
∵C90°,ACBC,
∴BCAB45°,
∵⊙O与BC相切于点D,
∴ODBC,
∴四边形ODCH为矩形,
∴OHCD2,
在Rt△OAH中,OAH45°,
∴OA2OH2,
在Rt△OBD中,∵B45°,
∴BOD45°,BDOD2,
∴图中阴影部分面积S△OBDS扇形DOE
0.522452180 212.
故选:B.
【提示】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了扇形面积的计算. 【考点】切线的性质 10.【答案】B
【解析】①正确:证明EOBEOC45,再利用三角形的外角的性质即可得出答案;②正确:利用四点共圆证明AFPABP45即可; ③正确:设BEECa,求出AE,OA即可解决问题; ④错误:通过计算正方形ABCD的面积为48; ⑤正确:利用相似三角形的性质证明即可. ①正确:如图,连接OE,
数学试卷 第11页(共28页)
∵四边形ABCD是正方形,
∴ACBD,OAOCOBOD,
∴BOC90,
∵BEEC,
∴EOBEOC45,
∵EOBEDBOED,EOCEACAEO,
∴AEDEACEDOEACAEOOEDEDB90,故①正确;②正确:如图,连接AF,
∵PFAE,
∴APFABF90,
∴A,P,B,F四点共圆,
∴AFPABP45,
∴PAFPFA=45,
∴PAPF,故②正确;
③正确:设BEECa,则AE5a,OAOCOBOD2a,
∴AE5a1010AO2a2,即AE2AO,故③正确; ④错误:根据对称性可知,△OPE≌△OQE,
∴S1△OEQ2S四边形OPEQ2,
数学试卷 第12页(共28页)
∵OBOD,BEEC,
∴CD2OE,OECD, ∴EQOE1DQCD2,△OEQ∽△CDQ, ∴S△ODQ4,S△CDQ8,
∴S△CDO12,
∴S正方形ABCD48,故④错误;
⑤正确:∵EPFDCE90,PEFDEC,
∴△EPF∽△ECD,
∴EFPEEDEC, ∴EQPE,
∴CEEFEQDE,故⑤正确;
综上所诉一共有4个正确,故选:B.
【提示】本题主要考查了三角形外角性质、四点共圆问题、全等与相似三角形的综合运用,熟练掌握相关概念与方法是解题关键.
【考点】三角形外角性质,四点共圆问题,全等与相似三角形的综合运用 二、 11.【答案】3
【解析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有的绝大部分数,找出无理数的个数.
解:在所列实数中,无理数有1.212212221…,2,34这3个,故答案为:3. 【提示】本题考查无理数的定义,熟练掌握无理数的概念是解题的关键. 【考点】无理数的定义 12.【答案】4
【解析】众数是一组数据中出现次数最多的数,根据众数的定义求出这组数的众数即可.解:根据众数定义就可以得到:x4,故答案为:4. 【提示】本题考查了众数的定义,掌握知识点是解题关键.
数学试卷 第13页(共28页) 【考点】众数的定义 13.【答案】36
【解析】首先设此正多边形为n边形,根据题意得:180°n21440°,即可求得n10,
再由多边形的外角和等于360°,即可求得答案. 设此多边形为n边形,
根据题意得:180°n21440°, 解得:n10,
∴这个正多边形的每一个外角等于:360°10=36°.
故答案为:36.
【提示】本题主要考查多边形的内角与外角,熟练掌握定义与相关方法是解题关键. 【考点】多边形的内角与外角 14.【答案】1≤m<4
【解析】解不等式组得出其解集为2<x≤m23,根据不等式组有且只有三个整数解得出1≤m23<2,解之可得答案. 解不等式x2x14<3,得:x>2, 解不等式2xm≤2x,得:x≤m23,
则不等式组的解集为2<x≤m23,
∵不等式组有且只有三个整数解,
∴≤1m23<2,
解得:1≤m<4, 故答案为:1≤m<4.
【提示】本题考查了不等式组的整数解,关键是根据不等式组的整数解求出取值范围,用到的知识点是一元一次不等式的解法. 【考点】不等式组的整数解 15.【答案】4039
数学试卷 第14页(共28页)
【解析】先根据已知图形得出annn1,代入到方程中,再将左边利用
11nn1n1n1裂项化简,解分式方程可得答案.
解:由图形知a112,a223,a334,
∴annn1,
∵22a2…2n, 1a2a3an2020∴2222n122334…nn12020, ∴211111111n22334…nn12020, ∴211n1n2020, 11n1n4040, 解得n4039,
经检验:n4039是分式方程的解. 故答案为:4039.
【提示】本题主要考查图形的变化规律,根据已知图形得出annn1及
1nn11n1n1是解题的关键.
【考点】图形的变化规律 三、
216.【答案】解:82sin30°121220200
222122141
2212141
23.
【解析】先化简二次根式、代入三角函数值、去绝对值符号、计算负整数指数幂和零指数幂,再计算乘法,最后计算加减可得.具体解题过程可参.
【提示】本题考查了实数的运算,解决此类题目的关键是熟练掌握负整数指数幂、零指
数学试卷 第15页(共28页) 数幂、二次根式、绝对值等考点的运算以及熟记特殊角的三角函数值. 【考点】实数的运算
17.【答案】解:原式x22x2x2x2x2 x2x2x2x24x2x2x2 x2x6x2x2x2 x2x3x2x2x2
x3
x3 ∵x2, ∴可取x1,
则原式132.
【解析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得. 具体解题过程可参.
【提示】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式有意义的条件. 【考点】分式的化简求值
18.【答案】(1)证明:∵AF∥BC,
∴AFEDBE,
∵E是线段AD的中点, ∴AEDE, ∵AEFDEB,
∴△BDE≌△FAEAAS;
(2)证明:∵△BDE≌△FAE,
∴AFBD,
数学试卷 第16页(共28页)
∵D是线段BC的中点,
∴BDCD, ∴AFCD,
∵AF∥CD,
∴四边形ADCF是平行四边形,
∵ABAC,
∴ADBC,
∴ADC90,
∴四边形ADCF为矩形.
【解析】(1)首先根据平行线的性质得到AFEDBE,再根据线段中点的定义得到
AEDE,根据全等三角形的判定定理即可得到结论;
(2)根据全等三角形的性质得到AFBD,推出四边形ADCF是平行四边形,根据等腰三角形的性质得到ADC90°,于是得到结论. 具体解题过程可参.
【提示】本题主要考查了全等三角形的证明与矩形证明,熟练掌握相关概念是解题关键. 【考点】全等三角形的证明,矩形证明
19.【答案】解:过点E、F分别作EMAB,FNAB,垂足分别为M、N,
由题意得,EC20,AEM67,AFN40,CBDBEMFN,AB60,
∴AMABMB602040,
在Rt△AEM中,
∵tanAEMAMEM,
数学试卷 第17页(共28页) ∴EMAMtanAEM40tan67°16.9,
在Rt△AFN中,
∵tanAFNANFN, ∴ANtan4016.914.2,
∴FDNBABAN6014.245.8,
答:2号楼的高度约为45.8米.
【解析】通过作辅助线,构造直角三角形,利用直角三角形的边角关系,分别求出
EM,AN,进而计算出2号楼的高度DF即可.具体解题过程可参.
【提示】本题考查了解直角三角形的应用,构造直角三角形是解题关键. 【考点】了解直角三角形的应用
20.【答案】解:(1)设A、B两种花苗的单价分别是x元和y元,则3x5y2104x10y380,
解得x20,y30
答:A、B两种花苗的单价分别是20元和30元;
(2)设购买B花苗x盆,则购买A花苗为12x盆,设总费用为w元, 由题意得:w2012x30xxx210x2400≤x≤12,
∵1<0.故w有最大值,当x5时,w的最大值为265,当x12时,w的最小值为
216,
故本次购买至少准备216元,最多准备265元.
【解析】(1)设A、B两种花苗的单价分别是x元和y元,则3x5y2104x10y380,即可求
解;
(2)设购买B花苗x盆,则购买A花苗为12x盆,设总费用为w元,由题意得:
w2012x30xxx210x2400≤x≤12,即可求解.具体解题过程可参
.
【提示】本题考查二次函数的实际应用,根据题意准确找到等量关系,建立函数模型是解题的关键.
数学试卷 第18页(共28页)
【考点】二次函数的实际应用
21.【答案】解:(1)由yx24x3函数可知,a11,b14,c13,
∵a1a20,b1b2,c1c20, ∴a2=1,b2=4,c2=3,
∴函数yx24x3的“旋转函数”为yx24x3;
(2)∵y5x2m1xn与y5x2nx3互为“旋转函数”,
∴m1n,n30
解得:m2n3,
∴mn20202320201.
(3)证明:当x0时,y2x1x36,
∴点C的坐标为0,6. 当y0时,2x1x30, 解得:x11,x23,
∴点A的坐标为1,0,点B的坐标为3,0. ∵点A,B,C关于原点的对称点分别是A1,B1,C1, ∴A11,0,B13,0,C10,6.
设过点A1,B1,C1的二次函数解析式为yax1x3,
将C10,6代入yax1x3,得:63a, 解得:a2,
过点AB的二次函数解析式为y2x1x3,即y2x21,1,C14x6.
∵y2x1x32x24x6,
∴a12,b14,c16,a22,b24,c26,
∴a1a2220,b1b24,c1c2660,
∴经过点A1,B1,C1的二次函数与函数y2x1x3)互为“旋转函数”.
【解析】(1)由二次函数的解析式可得出a1,b1,c1的值,结合“旋转函数”的定义可求出
a2,b2,c2的值,此问得解;
数学试卷 第19页(共28页) (2)由函数y5x2m1xn与y5x2nx3互为“旋转函数”,可求出m,n的值,将其代入mn2020即可求出结论;
(3)利用二次函数图象上点的坐标特征可求出点A,B,C的坐标,结合对称的性质可求出点A1,B1,C1的坐标,由点A1,B1,C1的坐标,利用交点式可求出过点A1,B1,C1的二次函数解析式,由两函数的解析式可找出a1,b1,c1,a2,b2,c2的值,再由
a1a20,b1b2,c1c20可证出经过点A1,B1,C1的二次函数与函数
y2x1x3互为“旋转函数”.
具体解题过程可参.
【提示】本题考查了二次函数图象上点的坐标特征、对称的性质及待定系数法求二次函
数的解析式,准确理解题干中“旋转函数”的定义是解题的关键.
【考点】二次函数图象上点的坐标特征,对称的性质,待定系数法求二次函数的解析式 22.【答案】解:(1)24040%600(人), 所以本次参加抽样调查的居民有600人; 故答案为:600;
(2)喜欢B种口味粽子的人数为60010%60(人), 喜欢C种口味粽子的人数为60018060240120(人), 所以喜欢C种口味粽子的人数所占圆心角的度数为360°120600=72°; 补全条形统计图为:
故答案为:72;
(3)600040%=2400,
所以估计爱吃D种粽子的有2 400人; 故答案为2 400; (4)画树状图为:
数学试卷 第20页(共28页)
共有12种等可能的结果数,其中他第二个吃的粽子恰好是A种粽子的结果数为3, 所以他第二个吃的粽子恰好是A种粽子的概率31214. 【解析】(1)用喜欢D种口味粽子的人数除以它所占的百分比得到调查的总人数; (2)先计算出喜欢B种口味粽子的人数,再计算出喜欢C种口味粽子的人数,则用360度乘以喜欢C种口味粽子的人数所占的百分比得到它在扇形统计图中所占圆心角的度数,然后补全条形统计图;
(3)用D占的百分比乘以6 000即可得到结果;
(4)画树状图展示所有12种等可能的结果数,找出他第二个吃的粽子恰好是A种粽子的结果数,然后根据概率公式求解. 具体解题过程可参.
【提示】本题考查条形统计图和扇形统计图的信息关联、由样本估计总体以及用列表或画树状图求简单事件的概率.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.(4)中需注意是不放回实验.
【考点】条形统计图和扇形统计图的信息关联,由样本估计总体,用列表或画树状图求简单事件的概率
23.【答案】解:(1)∵点A的坐标为0,2,点B的坐标为1,0, ∴OA2,OB1,
作DMy轴于M,
∵四边形ABCD是正方形,
∴BAD90,ABAD, ∴OABDAM90, ∵OABABO90,
数学试卷 第21页(共28页) ∴DAMABO,
在△AOB和△DMA中 ABODAMAOBDMA90°, ABDA∴△AOB≌△DMAAAS,
∴AMOB1,DMOA2,
∴D2,3,
∵双曲线ykxk0经过D点, ∴k236,
∴双曲线为y6
x
,
设直线DE的解析式为ymxn,
把B1,0,D2,3代入得mn0,
2mn3解得m3n3,
∴直线DE的解析式为y3x3;
(2)连接AC,交BD于N,
∵四边形ABCD是正方形, ∴BD垂直平分AC,AC=BD, y3x3解6 yx得x2x1y3或y6,
经检验:两组解都符合题意,
∴E1,6, ∵B1,0,D2,3,
∴DE212362310,DB2123210, 数学试卷 第22页(共28页)
CN12BD102, ∴S111015△DEC2DECN231022.
【解析】(1)作DMy轴于M,通过证得△AOB≌△DMAAAS,求得D的坐标,然后根据待定系数法即可求得双曲线ykxk0和直线DE的解析式. (2)解析式联立求得E的坐标,然后根据勾股定理求得DE和DB,进而求得CN的长,即可根据三角形面积公式求得△DEC的面积. 具体解题过程可参.
【提示】本题考查的是正方形的性质,三角形全等的判定与性质,利用待定系数法求解一次函数与反比例函数的解析式,函数的交点坐标的求解,化为一元二次方程的分式方程的解法,勾股定理的应用,掌握以上知识是解题的关键. 【考点】正方形的性质,三角形全等的判定与性质 24.【答案】(1)证明:连接OE,OP,
∵PEAB,点Q为弦EP的中点, ∵AB垂直平分EP, ∴PBBE,
∵OEOP,OBOB,
∴△BEO≌△BPOSSS,
∴BEOBPO, ∵BP为⊙O的切线,
∴BPO90, ∴BEO90,
数学试卷 第23页(共28页) ∴OEBC, ∴BC是⊙O的切线.
(2)解:∵BEOACB90,
∴AC∥OE, ∴CAEOEA, ∵OAOE,
∴EAOAEO,
∴CAEEAO,
∴EFED.
(3)解:∵AD为的⊙O直径,点Q为弦EP的中点,
∴EPAB,
∵CGAB, ∴CG∥EP,
∵ACBBEO90,
∴AC∥OE, ∴CAEAEO, ∵OAOE,
∴EAQAEO,
∴CAEEAO,
∵ACEAQE90,AEAE, ∴△ACE≌△AQEAAS,
∴CEQE,
∵AECCAEEAQAHG90,
∴CEHAHG, ∵AHGCHE, ∴CHECEH, ∴CHCE,
数学试卷 第24页(共28页)
∴CHEQ, ∴四边形CHQE是平行四边形,
∵CHCE,
∴四边形CHQE是菱形,
∵sinABCsinACGAGAC35, ∵AC15, ∴AG9,
∴CGAC2AG212,
∵△ACE≌△AQE,
∴AQAC15,
∴QG6,
∵HQ2HG2QG2, ∴HQ2(12HQ)262,
解得:HQ152,
∴CHHQ152,
∴四边形CHQE的面积CHGQ152645.
【解析】(1)连接OE,OP,根据线段垂直平分线的性质得到PBBE,根据全等三角形的性质得到BEOBPO,根据切线的判定和性质定理即可得到结论. (2)根据平行线和等腰三角形的性质即可得到结论.
(3)根据垂径定理得到EPAB,根据平行线和等腰三角形的性质得到CAEEAO,
数学试卷 第25页(共28页) 根据全等三角形的性质得到CEQE,推出四边形CHQE是菱形,解直角三角形得到
CGAC2AG212,根据勾股定理即可得到结论.
具体解题过程可参.
【提示】此题考查了圆的综合问题,用到的知识点是全等三角形的判定与性质、菱形的判定和性质、勾股定理以及解直角三角形等知识,此题综合性很强,难度较大,注意数形结合思想应用. 【考点】圆的综合问题
25.【答案】解:(1)∵抛物线yax2bxca0的图象经过A1,0,B3,0, ∴设抛物线解析式为:yax1x3,
∵抛物线yax1x3a0的图象经过点C0,6, ∴6a0103,
∴a2,
∴抛物线解析式为:y2x1x32x28x6;
(2)∵y2x28x62x222,
∴顶点M的坐标为2,2, ∵抛物线的顶点M与对称轴l上的点N关于x轴对称,
∴点N2,2, 设直线AN解析式为:ykxb,
由题意可得:0kb22kb,
解得:k2b2,
∴直线AN解析式为:y2x2,
联立方程组得:y2x2y2x8x6, 2解得:x11,x24y10y26, ∴点D4,6, ∴S1△ABD2266,
数学试卷 第26页(共28页)
2m2, 设点Em,【提示】本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,平行四边形的性质,利用分类讨论思想解决问题是本题的关键. 【考点】待定系数法求解析式,一次函数的性质,平行四边形的性质
∵直线BE将△ABD的面积分为1:2两部分, 12∴S△ABES△ABD2或S△ABES△ABD4,
33∴1222m22或1222m24, ∴m2或3,
∴点E2,2或3,4; (3)若AD为平行四边形的边,
∵以A、D、P、Q为顶点的四边形为平行四边形,
∴ADPQ,
∴xDxAxPxQ或xDxAxQxP,
∴xP4125或xP2411,
∴点P坐标为5,16或116,; 若AD为平行四边形的对角线,
∵以A、D、P、Q为顶点的四边形为平行四边形, ∴AD与PQ互相平分, ∴xAxDxPxQ22, ∴xP3,
∴点P坐标为3,0, 综上所述:当点P坐标为5,16或116,或3,0时,使A、D、P、Q为顶点的四边形为平行四边形.
【解析】(1)设抛物线解析式为:yax1x3,把点C坐标代入解析式,可求解;(2)先求出点M,点N坐标,利用待定系数法可求AD解析式,联立方程组可求点D坐标,可求S1△ABD2266,设点Em,2m2,分两种情况讨论,利用三角形面积公式可求解;
(3)分两种情况讨论,利用平行四边形的性质可求解. 具体解题过程可参.
数学试卷 第27页(共28页)
数学试卷 第28页(共28页)
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- efsc.cn 版权所有 赣ICP备2024042792号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务