您好,欢迎来到筏尚旅游网。
搜索
您的当前位置:首页威远县初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

威远县初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

来源:筏尚旅游网
威远县初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________

一、选择题

1、 ( 2分 ) 股票有风险,入市须谨慎、我国A股股票市场指数从2007年10月份6100多点跌到2008年10月份2000点以下,小明的爸爸在2008年7月1日买入10手某股票(股票交易的最小单位是一手,一手等于100股),如图,是该股票2008年7﹣11月的每月1号的收盘价折线图,已知8,9月该股票的月平均跌幅达8.2%,10月跌幅为5.4%,已知股民买卖股票时,国家要收千分之二的股票交易税即成交金额的2‰,下列结论中正确的个数是( )

①小明的爸爸若在8月1日收盘时将股票全部抛出,则他所获纯利润是(41.5﹣37.5)×1000×(1﹣2‰)元;②由题可知:10月1日该股票的收盘价为41.5×(1﹣8.2%)2元/股;

③若小明的爸爸的股票一直没有抛出,则由题可知:7月1日﹣11月1日小明的爸爸炒股票的账面亏损为37.5×1000×(1﹣2‰)﹣41.5×1000×(1﹣8.2%)2×(1﹣5.4%)元.

A. 0个 B. 1个 C. 2个 D. 3个【答案】C

【考点】折线统计图

【解析】【解答】解:读图分析可得:③说法不对,账面亏损不含股票交易税;故应为账面亏损为

第 1 页,共 17 页

37.5×1000﹣41.5×1000×(1﹣8.2%)2×(1﹣5.4%)元.①与②的说法都正确,故答案为:C

【分析】根据统计图中的数据进行计算,从而进行计算即可判断.

2、 ( 2分 ) 把不等式x+1≤-1的解集在数轴上表示出来,下列正确的是( )

A. C. 【答案】D

B. D.

【考点】在数轴上表示不等式(组)的解集,解一元一次不等式

【解析】【解答】移项并合并得,x≤-2,故此不等式的解集为:x≤-2,在数轴上表示为:

故答案为:D.

【分析】先求出此不等式的解集,再将解集再数轴上表示出来。

3、 ( 2分 ) 如图,长方形ABCD的边AD长为2,边AB长为1,AD在数轴上,以原点D为圆心,对角线BD的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )

第 2 页,共 17 页

A. B. C. D.

【答案】A

【考点】实数在数轴上的表示

【解析】【解答】解:∵长方形ABCD的边AD长为2,边AB长为1,

∴这个点表示的实数是: 故答案为:A.

【分析】首先根据勾股定理算出DB的长,然后根据同圆的半径相等及原点右边表示的是正数即可得出答案。

4、 ( 2分 ) 不等式 A.B.C.D.

【答案】 A

【考点】解一元一次不等式

的解集是( )

【解析】【解答】解: ,去分母得3x-2(x-1)≤6,解得, ,故答案为:A.

【分析】根据以下步骤进行计算:(1)两边同乘以各分母的最小公倍数去分母;(2)去括号(不要漏乘);(3)移项、合并同类项;(4)系数化为1(注意不等号的方向),

第 3 页,共 17 页

5、 ( 2分 ) 如图,天平右边托盘里的每个砝码的质量都是1千克,则图中显示物体质量的范围是( )

A. 大于2千克 B. 小于3千克 C. 大于2千克且小于3千克 D. 大于2千克或小于3千克【答案】C

【考点】一元一次不等式组的应用

【解析】【解答】解:由图可知,物体的质量大于两个砝码的质量,故物体质量范围是大于2千克.故答案为:C

【分析】由图知 :第一个图,天平右边高于左边,从而得出物体的质量大于两个砝码的质量,从第二个图可知 :天平右边低于左边,物体的质量小于三个砝码的质量,从而得出答案。

6、 ( 2分 ) 已知a,b满足方程组 ,则a+b的值为( )

A. -3 B. 3 C. -5 D. 5【答案】D

【考点】解二元一次方程组

【解析】【解答】解: ①+②得:4a+4b=20,∴a+b=5.

第 4 页,共 17 页

故答案为:D.

【分析】观察方程组中同一未知数的系数特点:a、b的系数之和均为4,因此将两方程相加的和除以4,就可得出a+b的值。

7、 ( 2分 ) 如图,不一定能推出a∥b的条件是( )

A. ∠1=∠3 B. ∠2=∠4 C. ∠1=∠4 D. ∠2+∠3=180º【答案】C

【考点】平行线的判定

【解析】【解答】解:A、∵∠1=∠3,∴a∥b,故A不符合题意;B、∵∠2=∠4,∴a∥b,故B不符合题意;

C、∵∠1=∠4,∴a不一定平行b,故C不符合题意;D、∵∠2+∠3=180º,∴a∥b,故D不符合题意;故答案为:C

【分析】根据平行线的判定方法,对各选项逐一判断即可。

8、 ( 2分 ) 用加减法解方程组

须适当变形,以下四种变形正确的是( )

时,要使方程中同一个未知数的系数相等或互为相反数,必

① ② ③ ④

第 5 页,共 17 页

A. ①② B. ②③ C. ③④ D. ①④【答案】C

【考点】解二元一次方程组

【解析】【解答】解:试题分析: 把y的系数变为相等时,①×3,②×2得,

把x的系数变为相等时,①×2,②×3得,

所以③④正确.故答案为:C.

【分析】观察方程特点:若把y的系数变为相等时,①×3,②×2,就可得出结果;若把x的系数变为相等时,①×2,②×3,即可得出答案。

9、 ( 2分 ) 2010年温州市初中毕业、升学考试各学科及满分值情况如下表:科目

语文数学英语社会政治自然科学体育

200

30

满分值150150120100若把2010年温州市初中毕业、升学考试各学科满分值比例绘成圆形统计图,则数学科所在的扇形的圆心角是( )度.

A. 72 B. 144 C. 53 D. 106【答案】A

第 6 页,共 17 页

【考点】扇形统计图

【解析】【解答】解:根据表格,得总分=150+150+120+100+200+30=750.所以数学所在的扇形的圆心角= 故答案为:A

【分析】根据表格先计算总分值,从而得出数学所占的百分比,然后根据圆心角的度数=360°×数学所占的百分比即可得出结果.

×360°=72°.

10、( 2分 ) 七年级学生在会议室开会,每排座位坐12人,则有11人没有座位;每排座位坐14人,则余1人独坐一排,则这间会议室的座位排数是( )

A. 14 B. 13 C. 12 D. 15【答案】C

【考点】二元一次方程组的其他应用

【解析】【解答】解:设这间会议室的座位排数是x排,人数是y人.根据题意,得

解得

故答案为:C.

【分析】本题中有两个等量关系:1、每排坐12人,则有11人没有座位;2、每排坐14 人,则余1人独坐一排. 这样设每排的座位数为x ,总人数为y,列出二元一次方程组即可.

第 7 页,共 17 页

11、( 2分 ) 下图中 与 是内错角的是( )

A. B.

C.

【答案】A

D.

【考点】同位角、内错角、同旁内角

【解析】【解答】观察图形可知 :A答案中的两个角是内错角故应选 :A。

【分析】根据三线八角的定义,内错角形如Z形图,即可得出答案。

12、( 2分 ) 某商场店庆活动中,商家准备对某种进价为600元、标价为1200元的商品进行打折销售,但要保证利润率不低于10%,则最低折扣是( )

A. 5折 B. 5.5折 C. 6折 D. 6.5折【答案】B

【考点】一元一次不等式的应用

第 8 页,共 17 页

【解析】【解答】解:设至多可以打x折1200x-600≥600×10%

解得x≥55%,即最多可打5.5折.故答案为:B

【分析】设至多可以打x折,根据利润=售价减进价,利润也等于进价乘以利润率,即可列出不等式,求解得出答案。

二、填空题

13、( 1分 ) 判断 是”). 【答案】是

是否是三元一次方程组 的解:________(填:“是”或者“不

【考点】三元一次方程组解法及应用

【解析】【解答】解:∵把 方程①左边=5+10+(-15)=0=右边;

代入: 得:

方程②左边=2×5-10+(-15)=-15=右边;方程③左边=5+2×10-(-15)=40=右边;

∴ 是方程组: 的解.

【分析】将已知x、y、z的值分别代入三个方程计算,就可判断;或求出方程组的解,也可作出判断。

第 9 页,共 17 页

14、( 1分 ) 若 【答案】3

则x+y+z=________.

【考点】三元一次方程组解法及应用

【解析】【解答】解:在 ∴

.

中,由①+②+③得: ,

【分析】方程组中的三个方的x、y、z的系数都是1,因此由(①+②+③)÷2,就可求出结果。

15、( 1分 ) 请你写出三个大于1的无理数:________. 【答案】

,π

【考点】无理数的认识

【解析】【解答】写出三个大于1的无理数: 故答案为:

,π.

, ,π,

【分析】无理数是指无限不循环小数,则符合题意的无理数不唯一,只要大于1即可。

16、( 1分 ) 已知,如图,要使得AB∥CD,你认为应该添加的一个条件是________

第 10 页,共 17 页

【答案】∠ECD=∠A(答案不唯一) 【考点】平行线的判定

【解析】【解答】解:添加的条件是:∠ECD=∠A(答案不唯一).故答案为:∠ECD=∠A.

【分析】还可以添加:∠B=∠DCB,∠A+∠ACD=180º最为直接的条件.

17、( 1分 ) 两个无理数,它们的和为1,这两个无理数可以是________(只要写出两个就行)

【答案】答案不唯一,例如π,1-π 【考点】无理数的认识

【解析】【解答】答案不唯一,例如π,1-π【分析】写出两个无理数,让它们的和为1即可.

18、( 1分 ) 如图,直线a⊥直线c,直线b⊥直线c,若∠1=70°,则∠2是________

【答案】70°

【考点】平行线的判定与性质

第 11 页,共 17 页

【解析】【解答】解:如图,

∵直线a⊥直线c,直线b⊥直线c,∴a∥b,∴∠1=∠3,∵∠3=∠2,∴∠2=∠1=70°.故答案为:

【分析】两直线同时垂直于第三条直线,则这两直线平行,所以∠1=∠3,两直线平行,同位角相等;即可知∠2的度数.

三、解答题

19、( 5分 ) 在数轴上表示下列各数,并用“<”连接。 3, 0,

【答案】 解:数轴略,

【考点】实数在数轴上的表示,实数大小的比较

【解析】【解答】解:∵=-2,(-1)2=1,

第 12 页,共 17 页

数轴如下:

由数轴可知:

<-<0<(-1)2<3.

【分析】先画出数轴,再在数轴上表示各数,根据数轴左边的数永远比右边小,用“<”连接各数即可.

20、( 5分 ) 已知数a、b、c在数轴上的位置如图所示,化简:|a+b|-|a-b|+|a+c|.

【答案】解:由数轴可知:c<a<0<b,|c|>|b|>|a|,

∴a+b>0,a-b<0,a+c<0,∴|a+b|-|a-b|+|a+c|=a+b-[-(a-b)]+[-(a+c)],=a+b+a-b-a-c,=a-c.

【考点】实数在数轴上的表示,实数的绝对值

【解析】【分析】根据数轴可知c<a<0<b,从而可得a+b>0,a-b<0,a+c<0,再由绝对值的性质化简、计算即可.

21、( 5分 ) 阅读下面情境:甲、乙两人共同解方程组 由于甲看错了方程①中的a,得

到方程组的解为 乙看错了方程②中的b,得到方程组的解为 试求出a、b的正确值,并计算a2

017+(- b)2 018的值.

第 13 页,共 17 页

【答案】解:根据题意把 代入4x﹣by=﹣2得:﹣12+b=﹣2,解得:b=10,把 代入ax+5y=15

得:5a+20=15,解得:a=﹣1,所以a2017+(﹣ 【考点】代数式求值,二元一次方程组的解

b)2018=(﹣1)2017+(﹣ ×10)2018=0.

【解析】【分析】根据甲看错了方程①中的a,因此将甲得到的方程组的记为代入方程②求出b的值,而乙看错了方程②中的b,因此将乙得到的方程组的解代入方程①求出a的值,然后将a、b的值代入代数式计算求值。

22、( 5分 ) 如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.

【答案】解:∵∠FOC=90°,∠1=40°,∴∠3=∠AOB-∠FOC-∠1=180°-90°-40°=50°,∴∠DOB=∠3=50°

∴∠AOD=180°-∠BOD=130°∵OE平分∠AOD

∴∠2=∠AOD=×130°=65°

【考点】角的平分线,对顶角、邻补角

【解析】【分析】根据平角的定义,由角的和差得出∠3的度数,根据对顶角相等得出∠DOB=∠3=50°,再根

第 14 页,共 17 页

据邻补角的定义得出∠AOD=180°-∠BOD=130°,再根据角平分线的定义即可得出答案。

23、( 5分 ) 如图,某村庄计划把河中的水引到水池M中,怎样开的渠最短,为什么?(保留作图痕迹,不写作法和证明)理由是: ▲ .

【答案】解:垂线段最短。 【考点】垂线段最短

【解析】【分析】直线外一点到直线上所有点的连线中,垂线段最短。所以要求水池M和河流之间的渠道最短,过点M作河流所在直线的垂线即可。

24、( 5分 ) 如图,已知直线AB、CD交于O点,OA平分∠COE,∠COE:∠EOD=4:5,求∠BOD的度数.

第 15 页,共 17 页

【答案】解:∵∠COE:∠EOD=4:5,∠COE+∠EOD=180°∴∠COE=80°,∵OA平分∠COE∴∠AOC=∠COE=40°∴∠BOD=∠AOC=40°

【考点】角的平分线,对顶角、邻补角

【解析】【分析】根据平角的定义得出∠COE+∠EOD=180°,又∠COE:∠EOD=4:5,故∠COE=80°,根据角平分线的定义得出∠AOC=∠COE=40°,根据对顶角相等即可得出∠BOD的度数。

25、( 5分 ) 把下列各数填在相应的大括号里:

, ,-0.101001, ,― ,0.202002…, ,0,

负整数集合:( …);负分数集合:( …);无理数集合:( …);

【答案】解: = -4, = -2, = , 所以,负整数集合:( ,

,…); 负分数集合:(-0.101001,― , ,…); 无理数集合:(0.202002…,

第 16 页,共 17 页

,…);

【考点】有理数及其分类,无理数的认识

【解析】【分析】根据实数的分类填写。实数包括有理数和无理数。有理数包括整数(正整数,0,负整数)和分数(正分数,负分数),无理数是指无限不循环小数。

26、( 5分 ) 如图,∠1= ∠2,∠1+∠2=162°,求∠3与∠4的度数.

【答案】解:∵∠1= ∴∠1=°, ∠2=108°.∵∠1和∠3是对顶角,∴∠3=∠1=°∵∠2和∠4是邻补角,∴∠4=180°-∠2=180°-108°=72°【考点】解二元一次方程组

∠2,∠1+∠2=162°,

【解析】【分析】将 ∠1= ∠2 代入 ∠1+∠2=162°, 消去∠1,算出∠2的值,再将∠2的值代入 ∠1=

∠2算出∠1的值,然后根据对顶角相等及邻补角的定义即可分别算出 ∠3与∠4的度数.

第 17 页,共 17 页

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- efsc.cn 版权所有 赣ICP备2024042792号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务