您好,欢迎来到筏尚旅游网。
搜索
您的当前位置:首页Analysis of Factors Affecting the Accuracy, Reproducibility, and Interpretation of Microbial

Analysis of Factors Affecting the Accuracy, Reproducibility, and Interpretation of Microbial

来源:筏尚旅游网
Analysis of factors affecting the accuracy,

reproducibility, and interpretation of microbial community carbon source utilization patterns.

S K Haack, H Garchow, M J Klug and L J ForneyAppl. Environ. Microbiol.

1995, 61(4):1458.

Updated information and services can be found at: http://aem.asm.org/content/61/4/1458These include:

CONTENT ALERTS

Receive: RSS Feeds, eTOCs, free email alerts (when new articlescite this article), more»

Information about commercial reprint orders: To subscribe to to another ASM Journal go to: http://journals.asm.org/site/misc/reprints.xhtmlhttp://journals.asm.org/site/subscriptions/

Downloaded from http://aem.asm.org/ on January 9, 2014 by guestAPPLIEDANDENVIRONMENTALMICROBIOLOGY,Apr.1995,p.1458–1468Vol.61,No.4

0099-2240/95/$04.00ϩ0

Copyright᭧1995,AmericanSocietyforMicrobiology

AnalysisofFactorsAffectingtheAccuracy,Reproducibility,and

InterpretationofMicrobialCommunityCarbon

SourceUtilizationPatterns†

SHERIDANKIDDHAACK,1*HELENGARCHOW,1,2MICHAELJ.KLUG,1,2,3ANDLARRYJ.FORNEY1,3CenterforMicrobialEcology,1DepartmentofMicrobiology,3andKelloggBiologicalStation,2MichiganStateUniversity,EastLansing,Michigan48824

Received18August1994/Accepted25January1995

Wedeterminedfactorsthataffectresponsesofbacterialisolatesandmodelbacterialcommunitiestothe95carbonsubstratesinBiologmicrotiterplates.Forisolatesandcommunitiesofthreetosixbacterialstrains,substrateoxidationratesweretypicallynonlinearandweredelayedbydilutionoftheinoculum.Wheninoculumdensitywascontrolled,patternsofpositiveandnegativeresponsesexhibitedbymicrobialcommu-nitiestoeachofthecarbonsourceswerereproducible.Ratesandextentsofsubstrateoxidationbythecommunitieswerealsoreproduciblebutwerenotsimplythesumofthoseexhibitedbycommunitymemberswhentestedseparately.Replicatesofthesamemodelcommunityclusteredwhenanalyzedbyprincipal-componentsanalysis(PCA),andmodelcommunitieswithdifferentcompositionswereclearlyseparatedonthefirstPCAaxis,whichaccountedfor>60%ofthedatasetvariation.PCAdiscriminationamongdifferentmodelcommunitiesdependedontheextenttowhichspecificsubstrateswereoxidized.However,thesubstratesinterpretedbyPCAtobemostsignificantindistinguishingthecommunitieschangedwithreadingtime,reflectingthenonlinearityofsubstrateoxidationrates.Althoughwhole-communitysubstrateutilizationpro-fileswerereproduciblesignaturesforagivencommunity,theextentofoxidationofspecificsubstratesandthenumbersoractivitiesofmicroorganismsusingthosesubstratesinagivencommunitywerenotcorrelated.Replicatesoilsamplesvariedsignificantlyintherateandextentofoxidationofseventestedsubstrates,suggestingmicroscaleheterogeneityincompositionofthesoilmicrobialcommunity.

GarlandandMills(2)recentlyintroducedtheuseofcom-Tointerpretthefunctionaldiversityormetabolicpotentialmunity-levelcarbonsourceutilizationpatternsforcomparisonofmicrobialcommunitiesbasedonBiologpatternsofsub-ofmicrobialcommunitiesfromdifferenthabitats.Theyusedstrateutilization,itisimportanttounderstandfactorswhichcommerciallyavailablemicrotiterplatesthatcontain95carbonsubstrates(BiologGN;Biolog,Inc.,Hayward,Calif.),whichaffectsubstrateutilizationwhenBiologmicroplatesareinocu-theydirectlyinoculatedwithenvironmentalsamplesfromlatedwithmixturesofmicroorganisms.Inprinciple,theBiologfreshwater,saltwater,estuarine,andhydroponicsolutions,assayisdonebycolorimetricallymeasuringtetrazoliumdyefromtherhizosphereofhydroponicallygrownwheat,andfromreductionthatiscoupledtosubstrateoxidation.Thedegreetosoils.Similarly,Winding(5)analyzedthewhole-communitywhicheachofthe95substratesisoxidizedisdeterminedafterBiologGNsubstrateutilizationprofilesofsamplestakenfromafixedincubationperiod.Apositiveresponseisidentifiedasseveraltypesofforestsoils,aswellasfromsizeclassfractionsanabsorbanceoropticaldensityvaluegreaterthanthatoccur-withinonesoiltype,andZaketal.(6)studiedtheprofilesofringintheblankwell.Ifthevaluesforallsubstrate-containingsoilsamplesfromsixdesertplantcommunitiesalonganeleva-wellsareanalyzedbymultivariatestatistics,twotypesofdis-tionalandmoisturegradient.Inallthreestudies,multivariatetinctionsbetweensamplescanbemade.First,thepresenceorstatisticalmethodswereusedtoestablishdistinctionsamongabsenceofapositiveresponsetoeachofthe95substratesortheresultingcommunitysubstrateutilizationprofilesandtogroupsofsubstrates(e.g.,polymers)canberecorded.Sec-therebyclassifythecommunitysampleswithrespecttotheirond,whenthesamesubstratesareutilizedbydifferentcom-carbonsourcemetabolism.GarlandandMills(2)proposedmunities,sampleswithconsistentlyhighvaluesforcertainsub-thatsinceseparationofcommunityBiologprofilesbymulti-stratescanbesegregatedbymultivariatestatisticalproceduresvariateanalysesisbasedondifferencesincarbonsourceutili-fromthosewithconsistentlylowervaluesforthesamesub-zationbetweensamples,itprovided‘‘afunctionalbasistostrates.Forexample,Zaketal.(6)distinguisheddesertsoildistinctionsamongcommunities.’’Allthreegroupssuggestedmicrobialcommunitiesbybothmethods.

thatinadditiontoestablishingecologicallyrelevant(e.g.,soilItistemptingtoassumethatdifferencesinpatternsofBi-versusfreshwater)classificationsofmicrobialcommunities,ologsubstrateoxidationbydifferentcommunitiesrepresentsubstrateutilizationprofilesmightofferinformationwithre-realdifferencesinthenumbersortypesofmicroorganismsingardtocommunityfunction(2),metabolicpotential(5),orthesecommunitiesandthatthesedifferencesreflecttheactiv-functionaldiversity(6).

itiesexpressedintheenvironmentsfromwhichthesampleswereobtained.However,GarlandandMills(2)andWinding(5)bothfoundthatvariationinresponsefromonesampleto*Correspondingauthor.Presentaddress:WaterResourcesDivi-anotherwasnotnecessarilyafunctionofstructuraldifferencession,U.S.GeologicalSurvey,6520MercantileWay,Suite5,Lansing,inthecommunities.Instead,bothnotedastrongcorrelationMI411-5991.

betweeninoculumcelldensityandtherateofcolordevelop-†Contribution786oftheKelloggBiologicalStation.

ment,sothatcommunitydifferencesinsubstrateoxidation

1458

Downloaded from http://aem.asm.org/ on January 9, 2014 by guestVOL.61,1995ANALYSISOFCOMMUNITYSUBSTRATEUTILIZATIONPROFILES1459

recordedatafixedtimemightsimplyreflectdifferencesinthetotalnumberofmicroorganismsinthecommunities.More-over,bothgroupsfoundthatcolordevelopmentappearedtodependoncellgrowthinsubstrate-containingwells,sothatitwasimpossibletodetermineifallmembersofthecommunitycapableofutilizingthecompoundhadcontributedtothepro-fileoriftheresponseinagivenwellresultedfromgrowthandactivityofasubset,orsinglemember,ofthecommunity.Zaketal.(6)acknowledgedtheselimitationsbutarguedthatsub-strateutilizationprofilesnonethelessprovidea‘‘richdataset’’forstudiesofthefunctionanddiversityofmicrobialcommu-nities.However,GarlandandMills(2)suggestedthatfurtherresearchwasrequiredtodeterminewhethercommunity-levelcarbonsubstrateutilizationpatternswererepeatableandtodeterminethecausesofdifferentialsubstrateoxidationamongsamples.

TheresearchdescribedherewasconductedtodeterminefactorswhichinfluencesubstrateoxidationwhenBiologmicro-platesareinoculatedwithsamplesfrommicrobialcommuni-ties.Weusedsoilbacterialisolates,modelbacterialcommu-nitiescomposedofcombinationsofthesestrains,andactualsoilmicrobialcommunities.Wewishedtodetermine,forax-enicculturesandmodelcommunities,(i)whethertherewasarelationshipbetweengrowthinwellsduringmicroplateincu-bationandsubstrateoxidation,(ii)theinfluenceofinoculumdensityontherateofsubstrateoxidation,(iii)whethertherateandextentofoxidationofagivensubstratewerereproduciblewheninoculumdensitywascontrolled,and(iv)whetherthepatternofpositiveandnegativeresponsestoall95substratesinBiologmicroplateswasreproducible.Usingtwomodelsoilbacterialcommunitiesforwhichthetaxonomicstructureandcarbonsubstrateutilizationpatternsoftheindividualmemberswereknownapriori,weaddressedwhetherBiologprofilesofwholecommunitiesreflectedthetaxonomicstructureofthosecommunitiesandwhetherwecoulddetectcontributionsofindividualpopulationstothewhole-communityBiologprofile.Finally,weexaminedcommunity-levelprofilesofactualsoilmicrobialcommunitiesandinterpretedtheresultsofmulti-variatestatisticalanalysesofmodelandactualsoilmicrobialcommunityresponsesinlightofknowledgeobtainedfromtheworkwithisolates.Ourresultsverifytheutilityofthisap-proachfortheclassificationofmicrobialcommunitiesandprovideinformationonfactorswhichinfluencesubstrateoxi-dationandmustbetakenintoaccountwheninterpretingthefunctionalsignificanceofwhole-communitysubstrateutiliza-tionprofiles.

MATERIALSANDMETHODS

Bacterialisolates.TenbacterialisolateswereobtainedfromsoilsoftheLongTermEcologicalResearchsiteattheKelloggBiologicalStation,MichiganStateUniversity.Theseisolateswereidentified,byphenotypiccharacteristicsandfattyacidprofiles(3)astwoBacillusspp.,twoArthrobacterspp.,twoPseudomonasspp.,threeCytophagaspp.,andoneCorynebacteriumsp.AllcultureshadbeenisolatedonR2Aagar(Difco,Detroit,Mich.)andmaintainedonR2Aagarslantsintherefrigeratorwithregularsubculturing.These10strainswereroutinelyculturedat28ЊConR2Aagarorinthecorrespondingbrothmediumthatlackedagar(designatedR2Abroth).Brothcultureswereaeratedbyshaking.Standardcurvescorrelatingcellnumber(obtainedbyacridineorangedirectcounts)andbiomass(micrograms[dryweight]permilliliter)withopticaldensityat590nm(OD590)wereobtainedforeachstrainduringgrowthinR2Abrothat28ЊCandwereusedforestimationofcellnumberorbiomassinallexperimentswhereindicated.ViablecellcountsweredeterminedbyplatingonR2Aagar.

Biologsubstrates.ForallstudiesreportedhereinweusedtheBiolog,Inc.,gram-negative(GN),gram-positive(GP),ornosubstrate(MT)96-wellmicro-plates.Eachofthe95substratewellsinstandardBiologGNandGPmicroplatescontains(indriedform)acomplex,low-concentration,bufferednutrientmedium(1),atetrazoliumredoxdye,andacarbonsubstrate.Thesubstrateblankwellcontainsthenutrientmediumanddyebutnosubstrate.TheGNsubstratesweredividedbyGarlandandMills(2)into11categories:polymers(substrates1to5),carbohydrates(substrates6to33),esters(substrates34and35),carboxylicacids(substrates36to59),brominatedchemicals(substrate60),amides(substrates61to63),aminoacids(substratesto83),aromaticchemicals(substrates84to87),amines(substrates88to90),alcohols(substrates91and92),andphosphor-ylatedchemicals(substrates93to95).GPmicroplatescontain62ofthesamesubstratesasGNmicroplatesplus33differentsubstratesinsimilarcategories.MTmicroplatescontainthedriednutrientmediumandredoxdyebutnosubstrateinanywell.Stocksolutions(0.5%,wt/vol)ofglucose,galactose,L-asparagine,aspartate,cellobiose,mannitol,andL-serine(allfromSigmaChem-icalCo.,St.Louis,Mo.)werepreparedin50mMphosphatebuffer(pH7)andsterilizedbypassagethroughasterile0.22-␮m-pore-sizefilter(MilliporeCorp.,Bedford,Mass.).StocksolutionsweredispensedtoMTmicroplatewellsin75-␮laliquots.Blankwellsreceived75␮lofbuffer.

Microplateprotocols.Pure-cultureinoculaformicroplatesweretypicallypre-paredinoneoftwoways.Culturesgrownonsolidmediumfor24hwereswabbedfromtheagarsurfaceandresuspendedin50mMphosphatebuffer(pH7).Culturesgrowninbrothmediumwerecentrifuged(10,000ϫg,for10to15min),thesupernatantwasremoved,andthecellswereresuspendedin50mMphos-phatebuffer(pH7)andheldfor1hbeforeinoculationofmicroplates.BiologGNorGPmicroplatewellswereinoculatedwith150␮lofthesecellsuspensionsthathadbeenadjustedtotheappropriatedensity(GN,ϳ3ϫ108cellsperml,GP,ϳ4.5ϫ108cellsperml)bycomparisonwiththeturbiditystandardssuppliedbythemanufacturer.MTplateswereinoculatedwithcellsuspensionshavinganOD590ofϳ0.45.Isolates,combinationsoftwoorthreeisolates,andbufferwereaddedtoMTmicroplatewellssuchthatthetotalvolumeofinoculumequalled75␮lbutthenumberofcellsofeachisolateineachwellwasequivalent.AllMTplatewellsalsocontained75␮lofsubstratesolutionorbuffer(blank).

InoculaformodelcommunitieswereobtainedbygrowingculturesoftheindividualbacterialstrainsinR2Abrothat28ЊCforapproximately16h.TheOD590after16hwascorrelatedwithcellcount(cellspermilliliter)orbiomass(micrograms[dryweight]permilliliter)fromstandardcurvespreviouslyestab-lishedforeachbacterialstrain.Culturevolumesrequiredtoachievespecificproportionsofbacterialstrainswerecombinedandcentrifugedtoobtainthe‘‘community’’cellpellet,whichwasresuspendedin50mMphosphatebuffer(pH7)for1hpriortoinoculationofGNmicroplates.Communitiesweredesignedsuchthatthefinalcelldensity(totalofallbacterialstrainsinthecommunity)wouldfallwithintherecommendedrangeforinoculationofBiologGNmicro-plates.

Threebacterialstrainswereusedtodetermineifsubstrateoxidationwasrelatedtocellgrowthfollowinginoculation.EightreplicatewellsofBiologMTplatesthatcontained0.25%(wt/vol)galactoseassubstratewereinoculatedwitheachbacterialstrain.Theinitialcelldensitywaseitherϳ108or107cellsperml.Colordevelopment(OD590)wasrecordedat1-hintervalsfor24handthenonceagainat48h.At1,3,6,9,19,25,and48h,oneoftheeightreplicatewellsforeachbacterialstrainorcombinationwassampledtodetermineviablecellcount.Microplateswereincubatedat28ЊCandwerereadat590nmineithertheBiologmicroplatereaderwithMicrolog2NsoftwareortheEL312eKineticsreader(Bio-TekInstruments,Inc.,Winooski,Vt.)withKineticalcIIsoftware.InthestandardMicrolog2Nsoftwaresuppliedbythemanufacturer,apositiveresultmustbeofhigherOD590thanthesubstrateblankreadingandmustbeatleast40%ofthehighestpositivesubstrateresponseforthatmicroplate.ThisthresholdwasusedthroughoutourstudyforassignmentofapositiveornegativeresponseforallGNorGPsubstrates.TheBio-TekEL312ereaderandKineti-calcIIsoftwarewereusedtoobtainkineticreadingsofcolordevelopmentinMTplates.Blankwellswereassignedtosectorsofeachmicroplateasappropriate,andthereadingat590nmofeachblankwellwassubtractedfromthereadingofeachsubstrate-containingwellinthatsector,ateachreadingtime.

EnvironmentaleffectsonisolateBiologGNprofiles.Atleastsevenindepen-dentBiologGNprofileswereobtainedat24and72hforeachbacterialstrainfollowinggrowthinR2Abrothat28ЊC.Theresponsetoeachsubstrate(i.e.,alwayspositive,alwaysnegative,orvariableoverthesevenreplicates)wasde-termined.Thesereferenceprofileswereusedasthestandardagainstwhicheffectsofgrowthmedium,growthtemperature,andinoculumdensity,aswellastheresultsofourmodelcommunityexperiments,wouldbeassessed.BiologGNprofileswerethenobtainedforeachofthe10bacterialstrainsgrownunderthefollowingconditions:(i)onnutrientagar,trypticsoybrothagar(trypticsoybrothsolidifiedwith3%[wt/vol]agar)(bothfromSigmaChemicalCo.),orR2Aagarat28ЊCand(ii)inR2Abrothat17and32ЊC.Inthelattercase,Biologmicro-plateswereincubatedatthegrowthtemperature.Eachprofilewasdeterminedintriplicateandreadingswereobtainedat24and72h.Profileswerealsoobtained(threereplicates;0-,4-,7-,11-,24-,and96-hreadings)foreachbacterialstrainafterinoculationtoGNmicroplatesat0.1timestherecommendedcelldensity.Forgram-positivespecies,BiologGPprofilesaftergrowthinR2AbrothandonR2Aagarwerealsoobtained.

Modelcommunities.Themodelsoilbacterialcommunitiesusedwereidenticaltothosepreviouslyreported(3).Modelbacterialcommunitieswereconstructedbycombiningknownproportionsof6(communityI-AandI-B)or4(communityII-AandII-B)ofthe10isolates.AandBdesignatereplicateexperimentsconductedinNovember1992(A)andApril1993(B).CommunityIconsistedofequalproportionsofthefollowingsixsoilbacteria:Corynebacteriumsp.strain5,Pseudomonassp.strain14,Cytophagasp.strains19and72,Arthrobactersp.strain42,andBacillussp.strain81.CommunityIIconsistedofBacillussp.strain94

Downloaded from http://aem.asm.org/ on January 9, 2014 by guest1460HAACKETAL.APPL.ENVIRON.MICROBIOL.

FIG.1.Numberofpositiveresponsesat24and72h,asmeasuredbyMicrolog2Nsoftware,foreachofthe95BiologGNsubstratesafterinoculationofsevenreplicatemicroplateswithCytophagasp.strain72orPseudomonassp.strain31.

(whichmadeuphalfofthecommunityonacellnumberorbiomassbasis)andCorynebacteriumsp.strain5,Pseudomonassp.strain31,andCytophagasp.strainstrainsandwassimilarfororganismsofthesamegenus.Biolog47,eachmakingupone-sixthofthecommunity.

GNprofilesforsevenreplicatemicroplatesofCytophagasp.Soilcommunities.Soilwasobtainedfromagreenhouseplantingsofcorn,atstrain72andPseudomonassp.strain31at24and72haretheterminationofanexperimentconductedbyHalCollinsattheKelloggdepictedinFig.1.Forbothstrains,somesubstrateswereBiologicalStation,MichiganStateUniversity.SoilwasoriginallyobtainedfromasinglelocationattheKelloggBiologicalStationLongTermEcologicalRe-alwaysutilizedandwerescoredpositiveinsevenofsevensearchSite.Itwashomogenized,dried,andplacedin10-gal(38-liter)plasticreplicatesat24h,whileothersubstrateswerescorednegativepots.Waterwasaddedtofieldcapacity,andcornwasplantedineachpot2weeksineveryreplicate,evenafter72hofincubation.

later.Ineachpot,asinglecornplantwasallowedtoreachphysiologicalmaturity,ThethreeCytophagaspp.exhibitedprofilessimilartothatofatwhichtimesoilsamples(100g)weretakenfromthreelocationswithintherootzoneandthreelocationswithinthebulksoilfromeachofsixpots(36samples).strain72(Fig.1);eachconsistentlyusedrelativelyfew(18toEachofthe361-gsamplesofsoilwassuspendedin5mlof50mMphosphate25)ofthe95substratesonGNmicroplatesandmetabolizedbuffer(pH7)andagitatedfor15min.ApproximatelyonegranuleofCaClprimarilycarbohydrates(substrates6to33),aminoacids(sub-equivalentamountofMgCO2andan3wereaddedtoeachsuspension,andthere-stratesto83),andpolymers(substrates1to5).Thetwosultingflocwasallowedtosettle.Thisleftaslightlyturbidsupernatant,whichwasdirectlyinoculatedontoBiologMTmicroplates.TheODPseudomonasstrainsmetabolizedprimarilycarboxylicacidswereallowed590valuesoftheinoc-ulatedmicroplateswereread,andthentheplatestositatroom(substrates36to59),aminoacids,andvariouscarbohydrates.temperatureuntilϳ20h,whencolordevelopmentbegantobevisible.AtthisNeitherusedthecarbohydratepolymers(␣-cyclodextrin,dex-time,themicroplateswereplacedintheBio-Tekreader,andtheODtrin,andglycogen)usedbyallthreeCytophagaspp.Coryne-2-hintervalsforthenext24h.Theabilityofeachcellsuspension590wasdeterminedattoutilizeasparagine,aspartate,glucose,cellobiose,carboxymethylcellulose,N-bacteriumstrain5used21ofthesubstratesonGNmicroplatesacetylglucosamine,andferulicacid(SigmaChemicalCo.)wasdeterminedwith(Tween40and80,sevencarbohydrates,fourcarboxylicacids,BiologMTplates.

bromosuccinate,succinamicacid,twoaminoacids,twoesters,PCA.Principal-componentsanalysis(PCA)wasperformedwithSAS/STAT2,3-butanediol,andglycerol).

(StatisticalAnalysisSystem;SASInstituteInc.,Cary,N.C.)version6.03underthePRINCOMPprocedure.DataforeachreplicateofeachcommunityintheTheBacillusandArthrobacterspp.failedtoconsistentlyyieldmodelcommunityexperimentswereenteredasthepercentchangefromthepositiveresponsesonBiologGN(orGP)microplates.After24substrateblankvalueprovidedbytheBiologsoftware.Dataforexperimentswithor72h,microplatesinoculatedwiththeBacillusstrainswouldMTplateswereenteredastheblank-adjustedODtypicallyexhibitonlyonetothreeveryweakpositiveresponsessoftware.

590readingsobtainedfromtheBio-Tek(i.e.,OD590onlyslightlyabovethatofthesubstrateblank).ThesubstratewellsidentifiedaspositivewerenotconsistentRESULTS

fromassaytoassay,andthispatternwasoftenaccompaniedbycolorinthesubstrateblankwell.SlightlydifferentresultswereBiologGNprofilesforisolates.ThepatternofpositiveandobtainedforthetwoArthrobacterspecies.Thesestrainsoftennegativeresponsestothe95substratesinBiologGNmicro-producedcolorinthesubstrateblankwellandoccasionallyplateswasshowntobecharacteristicofandgenerallyrepro-exhibitedaprofilewithclearpositiveandnegativeresponses.ducibleforCytophaga,Pseudomonas,andCorynebacterium

Unfortunately,theseprofileswereinconsistentfromassayto

Downloaded from http://aem.asm.org/ on January 9, 2014 by guestVOL.61,1995ANALYSISOFCOMMUNITYSUBSTRATEUTILIZATIONPROFILES1461

FIG.2.Colordevelopmentprofilesafterinoculationattwodifferentinitialcelldensities(3ϫ108cellsperml[AandC]and3ϫ107cellsperml[BandD])forCytophagasp.strain72andPseudomonassp.strain31,displayingpositive,negative,andvariablereadingsonselectedBiologGNsubstrates.

assayandevenwithinreplicatemicroplatesinoculatedwiththenegative,andvariableresponsescanbeseeninFig.2,whichsameculture,sothatareferenceprofileforthesetwostrainsshowsthetimecourseofcolordevelopment(ODcouldnotbeobtained.

590)onse-lectedsubstratesforeitherCytophagasp.strain72orPseudo-ThelackofsubstrateutilizationbyBacillusstrainswasnotmonassp.strain31followinginoculationattwodifferentinitialduetotetrazoliumdyetoxicity(bothspecieswouldgrowindensities.SincetherateofsubstrateoxidationwasnotalwaysR2Abrothwithtetrazoliumdyeadded)ortosporeformationlinearthroughoutthetestperiod,differentscorescouldbepriortoinoculationofmicroplates.Nogrowthmediumorobtaineddependingonwhenthemicroplatewasread.FortemperaturetestedresultedinaconsistentBiologresponseforexample,wellscouldbescorednegativeatearlyreadingsandeitherBacillusstrain.Themanufacturersuggeststhatoligotro-positivelater(e.g.,fructoseforPseudomonassp.strain31)orphicmicroorganismsmaygiveanall-negativeresponseinBi-positiveatearlyreadingsbutnegativelater(e.g.,compare10-ologmicroplatesandthatcolorinthesubstrateblankwelland96-hvaluesforrhamnoseforCytophagasp.strain72).Incouldbeduetosporeformationinthewells,celllysis,oraddition,therateandextentofcolordevelopmentdependedutilizationofendogenousorextracellularstoragepolymers.Tooninoculumdensity(Fig.2BandD).Therefore,assignmentofcheckourtechnique,wegrewBacilluscereusATCC14579byapositiveornegativeresponseat24hforweaklyoxidizedrecommendedmethodsandinoculatedittoBiologGP(andsubstrateswasinconsistentfromonereplicatemicroplatetoGN)microplates.Incontrasttooursoilstrains,thisstrainanother.Incontrasttovariablesubstrates,substrateswhichproducedclearlypositiveresultsafter24handwasidentifiedwerealwaysscoredpositiveforaparticularstrain(forexample,bytheBiologsoftwareasBacillusthuringiensis/cereus(similar-dextrinforCytophagasp.strain72andasparagineandorni-ityindex,0.51).ThemanufactureralsosuggeststhatparticularthineforPseudomonassp.strain31[Fig.2])wereoxidizedgrowthmediamayberequiredtoelictaBiologresponsefromrapidlyandtoagreaterextent.

bacterialgenera.Ourexperimentalobjectivesrequiredidenti-Additionalexperimentsweredonetodeterminetheeffectofcalgrowthconditionsforeachstrainmakingupourmodelinoculumdensityandcellgrowthinmicroplatewellsonsub-communities;therefore,wemadenoefforttofindalternativestrateoxidationkinetics.PreviousresultsshowedthatCyto-growthconditionsthatwouldresultinconsistentBiologre-phagasp.strain72alwaysexhibitedapositiveresponseonsponsesfortheBacillusandArthrobacterisolates.Webelievegalactose,thatPseudomonassp.strain31alwaysexhibitedathatourapproachreflectswhatoccurswhennaturalmicrobialvariableresponse,andCorynebacteriumsp.strain5wouldnotcommunitiesareextractedfromsoilandinoculatedtoBiologoxidizegalactose.Weexamineddetailsofgalactoseoxidationplates,sinceinsituconditionsareunlikelytobeoptimalforkineticsbythesethreestrainsandmeasuredcellgrowthofstimulatingaBiologresponsebyeverycommunitymember.eachstrainfollowinginoculationtoBiologmicroplatewellsatKineticsofsubstrateoxidationbyisolates.Thevariabletwodifferentinoculumdensities(Fig.3).Cytophagasp.strainresponsesofCytophaga,Pseudomonas,andCorynebacterium72exhibitedarapidandextensiveoxidationofgalactose(Fig.strainswereshowntoresultfromweak,nonlinearratesof3AandB)andeithermaintainedviablecellcountat108cellssubstrateoxidationcombinedwithadependenceofsubstrateperml(Fig.3A)orgrewto108cellsperml(Fig.3B)andthenoxidationrateoninoculumcelldensity.Thebasisforpositive,maintainedtheircellcountatthisdensity.Pseudomonassp.

Downloaded from http://aem.asm.org/ on January 9, 2014 by guest1462HAACKETAL.APPL.ENVIRON.MICROBIOL.

FIG.3.Colordevelopmentprofiles(OD590;opensymbols)andcelldensity(CFUpermilliliteronR2Aagar;solidsymbols)inwellsofBiologMTmicroplatescontaining0.25%(wt/vol)galactose,followinginoculationwiththreedifferentbacterialstrainseachattwodifferentinitialconcentrations.(A,C,andE)Initialinoculumdensity,ϳ108CFU/ml;(B,D,andF)initialinoculumdensity,ϳ107CFU/ml.

strain31exhibitedamoremoderaterateofgalactoseoxidationEnvironmentaleffectsonBiologGNprofilesofisolates.yetgaveasimilarpatternofviablecellcountstothatofCyto-Environmentalconditions(growthtemperature,growthme-phagasp.strain72.ForbothCytophagasp.strain72anddium,solidversusliquidculture)hadverylittleaffectonsub-Pseudomonassp.strain31,cellcountsintheblankwellwerestrateutilizationprofilesbyisolates.Wenotedonlyafewmaintainedatorincreasedto108CFU/mlwithoutsignificantexceptions.Pseudomonassp.strain31didnotuseformicacidcolordevelopment(datanotshown).ThepredominanteffectaftergrowthonR2Aagarornutrientagar,eventhoughthisofinoculumdilutionforCytophagasp.strain72andPseudo-substratewasalwaysusedaftergrowthinR2Abroth.Cyto-monassp.strain31wasalagintheinitiationofcolordevel-phagasp.strain72usedfiveadditionalsubstratesaftergrowthopment.Corynebacteriumsp.strain5didnotoxidizegalactose,onnutrientagarortrypicsoybrothagarandusedtwoaddi-andtheviablecellcountdecreasedthroughoutthecourseoftionalsubstratesaftergrowthonR2Aagar,ascomparedwiththeexperiment(Fig.3EandF).Therefore,whilecellgrowthwhenitwasgrowninR2Abroth.Theonlyobservedtemper-doesoccurinBiologmicroplatewells,theamountofgrowthisatureeffectwasthatPseudomonassp.strain31occasionallynotcorrelatedtotherateorextentofsubstrateoxidation.Theusedformicacidaftergrowthat17ЊCbutneveratothertem-rateandextentofoxidationofparticularsubstratesforisolatesperatures.

inoculatedatsimilardensitieswerereproducible,however.GNBiologprofilesofmodelcommunities.Substrateutiliza-

Downloaded from http://aem.asm.org/ on January 9, 2014 by guestVOL.61,1995ANALYSISOFCOMMUNITYSUBSTRATEUTILIZATIONPROFILES1463

FIG.4.Numberofpositiveresponsesat72h,asmeasuredbyMicrolog2Nsoftware,foreachofthe95BiologGNsubstratesafterinoculationofreplicatemicroplateswithmodelbacterialcommunitiescomposedofsixsoilbacterialisolates(communityI)orfoursoilbacterialisolates(communityII).AandBdesignatetwoindependentconstructionsoftheidenticalmodelcommunity.

tionprofilesofwholemicrobialcommunitieswererepeatablethreePCaxesaccountedfor97%ofthevariationinthedata.anduniqueforeachcommunity.Forthesetests,weusedThefirstPCaxiswasmosthighlycorrelatedwithoxidationofmodelbacterialcommunitiescomposedofsix(communityI)m-inositol,cis-aconiticacid,citricacid,D-gluconicacid,␣-ke-orfour(communityII)strains.WespecificallyincludedBacil-toglutaricacid,D-saccharicacid,L-asparagine,andhydroxylusandArthrobacterstrainsineachcommunity,toseeiftheseL-proline(allϳ0.26).Therewerenoequivalentnegativeload-isolateswouldaffectcommunityprofilesinanyway,eveningsforPCaxis1.Again,theseweresubstrateswiththehighestthoughwhentestedasaxenicculturestheyfailedtooxidizeanypercentchangevaluesincommunityII-AandII-Bandrela-

substrates.Figure4depictsthe72-hBiologGNprofileforeachcommunityfromtwoindependentexperiments.PCAclearlyindicatedthedegreetowhichprofilesforeachcommunitywereuniqueandreproducible.PCAscoresobtainedafteranalysisofthecovariancematrixof72-hOD590valuesaredepictedinFig.5.PCAbasedonthecovariancematrixdistin-guishedthetwomodelcommunities,andclusteredreplicatesofeachcommunityfrombothexperiments,onthefirstPCaxis(Fig.5).ThefirstcovariancePCaxisaccountedfor65.4%,thesecondaccountedfor27.3%andthethirdaccountedfor3.9%ofthevariationinthedata,foracummulativetotalof96.6%.PCaxis1hadhighestloadingsonm-inositol,D-raffinose,␣-ke-toglutaricacid,hydroxyL-proline,L-ornithine,andurocanicacid(allϳ0.20)andonlactulose(Ϫ0.21).Theseweresub-stratesforwhichtherewereconsistentdifferencesinthede-greeofsubstrateoxidation(i.e.,ODtwocommunities.CommunityIIreplicates590values)betweentheexhibitedmuchhigher72-hOD590valuesonm-inositol,D-raffinose,␣-ketogl-utaricacid,hydroxyL-proline,L-ornithine,andurocanicacidandmuchlowervaluesonlactulosethandidcommunityIFIG.5.ResultsofPCAof72-hODinoculationwithmodel590readingstakenfromBiologGNmicroplatesfollowingbacterialcommunitiescomposedreplicatesineitherexperiment.

ofsixsoilbacterialisolates(communityI)orfoursoilbacterialisolates(com-Profilesobtainedforeachcommunityatearliertimes(24h)munityII).AandBdesignatetwoindependentconstructionsoftheidenticalwerealsouniqueandreproducibleforeachcommunity.Inthismodelcommunity.PC1,PC2,PC3,firstthreeprincipal-componentaxes.Sym-case,PCaxis1accountedfor%ofthevariationandthefirst

bols:U,communityI-A;E,communityI-B;P,communityII-A;F,communityII-B.

Downloaded from http://aem.asm.org/ on January 9, 2014 by guest14HAACKETAL.tivelylowvaluesinCommunityI-AandI-Bat24h,andthesubstratesincludesomeofthoseimportantintheanalysisofthe72-hdata.

EffectofcommunitycompositiononBiologGNprofiles.Positiveresponsestosubstratesincommunityprofilesgener-allyreflectedthepresenceofspecificstrainscapableofusingthosesubstrates.BiologGNprofilesofaxenicallygrownstrainswereusedtoidentify‘‘signaturecompounds’’thatindicatedthepresenceofparticularstrainsinourmodelcommunityprofiles.Forexample,allthe‘‘signature’’substratesforPseudomonassp.strain14or31(D-alanine,alaninamide,D-glucosaminicacid,L-histidine,D-galactonicacidlactone,mal-onicacid,orhydroxyL-proline)werepositiveafter72hofincubation.Similarly,thecarbohydratepolymersandglycyl-L-asparticacidwerepositiveinbothcommunitiesat72h,indi-catingthepresenceofCytophagasp.strains19and72incommunityI-AandI-BanduniquelyindicatingthepresenceofCytophagasp.strain47incommunityII-AandII-B.Inaddition,␤-methylglucoside(Cytophagasp.strain72)andD-raffinose(Cytophagasp.strain47)uniquelyindicatedthepresenceofthesestrainsintheirrespectivecommunities.Onlyoneunexplainedpositivereadingwasfound.D-Raffinose(sub-strate27)wasscoredasapositiveresponseforeveryreplicateofcommunityIat72h,eventhoughnoneofthecommunitymembersusedthissubstratewhentestedalone.

Negativeresponsesatlaterreadingtimesgenerallyindicatedtheabsenceofstrainscapableofusingagivensubstrate.TheonlyexceptionwasthatofthethreesubstratesindicativeofthepresenceofCorynebacteriumsp.strain5ineachcommunity,xylitol(substrate33,Fig.4)wasnegativeineverycasefollow-ing72hofincubation.Atearlierreadingtimes,false-negativeresultsweremorefrequentlynoted,sincesignaturesubstrateswerenotnecessarilypositiveafter24hofincubation.Forexample,2,3-butanediol(substrate91,Fig.4)andthymidine(substrate87),indicativeofCorynebacteriumsp.strain5,werenegativeat24hforeachcommunity.ThepresenceofAr-throbactersp.strain42orBacillussp.strain81incommunityIorofBacillussp.strain94,whichmadeuphalfthetotalcellpopulationofcommunityII,appearedtohavenoeffectoncommunityprofiles.

Effectofcommunitycompositionondegreeofsubstrateoxidation.SincePCAgroupedourcommunitiesonthebasisofresponseswhichwereconsistentlyhigherinonecommunitythantheother,weexaminedtheunderlyingreasonforrela-tivelyhighresponses,askingwhethertheymightreflectthepresenceofseveralmicroorganismsusingthesamesubstrateorasinglehighlyactivestrain.Wefoundnocorrelationbe-tweenthenumberofstrainsabletoutilizeasubstrateandthedegreeofsubstrateoxidation.Forexample,whilethereweretwoCytophagaspp.incommunityIbutonlyoneCytophagasp.(strain47)incommunityII,therewasnopatterntothere-sponsesto␣-cyclodextrin,dextrin,andglycogenthatwouldsuggestgreaterutilizationincommunityIthanincommunityII.Similarly,inbothcommunityI(Corynebacteriumsp.strain5,Pseudomonassp.strain14,andCytophagasp.strain19)andcommunityII(Corynebacteriumsp.strain5,Pseudomonassp.strain31,andCytophagasp.strain47),therewerethreestrainsabletooxidizem-inositolandyetcommunityIconsistentlyexhibitedlowerresponsestom-inositolthancommunityII(somuchsothatm-inositolcontributedsignificantlytothePCA).Kineticsofsubstrateoxidationbycommunities.Althoughtherateandextentofsubstrateoxidationbycommunitieswerereproduciblecommunityparameters,theywerenotsimplythesumofthoseexhibitedbytheisolatesthatformedthecom-munity.Communitiescomposedofthreestrains(Corynebacte-riumsp.strain5,Cytophagasp.strain72,andPseudomonassp.

APPL.ENVIRON.MICROBIOL.

strain31)wereconstructed,andtherateofgalactoseoxidationbythecommunity,aswellastheviablecellcountforeachcommunitymemberateighttimesduringincubation,wasde-termined(Fig.6AandB).TherateofgalactoseoxidationforthecommunityofthreeisolateswasintermediatebetweentheprofilesofCytophagasp.strain72andPseudomonassp.strain31(Fig.6AandB).Neitherofthesestrainsexhibitedanypatterninviablecountswhichwouldexplaintheprofileofthecommunity(Fig.6B).Corynebacteriumsp.strain5,inoculatedatadensityof6ϫ107CFU/ml,couldnotbedetectedinthewells(detectionlimit,Ն104CFU/ml)atanysubsequenttimeintheexperiment.Themostpronouncedeffectofinoculumden-sitywasalagincolordevelopment(datanotshown).Inex-perimentsinwhicheachofthethreecommunitymemberswaspairedwithoneothermember(datanotshown),Corynebac-teriumsp.strain5hadnoeffectontherateofsubstrateoxi-dationexhibitedbyeitherCytophagasp.strain72orPseudo-monassp.strain31.However,whenCytophagasp.strain72waspairedwithPseudomonassp.strain31,theresultingprofilewasintermediatebetweentheprofilesofthetwoindividualstrainsandappearedsimilartothecommunityprofiledepictedinFig.6B.Thisresultconfirmedthoseobtainedwithourmodelcommunitiesinthatthedegreeofsubstrateoxidationexhibitedbyacommunitydoesnotreflectthenumberofor-ganismsinthecommunitythatareabletoutilizethatsub-strate.Similarexperimentsweredonewithadditionaltestsub-strates(Fig.6CtoF).Colordevelopmentprofilesforbothisolatesandcombinationsweresubstratespecificandhighlyreproducible(Fig.6).

Soilcommunities.Onthebasisoftheresultsobtainedwithmodelcommunities,weanticipatedthatwhole-communitysubstrateutilizationpatternscouldbeusedtodistinguishbe-tweenrhizosphereandbulksoilcommunities.Inexperimentswithsoilmicrobialcommunitysamplestakenfromgreenhouseplantings,wewereunabletogroupsuchcommunitiesonthebasisofthepresenceorabsenceofapositiveresponsetospecificsubstratesortheirkineticsofsubstrateoxidation.Thelackofsimilarityamongsamplereplicatessuggestedmi-croscalespatialheterogeneityinthesesoils.Figure7depictstheseresultsandshowsthat(i)therewasnopatternofsub-strateutilizationorkineticprofiledistinguishingrhizospherefrombulksoil,eitherwithinorbetweenpots,and(ii)therewasnoreproduciblekineticprofile,especiallyoncellobioseorN-acetylglucosamine,withinrhizosphereorbulksoilsamplesfromthesamepot.Patternswereequallyvariableforallothersamples.Althoughwedidnotdeterminetheinoculumdensityforeachsoilsuspension,onetestedrhizospheresample(pot1,Rhiz1,Fig.7)contained7.5ϫ105CFU/mlatthetimeofinoculationϫ108andexhibitedvaluesrangingfrom1.25ϫ108to9CFU/mlineverywell,includingtheblank,atthetimecolordevelopmentbegan(20hafterinoculation).Therewasnosignificantcolordevelopmentintheblankwellassociatedwiththisincreaseincelldensity.Allsamplesinitiatedcolordevelopmentataboutthesametime(Fig.7),whichsuggestsequivalentinocula.Readings(OD590)ofall36samplesat30h(approximatemidpointofcolordevelopmentprofile)werean-alyzedbyPCA,butnoseparationofsampleswithregardtoorigin(potnumber)ortypeofsample(rhizosphereversusbulksoil)waspossible.

DISCUSSION

Community-levelcarbonsourceutilization(Biolog)profileshaverecentlybeenintroducedasameansofclassifyingmicro-bialcommunitiesonthebasisofheterotrophicmetabolism(2).Suchaclassificationsystemmightallowmicrobialecologiststo

Downloaded from http://aem.asm.org/ on January 9, 2014 by guestVOL.61,1995ANALYSISOFCOMMUNITYSUBSTRATEUTILIZATIONPROFILES1465

FIG.6.Triplicatecolordevelopmentprofiles(OD590)exhibitedbythreebacterialstrains(72,Cytophagasp.strain72;31,Pseudomonassp.strain31;5,Corynebacteriumsp.strain5)inoculatedindependently(A,C,andE)orasacombinationofallthreestrains(B,D,andF)towellsofBiologMTmicroplatescontaining0.25%(wt/vol)galactose(AandB),asparagine(CandD),orcellobiose(EandF).PanelB(opensymbols)alsoindicatesthecelldensityofCytophagasp.strain72andPseudomonassp.strain31atselectedintervalsduringoneexperiment.Corynebacteriumsp.strain5,inoculatedatacelldensityofϳ6ϫ107cellsperml,wasnotdetectedatanyoftheindicatedintervalsduringthesameexperiment.

comparethemetabolicrolesofmicrobialcommunitiesfromsimplecommunities.BothGarlandandMills(2)andWindingdifferentenvironmentswithoutinvolvingtediousisolationand(5)notedacorrelationbetweeninoculumcelldensityandtheidentificationofcommunitymembers.Thesimplicityoftherateofcolordevelopmentanddealtwiththisproblemindif-methodandthecommercialavailabilityofBiologplatesareferentways.Winding(5)andZaketal.(6)recordeddataafterparticularlyattractive.However,notestsofthereproducibility3daysandafter60hofmicroplateincubation,respectively,ofcommunityBiologprofilesoroftheiraccuracyindepictingandneithermadeadjustmentsfordifferentinoculumcellden-communitystructureoractivityhavebeenreported.Ouruseofsities.GarlandandMills(2)adjustedforthisphenomenonbymodelsoilbacterialcommunitiesforwhichthetaxonomiccalculatinganaveragewellcolordevelopmentvalueforeachstructureandexpectedcarbonsubstrateutilizationpatternmicroplate.Thisvaluewasobtainedbycalculatingtherawwereknownaprioriallowedustodeterminethestrengthsanddifferencebetweentheopticaldensityineachwellandthatinweaknessesofthisapproachtomicrobialcommunityclassifi-thecontrolwellandthensummingallthesevaluesanddividingcation.

by95.EveryvalueforeachsubstratewasthendividedbytheOurexperimentsconfirmthatmore-diluteinocularesultinaveragewellcolordevelopmentforthatmicroplatetonormal-protractedratesofcolordevelopmentforbothisolatesandizecomparisonsbetweensampleswithdifferentinoculumden-

Downloaded from http://aem.asm.org/ on January 9, 2014 by guest1466HAACKETAL.APPL.ENVIRON.MICROBIOL.

FIG.7.Colordevelopmentprofiles(ODsamples(RHIZ1toRHIZ3)andbulksoil590)forsoilsamplestakenfromtherhizosphereandbulksoilofgreenhouse-maintainedplantingsofcorn.Rhizospheresamples(BULK1toBULK3)fromtwodifferentpots(POT1orPOT2)wereinoculatedtoaBiologMTmicroplatecontainingsevencarbonsubstrates.ASP,aspartate;ASN,asparagine;FER,ferulicacid;GLU,glucose;CEL,cellobiose;CMC,carboxymethylcellulose;NAG,N-acetylglucosamine.Blankwellscontainedonlybuffer.Absorbancereadingswereinitiatedat20hpostinoculationandweretakenat2-hintervalsfor24h.

sities.OurresultssupporttheconclusionofGarlandandMillswereused(Fig.3),thisgrowthwasnotcorrelatedwiththerate(2)thatoptimaluseofthisapproachrequiressamplesofap-orextentofsubstrateoxidation.Inourexperiments,growthproximatelyequivalentinoculumdensities.Ifthiscriterioniswithoutattendantcolordevelopmentoccurredinblankwellsnotmet,communitycomparisonsbasedoneither(i)positiveforisolates,modelcommunities,andsoilsamples,andisolatesandnegativeresponsestothe95Biologsubstratesor(ii)thedisplayedequivalentgrowthbutdifferentcolordevelopmentdegreeofsubstrateoxidationofparticularsubstrateswillbeprofilesonthesamesubstrates.Insimplemodelcommunities,compromisedbytheslowresponseofdiluteinocula.Forex-substrateoxidationprofileswerenotdirectlycorrelatedwithample,Zaketal.(6)comparedthetotalnumberofsubstratesthegrowthofisolateswhichusedthesubstrate(Fig.6).

usedandthe‘‘activitylevels’’(summationofabsorbanceval-Althoughsubstrateoxidationprofilesarenotadirectrep-ues)forsixdifferentdesertsoilmicrobialcommunitiesat12-hresentationofbacterialgrowth,wenotethatBiologsubstrateintervalsovera72-hincubation.Onegroupofthreecommu-oxidationresponsesforbothisolatesandcommunitiesoftennitiesconsistentlyusedmoresubstratesandshowedhigherexhibitalagphase,anexponentialphase,andastationaryactivitylevelsthantheremainingthreecommunitiesateveryphase,asdobacterialgrowthcurves.Thisnonlinearityhasreadingtime,stronglysuggestinganinoculumdensityeffect.importantimplicationsfortheinterpretationofsinglefixed-AlthoughtheseauthorsnotedsomecommunitydifferencesintimereadingsofcommunityBiologresponses,asGarlandandsubstrateutilizationamongthethree‘‘active’’communities,Mills(2)firstnoted.Substratesextensivelyusedbyasingletheremaining(less-active)communitiesweregroupedsimi-communityafter,forexample,a72-hincubation,maynotbelarlybyeverystatisticalapproach.Unfortunately,Zaketal.(6)thesameasthoseusedmostextensivelyatpriorreadingtimes.didnotreportinoculumdensityfortheirsamples,sothesig-Forexample,inPCAofourmodelcommunities,therewerenificanceoftheirfindingsisnotclear.

onlythreesubstrateswithhighcorrelationsonthefirstPCABothGarlandandMills(2)andWinding(5)notedthataxisatboth24and72h.Severalothersubstratesweresignif-growthoccurredinBiologmicroplatewells,andbothsug-icanttothePCAatonlyoneofthereadingtimes;conse-gestedthattheBiologcommunitysubstrateutilizationassayquently,thesubstratesinterpretedbymultivariateanalysistoreflectsthegrowthofaproportionofthecommunitywhichisbemostsignificantindistinguishingthecommunitieschangedcapableofutilizingBiologsubstrates.Wedeterminedthatoverthecourseoftheexperiment.Theoptimumapproachtowhilegrowthinwellsdidoccur,especiallywhendiluteinoculatheuseofBiologmicroplatesforcommunityanalysiswould

Downloaded from http://aem.asm.org/ on January 9, 2014 by guestVOL.61,1995ANALYSISOFCOMMUNITYSUBSTRATEUTILIZATIONPROFILES1467

seemtorequirecarefulmonitoringofcolordevelopmentsothateffectsofnonlinearitycanbeaccountedforinthefinalinterpretationofcommunityresponse.

Wehavedemonstratedforthefirsttimethatthepatternofpositiveandnegativeresponsesandsubstrateoxidationrateandextentwerehighlyreproducibleforsimplemicrobialcom-munities(Fig.6),ifinoculumdensitywascontrolled.ReplicatemicroplatesinoculatedwiththesamemicrobialcommunityandplatesinoculatedwithtwoindependentconstructionsoftheidenticalmodelcommunitiesexhibitednearlyequivalentBiologGNprofiles(Fig.4and5).Intheseexperiments,themicroplateswereinoculatedwithcommunitieshavingsimilarcelldensities.Withthepotentialcomplicationofdifferentin-oculumcelldensitycontrolledinourexperiments,weobtainedsimilarresultswith24-and72-hreadings.PCAreflectedthereproducibilityanduniquenessofthemodelcommunitypro-files.ReplicatemicroplatesinoculatedwiththesamemicrobialcommunitytendedtoclusteronthefirstPCAaxis,whichtypicallyaccountedforϾ60%ofthevariationinthedataset.Furthermore,thetwodifferentcommunitieswereclearlysep-aratedonthefirstPCAaxis.

Ourresultsimplythatifdifferentsamplesofsimilarinocu-lumdensityexhibitdifferencesinthepatternofpositiveandnegativeresponsestothe95substratesinBiologGNmicro-plates,thisprobablyreflectsrealdifferencesincommunitycomposition.Moreover,positiveandnegativecommunityre-sponsestoparticularBiologsubstratesmaybeinterpretedwithregardtowhetherutilizersofthosesubstratesarepresentinthecommunity.Ourexperimentsdonotaddresstheimpactofrarecommunitymembersoncommunitysubstrateutilizationprofiles.However,wewouldanticipatethatdramaticdiffer-encesinresponsetoasubstrateacrossreplicates(e.g.,negativeinmostreplicatesbutstronglypositiveinone)mightindicatethepresenceofrarecommunitymembersintheinoculum.IfcommunitiesexhibitdifferencesintherateandextentofoxidationofparticularBiologsubstratesandthesecommuni-tiesaresegregatedinmultivariateanalysesonthebasisofdifferencesinthedegreeofoxidationofparticularsubstrates,doesthisindicate,assuggestedbyothers(2,5,6),realdiffer-encesincommunityfunctionormetabolicpotential?Ourre-sultssuggestthatinterpretationofsubstrateutilizationprofileswithregardtoeithercommunitytaxonomiccompositionornumbersandactivitiesofsubstrateutilizerswillbecomplicatedfortworeasons.First,thefailureofsomebacterialstrainstoproduceanyresponseinBiologmicroplatessuggeststhatthemicroplateenvironmentis‘‘selective’’andthereforewilldefactofailtorepresentthemetabolicactivityofallmemberswheninoculatedwithwhole-communitysamples.BacteriawhichproducenoresponseinBiologmicroplatesmaydosobecausethecellsfailtomaintainviability(asnotedforthenegativeresponseofCorynebacteriumsp.strain5togalactoseinFig.3)orbecausetheydonotusethesubstrate.Thepres-enceofCorynebacteriumsp.strain5incombinationwithCy-tophagasp.strain72andPseudomonassp.strain31hadnoeffectontheirratesofsubstrateoxidation,andBacillusstrains,whichgavenoresponseinBiologGNplates,hadnoeffectonthecommunityresponsestoall95substratesinBiologGNmicroplates.Onthebasisoftheseresults,weassumethatthepresenceofnonactivebacteriainacommunitymayhavenodetectableeffectonthecommunityprofile.ThisphenomenonwillcomplicateanyattempttoextrapolatefromcommunityBiologprofilestoinsitucommunityactivities.

Second,thekineticprofileforacombinationofisolatesisnotasimplesummationoftheirindividualprofiles;therefore,thedegreeofoxidationofparticularsubstratescannotbein-terpretedwithregardtothenumberoractivityofcommunitymemberscarryingoutthatoxidation.Whilekineticprofilesforisolatesandcommunitieswerehighlyreproducible,therewasnomeanstopredictisolateorcommunityresponses.Forcom-munitiesoftwoorthreeisolates,wefoundkineticpatternsinwhichtherateandextentofcolordevelopmentwerelessthanorequaltothoseofthemostactivemember.Importantly,wenotednoadditivecommunityresponse,andtherewasnoevi-denceforsynergismbetweenisolatesinthekineticanalyses.Thismeansthatthedegreeofsubstrateoxidationisnotafunctionofthenumberofutilizersoroftheirindividualactiv-ities.Thisconclusionwasfurthersubstantiatedbyourexperi-mentswithmodelcommunities,forwhichwefoundnocorre-lationbetweenthenumberofutilizersandthedegreeofsubstrateoxidation.Infact,forsomesubstrateswhichweresignificantinthedifferentiationofthetwocommunitiesbyPCA,therewerethesamenumberofutilizersinbothcom-munities.

Ingeneral,PCAseparatedourtwomodelcommunitiesonaxeswhichcouldbeinterpretedinlogicalandexpectedways,typicallyonthebasisofresponseswhichwereveryhighinonecommunityandcorrespondinglylowornegativeintheothercommunity.Theemphasisonnegativeresultsisimportant,sinceourdataindicatethatnonutilizationofasubstratebyacommunityaccuratelyreflectsthelikelihoodthatno,orrare,communitymembersintheinoculatedsamplewouldproduceaBiologresponseonthatsubstrate.ThedependenceofPCAseparationondegreeofsubstrateoxidationismoreproblem-aticbecause(i)thedegreeofsubstrateoxidationataparticulartimemaybeafunctionofinoculumcelldensity,(ii)differentmicroorganismswhichusethesamesubstratesoxidizethosesubstratestodifferentextents,and(iii)thesubstrateoxidationprofilesofcommunitiesarenotsimplesummationsoftheindividualprofilesoftheirconstituentmembers.Environmen-talsamplesmaycontainseveralpopulationscapableofutiliz-ingagivensubstrate,allatundeterminedcelldensities,andexhibitingavarietyofkineticresponsesinBiologmicroplates.Ourresearchwithisolatesandsimplecombinationsofisolatesclearlyindicatesthatwhilewhole-communitysubstrateutiliza-tionprofilesconstitutereproduciblesignaturesusefulinclas-sifyingmicrobialcommunities,differencesintherateandex-tentofcolordevelopmentassociatedwithsuchsamplescannotbeinterpretedwithregardtothenumberofutilizersortothemetabolicpotentialorfunctionofthecommunity.

Wefoundthatthepatternsandkineticsofsubstrateutiliza-tionvariedbetweenreplicatesamplesofrhizosphereorbulksoil.Thisinitselfmaybesignificant,sincewehaveclearlydemonstratedthatbothwithin-wellsubstrateoxidationratesandthepatternofresponsestomultiplesubstratesarehighlyreproducibleforbothisolatesandcommunities.Wehavealsoshownthatdifferencesincommunitykineticprofilesonagivensubstratearemostprobablyduetodifferencesincommunitycompositionifinoculumdensityisnotafactor.Asaresult,differencesinsubstrateutilizationprofilesforreplicatesam-plesfromsoilmayindicaterealdifferencesincommunitycom-position.Ifthisisthecase,whole-communitysubstrateutili-zationprofilesmightbeusedtoassessthefinestructureofmicrobialcommunitydistributionacrossrelativelysmallenvi-ronmentalgradients.Winding(5)reportedtheabilitytodis-criminatebetweendifferentsizefractionsofthesamesoilbyusingBiologGNprofiles,butsincenotallhersamplesweresubjectedtothesamedilution,thereweredifferentinitialdensitiesofbacteriainthesoilsamples,andonlyasinglereadingwastakenafter3daysofincubation,itwasdifficulttodeterminethebasisfortheobserveddifferences.

Inourexperiments,differencesbetweenthebulk-soilandrhizospherecommunitiesmighthavebeenelucidatedbyusing

Downloaded from http://aem.asm.org/ on January 9, 2014 by guest1468HAACKETAL.anextendedsuiteofcompoundsorBiologGNmicrotiterplates.Inexperimentsnotdescribedhere,wefoundthat42substratesweresufficienttodistinguishbetweenourmodelsoilcommu-nitiesand21substratesweresufficienttodistinguishbetweenexperimentallymanipulatedstreambiofilmcommunities(4).Therefore,thenumberofsubstratesisnotasimportantaswhethertherearedifferencesintheirusebycommunities.Weforeseethattheuseofresearcher-selectedcompoundsandtheadditionofkineticreadingswillincreasethepotentialappli-cationsandstrengthentheinterpretationofwhole-communitysubstrateutilizationpatterns.ProfilessuchasthoseshowninFig.7canthenbeobtainedtoprovideinformationusefulinchoosingtheappropriatetimetocomparereadingsbetweensamplesandallowtheinvestigatortoassesswhetherfeaturessuchasincreasedlagtimeassociatedwithdecreasedinoculumdensityshouldbeconsidered.Kineticprofilescanbecharac-terizedbyfittingthedatatoanappropriateequation,andtheresultingparametersdeterminedfromcurvefittingcouldbeenteredintoastatisticalanalysis,providinggreateranalyticalpowerforecologicalstudies.

ACKNOWLEDGMENTS

WeacknowledgecontributionstothedesignandanalysisoftheseexperimentsbyWilliamHolbenandDaveOdelson.Wearedeeply

APPL.ENVIRON.MICROBIOL.

indebtedtothemanyindividualswhoassistedatvarioustimesintheseexperiments,includingHalCollins,MichaelKaufman,SandyMarsh,andScottMcNabb.Weacknowledgethehelpfulcommentsoftwoanonymousreviewersofapreviousversionofthemanuscript.

ThisresearchwassupportedbyNationalScienceFoundationgrantBIR9120006andagranttotheCenterforMicrobialEcology,Mich-iganStateUniversity,bytheMichiganStrategicFund.

REFERENCES

1.Bochner,B.19.Breathprintsatthemicrobiallevel.ASMNews55:536–539.2.Garland,J.L.,andA.L.Mills.1991.Classificationandcharacterizationofheterotrophicmicrobialcommunitiesonthebasisofpatternsofcommunity-levelsole-carbon-sourceutilization.Appl.Environ.Microbiol.57:2351–2359.3.Haack,S.K.,H.Garchow,D.A.Odelson,L.J.Forney,andM.J.Klug.1994.Accuracy,reproducibility,andinterpretationoffattyacidmethylesterprofilesofmodelsoilbacterialcommunities.Appl.Environ.Microbiol.60:2483–2493.4.Haack,S.K.,H.Garchow,W.Sobczak,L.J.Forney,andM.J.Klug.1994.Analysisofchangesinstreambiofilmcommunitystructureandfunctionusingwhole-communityfattyacidmethylesterprofilesandcarbon-substrateutili-zationpatterns,abstr.N-206.InAbstractsofthe94thGeneralMeetingoftheAmericanSocietyforMicrobiology1994.AmericanSocietyforMicrobiology,Washington,D.C.

5.Winding,A.1993.FingerprintingbacterialsoilcommunitiesusingBiolog᭨microtiterplates,p.85–94.InK.Ritz,J.Dighten,andK.E.Giller(ed.),Beyondthebiomass:compositionalandfunctionalanalysisofsoilmicrobialcommunities.JohnWiley&SonsLtd.,Chichester,UnitedKingdom.

6.Zak,J.C.,M.R.Willig,D.L.Moorhead,andH.G.Wildman.1994.Func-tionaldiversityofmicrobialcommunities:aquantitativeapproach.SoilBiol.Biochem.26:1101–1108.

Downloaded from http://aem.asm.org/ on January 9, 2014 by guest

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- efsc.cn 版权所有 赣ICP备2024042792号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务