搜索
您的当前位置:首页正文

摄影测量后方交会法求解外方位元素

来源:筏尚旅游网


摄影测量后方交会求外方位元素

09地信一班 肖明梅

解题思路:定义要用到的变量并初始化,定义一个函数用于求解旋转矩阵R,系数矩阵A,近似坐标矩阵JSZB,常数矩阵L;矩阵的转置,逆,矩阵相乘,相减,求外方位元素的近似值初值以及结果输出都定义为相应的函数。最后定义一个用于循环求解的函数(程序中xhqiujie()),在该函数中调用之前定义的函数,求出外方位元素近似值初值,改正数Dv[6,1],误差V[8,1],用do…while语句进行循环,使精度达到20μm,限差低于20μm,然后调用结果输出函数用于输出达到要求的结果。在主函数中创建对象的实例,引用该实例的方法即xhqiujie()函数,就可以求出外方位元素。

代码:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace 摄影测量后方交会求外方位元素

{

class Program

{

double ψ, ω, κ, Xs, Ys, Zs, m, f, Sx = 0, Sy = 0;

double n = 206265 / 3600;//*角元素的单位从m到度的转换系数*//

double[,] zuobiao = {{ -86.15, -53.40, -14.78, 10.46 }, {-68.99, 82.21,-76.63,64.43},{36589.41,37631.08,39100.97,40426.54},{ 25273.32,31324.51,24934.98,30319.81 },{ 2195.17,728.69,2386.50,757.31 }};

double[] a = new double[3];//*存储a1,a2.a3*//

double[] b = new double[3];//*存储b1,b2,b3*//

double[] c = new double[3];//*存储c1,c2,c3*//

double[] XX = new double[4];

double[] YY = new double[4];

double[] ZZ = new double[4];

double[,] L = new double[8, 1];

double[,] JSZB = new double[2, 4];//*像点近似坐标*//

double[,] A = new double[8, 6];//*系数阵*//

double[,] AT = new double[6, 8];

double[,] AB = new double[6, 6];

double[,] AN = new double[6, 6];

double[,] AL = new double[6, 1];

double[,] Dv = new double[6, 1];

double[,] AX = new double[8, 1];//*系数阵与改正数矩阵的乘积*//

double[,] V = new double[8, 1];//*中误差矩阵*//

private void Qchuzhi()

{

for (int i = 0; i < 4; i++)

{

Sx += zuobiao[2, i];

}

for (int i = 0; i < 4; i++)

{

Sy += zuobiao[3, i];

}

for (int i = 0; i < 4; i++)

{

zuobiao[0, i] = zuobiao[0, i] / 1000;

zuobiao[1, i] = zuobiao[1, i] / 1000;

}

//*求外方位元素初始值*//

ψ = ω = κ = 0;

m = 50000;

f = 0.15324;

Xs = Sx / 4;

Ys = Sy / 4;

Zs = m * f;

}

//*求旋转矩阵R,像点坐标近似值,常数项矩阵L,系数矩阵A*//

private void R()

{

//旋转矩阵R

a[0] = Math.Cos(ψ) * Math.Cos(κ) - Math.Sin(ψ) * Math.Sin(ω) * Math.Sin(κ);

a[1] = -Math.Cos(ψ) * Math.Sin(κ) - Math.Sin(ψ) * Math.Sin(ω) * Math.Cos(κ);

a[2] = -Math.Sin(ψ) * Math.Cos(ω);

b[0] = Math.Cos(ω) * Math.Sin(κ);

b[1] = Math.Cos(ω) * Math.Cos(κ);

b[2] = -Math.Sin(ω);

c[0] = Math.Sin(ψ) * Math.Cos(κ) + Math.Cos(ψ) * Math.Sin(ω) * Math.Sin(κ);

c[1] = -Math.Sin(ψ) * Math.Sin(κ) + Math.Cos(ψ) * Math.Sin(ω) * Math.Cos(κ);

c[2] = Math.Cos(ψ) * Math.Cos(ω);

for (int i = 0; i < 4; i++)

{

XX[i] = a[0] * (zuobiao[2, i] - Xs) + b[0] * (zuobiao[3, i] - Ys) + c[0] * (zuobiao[4, i] - Zs);

YY[i] = a[1] * (zuobiao[2, i] - Xs) + b[1] * (zuobiao[3, i] - Ys) + c[1] * (zuobiao[4, i] - Zs);

ZZ[i] = a[2] * (zuobiao[2, i] - Xs) + b[2] * (zuobiao[3, i] - Ys) + c[2] * (zuobiao[4, i] - Zs);

//由共线条件方程式求得xo,yo的近似值

JSZB[0, i] = -f * (XX[i]) / (ZZ[i]);

JSZB[1, i] = -f * (YY[i]) / (ZZ[i]);

//常数项矩阵

L[i * 2, 0] = zuobiao[0, i] - JSZB[0, i];

L[i * 2 + 1, 0] = zuobiao[1, i] - JSZB[1, i];

}

for (int i = 0; i < 4; i++)

{

A[2 * i, 0] = (a[0] * f + a[2] * zuobiao[0, i]) / ZZ[i];

A[2 * i, 1] = (b[0] * f + b[2] * zuobiao[0, i]) / ZZ[i];

A[2 * i, 2] = (c[0] * f + c[2] * zuobiao[0, i]) / ZZ[i];

A[2 * i, 3] = zuobiao[1, i] * Math.Sin(ω) - ((zuobiao[0, i] * (zuobiao[0, i] * Math.Cos(κ) - zuobiao[1, i] * Math.Sin(κ)) / f + f * Math.Cos(κ))) * Math.Cos(ω);

A[2 * i, 4] = -f * Math.Sin(κ) - zuobiao[0, i] * (zuobiao[0, i] * Math.Sin(κ) + zuobiao[1, i] * Math.Cos(κ)) / f;

A[2 * i, 5] = zuobiao[1, i];

A[2 * i + 1, 0] = (a[1] * f + a[2] * zuobiao[1, i]) / ZZ[i];

A[2 * i + 1, 1] = (b[1] * f + b[2] * zuobiao[1, i]) / ZZ[i];

A[2 * i + 1, 2] = (c[1] * f + c[2] * zuobiao[1, i]) / ZZ[i];

A[2 * i + 1, 3] = -zuobiao[0, i] * Math.Sin(ω) - (zuobiao[1, i] * (zuobiao[0, i] * Math.Cos(κ) - zuobiao[1, i] * Math.Sin(κ)) / f - f * Math.Sin(κ)) * Math.Cos(ω);

A[2 * i + 1, 4] = -f * Math.Cos(κ) - zuobiao[1, i] * (zuobiao[0, i] * Math.Sin(κ) + zuobiao[1, i] * Math.Cos(κ)) / f;

A[2 * i + 1, 5] = -zuobiao[0, i];

}

}

//*定义一个函数用来求矩阵的转置*//

private void T(double[,] A, double[,] B, int a, int b)

{

for (int i = 0; i < b; i++)

{

for (int j = 0; j < a; j++)

{

B[i, j] = A[j, i];

}

}

}

//*定义一个函数用来求矩阵的乘积*//

private void Multiply(double[,] A, double[,] B, double[,] C, int a, int b, int c)

{

for (int i = 0; i < a; i++)

{

for (int j = 0; j < c; j++)

{

C[i, j] = 0;

for (int m = 0; m < b; m++)

{

C[i, j] = A[i, m] * B[m, j] + C[i, j];

}

}

}

}

private void substract(double[,] A, double[,] B, double[,] C, int a, int b)

{

for(int i=0;i{

for (int j = 0; j < b; j++)

{

C[i, j] = A[i, j] - B[i, j];

}

}

}

//*定义一个函数用来求矩阵的逆*//

//矩阵的求逆函数

public double[,] ReverseMatrix(double[,] dMatrix, int Level)

{

double dMatrixValue = MatrixValue(dMatrix, Level);

if (dMatrixValue == 0) return null;

double[,] dReverseMatrix = new double[Level, 2 * Level];

double x, c;

for (int i = 0; i < Level; i++)

{

for (int j = 0; j < 2 * Level; j++)

{

if (j < Level)

dReverseMatrix[i, j] = dMatrix[i, j];

else

dReverseMatrix[i, j] = 0;

}

dReverseMatrix[i, Level + i] = 1;

}

for (int i = 0, j = 0; i < Level && j < Level; i++, j++)

{

if (dReverseMatrix[i, j] == 0)

{

int m = i;

for (; dMatrix[m, j] == 0; m++) ;

if (m == Level - 1)

return null;

else

{

// Add i-row with m-row

for (int n = j; n < 2 * Level; n++)

dReverseMatrix[i, n] += dReverseMatrix[m, n];

}

}

// Format the i-row with \"1\" start

x = dReverseMatrix[i, j];

if (x != 1)

{

for (int n = j; n < 2 * Level; n++)

if (dReverseMatrix[i, n] != 0)

dReverseMatrix[i, n] /= x;

}

// Set 0 to the current column in the rows after current row

for (int s = Level - 1; s > i; s--)

{

x = dReverseMatrix[s, j];

for (int t = j; t < 2 * Level; t++)

dReverseMatrix[s, t] -= (dReverseMatrix[i, t] * x);

}

}

// Format the first matrix into unit-matrix

for (int i = Level - 2; i >= 0; i--)

{

for (int j = i + 1; j < Level; j++)

if (dReverseMatrix[i, j] != 0)

{

c = dReverseMatrix[i, j];

for (int n = j; n < 2 * Level; n++)

dReverseMatrix[i, n] -= (c * dReverseMatrix[j, n]);

}

}

double[,] dReturn = new double[Level, Level];

for (int i = 0; i < Level; i++)

for (int j = 0; j < Level; j++)

dReturn[i, j] = dReverseMatrix[i, j + Level];

return dReturn;

}

//求得矩阵行列式的值

public double MatrixValue(double[,] MatrixList, int Level)

{

double[,] dMatrix = new double[Level, Level];

for (int i = 0; i < Level; i++)

for (int j = 0; j < Level; j++)

dMatrix[i, j] = MatrixList[i, j];

double c, x;

int k = 1;

for (int i = 0, j = 0; i < Level && j < Level; i++, j++)

{

if (dMatrix[i, j] == 0)

{

int m = i;

for (; dMatrix[m - 2, j] == 0; m++) ;

if (m == Level)

return 0;

else

{

// Row change between i-row and m-row

for (int n = j; n < Level; n++)

{

c = dMatrix[i, n];

dMatrix[i, n] = dMatrix[m, n];

dMatrix[m, n] = c;

}

// Change value pre-value

k *= (-1);

}

}

// Set 0 to the current column in the rows after current row

for (int s = Level - 1; s > i; s--)

{

x = dMatrix[s, j];

for (int t = j; t < Level; t++)

dMatrix[s, t] -= dMatrix[i, t] * (x / dMatrix[i, j]);

}

}

double sn = 1;

for (int i = 0; i < Level; i++)

{

if (dMatrix[i, i] != 0)

sn *= dMatrix[i, i];

else

return 0;

}

return k * sn;

}

private void output()

{

Console.WriteLine(\"外方位元素Xs:\{0}m\

Console.WriteLine(\"外方位元素Ys:\{0}m\

Console.WriteLine(\"外方位元素Zs:\{0}m\

Console.WriteLine(\"外方位元素ψ:\{0}度\

Console.WriteLine(\"外方位元素ω:\{0}度\);

Console.WriteLine(\"外方位元素κ:\{0}度\

for (int i = 0; i < 8; i++)

{

Console.WriteLine(\"中误差:\{0}m\

}

}

//*求解过程*//

private void xhqiujie()

{

Qchuzhi();

do

{

的逆矩阵AN

Dv中*//

R();

T(A, AT, 8, 6);//*求A的转置*//

Multiply(AT, A, AB, 6, 8, 6);//*A的转置与A的乘积*//

AN = ReverseMatrix(AB, 6);//调用ReverseMatrix方法,求得矩阵AB Multiply(AT, L, AL, 6, 8, 1);//*A与L的乘积*//

Multiply(AN, AL, Dv, 6, 6, 1);//*求出外方位元素的改正数存储到矩阵 Xs += Dv[0,0];

Ys += Dv[1,0];

Zs += Dv[2,0];

ψ += Dv[3,0];

ω += Dv[4,0];

κ += Dv[5,0];

//*精度评定*//

Multiply(A, Dv, AX, 8, 6, 1);

substract(AX, L, V, 8, 1);

} while (Math.Abs(Dv[0, 0]) >= 0.00002 || Math.Abs(Dv[1, 0]) >= 0.00002 || Math.Abs(Dv[2, 0]) >= 0.00002 || Math.Abs(Dv[3, 0]) >= 0.00002 || Math.Abs(Dv[4, 0]) >= 0.00002 || Math.Abs(Dv[5, 0]) >= 0.00002 || Math.Abs(V[0, 0]) >= 0.00002 || Math.Abs(V[1, 0]) >= 0.00002 || Math.Abs(V[2, 0]) >= 0.00002 || Math.Abs(V[3, 0]) >= 0.00002 || Math.Abs(V[4, 0]) >= 0.00002 || Math.Abs(V[5, 0]) >= 0.00002 || Math.Abs(V[6, 0]) >= 0.00002 || Math.Abs(V[7, 0]) >= 0.00002);

output();

}

static void Main(string[] args)

{

Program HS = new Program();

HS.xhqiujie();

}

}

}

结果如下:

因篇幅问题不能全部显示,请点此查看更多更全内容

Top