J´anosT¨or¨ok1,2,SupriyaKrishnamurthy2,J´anosKert´esz1andSt´ephaneRoux3
DepartmentofTheoreticalPhysics,InstituteofPhysics,
TechnicalUniversityofBudapest,Budafokiu´t8,Budapest,H-1111,Hungary
2
LaboratoiredePhysiqueetM´ecaniquedesMilieuxH´et´erog`enes,
ESPCI,10rueVauquelin,Paris75231,France.3
SurfaceduVerreetInterfaces,UMRCNRS/Saint-Gobain,39QuaiLucienLefranc,93303AubervilliersCedex,France
(February6,2008)
Weintroduceamesoscopicmodelfortheformationandevolutionofshearbandsinloosegran-ularmedia.Numericalsimulationsrevealthatthesystemundergoesanon-trivialself-organizationprocesswhichisgovernedbythemotionoftheshearbandandtheconsequentrestructuringofthematerialalongit.Highdensityregionsarebuiltup,progressivelyconfiningtheshearbandsinlocalizedregions.Thisresultsinaninhomogeneousagingofthematerialwithaveryslowincreaseinthemeandensity,displayinganunusualglassylikesystem-sizedependence.PACSnumbers:45.70.-n,45.70.Mg,05.65.+b
1
arXiv:cond-mat/0003070v1 [cond-mat.stat-mech] 6 Mar 2000Alargeclassofmaterialsarehandledintheformofdispersedsolidgrainsatsomestageoftheirprocessing.Thusthedescriptionoftherheologicalpropertiesofsus-pensions,pastesanddrygranularmediaisakeyquestionwhichcontrolstheabilityofmixing,storing,transport-ingetc,thesedispersemedia[1–3].Granularsystemsconstituteanintermediatestateofmatterbetweenflu-idsandsolids[4,5]:theyflowlikefluidsbuttheyalsobuildpilesindicatingthatanon-vanishingstaticshearstressispresentwhichischaracteristicofsolids.Fromthispointofviewitisalsoofmajorinteresttounder-standtheshearingprocessinthesesystems.Anumberofexperimentshavebeencarriedoutontheshearprocessingranularmaterials[6,7].Mostofthesearetriaxialtests[7,8]todeterminemacroscopicpropertiessuchastheshearstressorthevolumetricstrain,asafunctionoftheshearstrain.
Theintimateinterplaybetweenthegeometricalar-rangementsandthefrictionalpropertiesofthegrainsde-terminesthepreciseformoftherheologicalbehaviortobeusedatacontinuumlevel.Theunderlyingquestionistheidentificationofrelevantinternalvariables.Themostobviousoneisthedensityofthesample,whichcanbemadetovaryoverawiderangebythemethodofpreparation.Comparedtootherparametersdescribingthetexture(e.g.fabrictensorsaccountingforthedistri-butionofcontactorientations)thedensityhasthemostdrasticimpactonthestressneededtoshearthemate-rialaswellasonthemodeofshearing;fromanappar-enthomogeneousstrainforloosepackingstoalocalizedsteadyshearbandfordenseassemblies[9].Thecouplingofthedensitytotheshearpropertiescanbeunderstoodthroughtheconceptofdilatancy[6].Arelatedquestioniswhetherstatisticalfluctuationshaveanimpactonmacroscopicproperties.Lately,therehasbeenanupsurgeofinterestintryingtocharacterizethelargestressfluctuations[10–13]insilos,Couettefloworsliderblockgeometries,ortounderstandthestatistics
1
ofinterparticlecontactforces[14].Recently,spectacu-larexperimentsintwo-dimensionalCouetteshearcellswerecarriedout[13]wherethemovementandstressofindividualparticlesweremonitoredinordertodescribetheinnerstructureandtheforcenetworkintheshearedgranularmaterial.Itwasdemonstratedthatstationarymotionisaccompaniedbylargestressfluctuationsduetotheformationandbreakdownofarches.Largefluctu-ationswerealsofoundinthreedimensionalsteadystateshearcells[15].Thisissuehasalsobeenraisedbytheresultsofre-centnumericalsimulationsofrigidgrainassemblies[16],whereevenatlowdensities,theshearingwhichappearsashomogeneousoverlongtimes,infactconsistsofasuccessionofsuddenchangesofquasi-instantaneousandlocalizedstrainfields.Thisobservationsuggeststhatthetransitionfromtheparticlebaseddescriptiontothecon-tinuumonerequiresthedetailedunderstandingofthestatisticalfeaturesassociatedwiththesesuddenchanges.InthisLetterwepresentasimplemodelfortheshear-ingofagranularmediuminloosesamples.Wedescribethestrainfieldateveryinstantasashearband,chosenthroughaglobaloptimizationprocedure,whichisequiv-alent,asweshallseelater,tosearchingforthegroundstateofadirectedpolymerinarandompotential[17,18].However,thispotentialisnotapriorifrozeninbuthasaself-organizeddevelopmentduetoourprocedureofchoosingandchangingtheshearband.Thoughverysim-pleandwithonlytheminimumofingredients,themodelshowsthatthedensityofthemediumincreasesanoma-louslyslowly.Furtherwearealsoabletopredictonthebasisofthismodel,thatlargescaleinhomogeneitiesbuildupinasystemsubjecttoasteadyshear.Thiscouldbeaninterestingfeaturetocomparewithexperiments.Letusconsiderashearprocess,assumedtobeinvari-antalongthesheardirection(zinFig.1).Thisgeom-etryisappropriateforinstance,inanannularshearcelloflargeradius[15].Weconsidermoreoveracontinuum
yxzShearbandShetionceirar dFIG.1.Schematicpictureoftheshearprocess.Theshearband
isparalleltothesheardirectionzduetoperiodicboundarycondi-tionsinthisdirection.
description,validonscalesmuchlargerthanthatofindividualgrains.Wenowintroduceafundamentalas-sumptionofourmodel:Weassumethattheinstanta-neousstrainfieldisalwayslocalizedonasingleshearband[4,19].Experimentally,itisknownthatshearbandshaveatypicalwidthofabouttengraindiameters.Thusatacontinuumlevel,thevelocityfieldisindeeddiscon-tinuousacrosstheshearband.Fromthegeometryofourset-up,theshearbandmustbeacontinuoussurfaceduetotopologicalconstraints(Fig.1).Further,weas-sumethatbecauseofthetranslationalinvariancealongthezaxis,thesystemcanbereducedtoatwodimen-sionaloneinthex-y(cross-section)plane,throughanaveragingoverthezdirection.
Thebasichypothesisofthelocalizationoftheshearontheshearbandatalltimes,isnotasrestrictiveasitmayappear.Weonlyreferheretoinstantaneousshearrates,andprovidedtheshearbandchangesrapidlyenough,coarse-grainingthestrainfieldintimemayproduceauniformshearrate.Experimentally,thoughitisverydifficulttohavedirectaccesstotheinstantaneousshearrate,largefluctuationsfoundintheshearstressmayin-dicatethattheshearisneverquiteuniform,evenatearlytimes.Asmentionedearlier,thisseemsindicatedalsobynumerics[16].
Initiallyweconsideraloose-packedsample.Atasuit-ablycoarse-grainedscalethemediumcanbedescribedasacontinuum,wherethedensityisarandomfunctiondisplayingfluctuationsaroundameanvalue.Underaconstantnormalload,athresholdshearforce(ortorqueforanannularshearcell)hastobeappliedtoimposeanon-zerostrain.Locally,afterintegrationalongthezaxis,thedensitycontrolsthethresholdshearforce.Al-thoughthisisinessential,forsimplicityweassumethattheratioofsheartonormalstress,i.e.thefrictionco-efficient,increaseslinearlywithdensity.Asmentionedearlier,thetextureofthemediumalsocontributestothefrictioncoefficient.However,sinceweconsideronlyshearinafixedorientation,asinglescalarparametercombin-ingdensityandtextureshouldsuffice.Thisparameteriscalled“density”forshortandisdenotedby̺(x,y).Thusatanytimethestateofthemediumischaracterizedbythisfield.
2
Wedeterminetheshearband(pathinthe(x,y)plane)bythefollowingthreeconditions:a)itiscontinuous,b)itspansthesampleinthexdirectionwithoutoverhangsandc)thesumofthedensityalongitisminimalamongallpossiblepathssatisfyinga)andb).Onecanrecognizethatthisisthewellknownproblemoffindingthegroundstateofadirectedpolymerinarandompotential[17].Relativemotionoftheparticlestakesplacewithintheshearbandwhiletherestofthesampleremainsstill.Smallmovementscantotallyrearrangethelocalstruc-ture[15,20]andthusmayinducelargechangesinthelocaldensity.Wesimplifythiscomplexbehaviorbyre-newingthedensity̺onlyalongtheshearband,byinde-pendentrandomvaluestakenfromafixeddistribution.Afterthis,anewshearbandisagainlocatedasdescribedabove.Thustheshearprocessconsistsofasuccessionoflocalizedslipsoccurringatverysmalltimescales.Wenotethatincharacterizingthisprocess,inthespiritofacontinuummodeling,weignorepotentialstressinhomo-geneitiesinthemedium.Itisasimplifyingassumptionofthemodeltorelatetheshearbandlocalizationonlytothedensity,andnottothefullsolutionofthelocalstressdistribution.
Inordertobeabletosimulatetheabovemodelwedis-cretizeditonasquarelatticeeitherwithprincipleaxisparalleltoxandyandconsideringfirstandsecondnear-estneighbours,ortiltedby45oconsideringonlynearestneighbours.Periodicboundaryconditionsareimposedintheydirection.Simulationswithsiteandbondversionswerealsocarriedoutleadingessentiallytothesamere-sults.WeconsiderheresquaresampleswithsystemsizeN×NwithNvaryingfrom32to512.Initiallyaden-sity̺i(arandomnumberuniformlydistributedbetween0and1)isassignedtoeverybondi.Wedefinethein-stantaneousshearbandasthespanningdirectedpathalongwhich̺iisminimal(applyingtheusualtrans-fermatrixmethod[17]).Oncetheshearbandisfoundthebondsbelongingtoitareassignednewvaluestakenfromthesameuniformdistributionasusedinitially.Werepeatthisprocessandmonitordifferentpropertiesofthesystem[21].
Wedefinetheaveragedensity̺asthemeanvalueofthedensityofthesitesnotbelongingtotheshearband.Thisdefinition,aswellasourprocedureofchoosingtheleastandchangingit,guaranteesthattheaveragedensityisamonotonicallyincreasingfunctionoftime.
Themonotonicbehaviorandtheboundednatureoftheaveragedensity(̺≤1)ensurethatithasanasymp-toticvalue.Infinitesamplesthisisequalto1.InFig.2wehaveplottedthedeviationoftheaveragedensityfromthisasymptoticvalue.Atearlytimes(t/N<∼2)therescaledcurvesgotogetherindependentlyofthesystemsize;laternon-trivialsystemsizeeffectscanbeobserved.Therelaxationtotheasymptoticvaluegetsslowerasthesystemsizeincreases.
1
110101010
−1−2
110
−1−2−3−4−5−6
1010101010
−3−4−5
a)
0.10.04−410
10−310
b)
−310
−110
110
310
5
1010
−110
110
310
5
FIG.3.a)Log-logplotofthetimedependenceofthedistance
10
−210
010
210
4FIG.2.Thedifferenceoftheaveragedensity̺fromits
asymptoticvalueisplottedasafunctionoftimetrescaledbythe
systemsizeN.Thesystemsizesare32,,128,256and512fromtobottomtotoprespectively.
dforsystemsizes32to512scaledtogether.BoththedistancedandthetimetscalewiththesystemsizeN.b)Log-logplotofthedeviationofthedensityoftheshearbandbeforetheupdatefromitsasymptoticvalueasafunctionoftimeforsystemsizes32to512scaledtogether.
Sincethesystemevolvesentirelythroughtheprocessofchoosingandchangingtheshearband,wehavemon-itoredthefollowingtwoimportantquantitiesrelatedtotheshearband:TheHammingdistanced(whichisthenumberofdifferentsitesbetweensuccessiveshearbands)(Fig.3a)andtheaveragedensityofthesitesalongtheshearband̺SBbeforechange(Fig.3b).Itisappar-entfromthefigurethatthereisacharacteristictimeoftc1≃N,belowwhichthedistanceisessentiallyconstantandequaltothesystemsizeandthedensityoftheshearbandisroughlyconstant.Thiscanbeunderstoodquali-tativelyfromthefollowingconsiderations.Sincetheveryfirstshearbandisequivalenttothegroundstateconfor-mationofadirectedpolymerinarandompotential,weknowfromthisanalogythatthemeandensityalongthisshearbandismuchlessthan0.5[17].Oncethepathisrefreshed,itsmeandensityincreasesto0.5.Thenextshearbandtendstoberepelledbythepreviousonesincetherestillexistmanyspanningpathswithalowerden-sity.Thusatearlytimes,twosuccessiveshearbandsdiffercompletely(Fig.3a)andthedensityoftheshearbandremainsmoreorlessthesame(Fig.3b).Thisini-tialphaseshouldlastuntilonaverageallsiteshavebeenrefreshedafewtimes,anumberoftimestepsoftheorderofN.
Theabsenceofoverlapbetweensuccessiveshearbandsinthisearlytimeregimereflectsthefactthatnowellde-finedshearbandcanbeobservedinloosegranularme-dia.Experimentallythisisconnectedtothedifficultyinquantifyingfluctuations,whenthemeanshearstrainisofsmallmagnitude.Sowhatisobservedisseeminglyahomogeneousshear.
Thereisatransitionregimeuptotc2≃20Nwherewestillhaveagoodqualitydatacollapse.Inthisregimebothcurvesdandr≡0.5−̺SBstarttofalloff.Thedecreasingdistanceindicatesanincreasingpersistenceof
3
theshearband.Astheaveragedensityofthesystemincreases(Fig.2)thedensityoftheminimalpathalsogrowsandthustherepulsiveinteractionbetweentwocon-secutiveshearbandsprogressivelyfadesaway.Finally,bytheendofthetransitionregime,theinteractionbe-comesattractiveandamuchslowerrelaxationprocesstakesplace.
Theabovemeasurementspointtoalocalizationoftheshearband,inducedbytheimposeddynamics.Inordertounderstandbetterhowthiscomesaboutwepresentdensitysnapshotsofthesystematfourdifferentin-stances(Fig.4)varyingfromt/N∼4to4000.Weobservethatinitially(Fig.4a)thedensityappearshomo-geneouslydistributed.Thenprogressivelyhighdensityregionsbecomeapparent.Themechanismfortheforma-tionoftheseregionsisthefollowing:Astheaverageden-sityincreases,theinteractionbetweensuccessiveshearbandsbecomesattractiveandthepathgetsrestrictedinspace.Smallfluctuationsoftheshearbandthenleadtoadensityincreaseinthisregion.Thepresenceofthesesur-roundingareasofhighdensitiesincreasestheattractionofsuccessiveshearbands,thusleadingtoapositivefeed-backprocessresultinginregionsoffinitewidthandveryhighdensitywheretheshearbandistrappedinthemid-dle,ina“canyon-like”structure(blacklinessurroundedbywhiteinFigs.4candd).
Theescapefromtheabovedescribedtrapisonlypos-sibleviaajumptoanotherlocalminimum.Theproba-bilityofsuchajumpdecreasesfasterthanexponentiallywithincreasingdensity.Thusastimegrows,theaver-agejumpsizedecreaseseventhoughlargeregionswithrelativelysmalldensitiesremain.Theprogressiveself-quenchingoftheshearbandinthesystemisresponsiblefortheanomalousslowincreaseintheaveragedensity.Thisinhomogeneousagingandextremelyslowdynamicsisreminiscentofaglassybehavior.
Inordertogetsomemoreinsightintotheslowdy-namicsofthesystemwehavestudiedthesamemodelonahierarchicallattice.Thesimplegeometryallowsforadetailedanalytictreatmentofthemodel.Thisstudywill
a)b)
c)d)
00.50.750.91
FIG.4.Snapshotsofdensitiesatdifferenttimeonasystem
ofsize256by256:a)t=103≃4N,b)t=104≃40N,c)t=105≃400N,d)t=106≃4000N.Thegreyscaleisindicatedatthebottomofthefigure.
bereportedelsewhere[22].Hereweonlysummarizethemainfeaturesofthisanalysis.Theslowdensityin-creaseandstrongsystemsizedependenceseenonthesquarelatticearealsoseeninthehierarchicalone.Herewecanshowthat1−̺decreasesasasumofpower-lawswithavanishingexponentdependingonthelatticesize,i.e.thenumberofgenerationsofthehierarchicallattice.Further,theearlytimeregimeisasinglefunctionoft/Nasforthesquarelattice,whilethelatetimeregimescalesinsteadast/Nα,whereα=1/log(2).
Inspiteofitssimplicity,themodelwehaveintroduceddisplayssomeinterestingconsequencesofcollectiveorga-nizationofdensityfluctuationsinagranularassembly.Althoughonlytime-independentrulesareintroduced,thesimulationsrevealaslowdensificationwhichoccurstogetherwithanon-trivialpatterningofthedensityinthesample.Simultaneously,theshearstrainislocalizedonshearbandswhichacquireprogressivelyalongerandlongerpersistence.Theoccurrenceofhighdensityre-gionsconfiningtheshearbandisafeaturewhichshouldbeobservableusingX-raytomographyasrecentlyper-formedintriaxialtestsbyDesruesetal[9].
Acknowledgment:Thisworkwaspartiallysup-portedbyOTKAT024004andT029985.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- efsc.cn 版权所有 赣ICP备2024042792号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务