MultiplexPCRandminisequencingofSNPs—
amodelwith35YchromosomeSNPs
JuanJ.Sancheza,*,ClausBørstinga,CharlotteHallenberga,AndersBucharda,
AlexisHernandezb,NielsMorlingaDepartmentofForensicGenetics,InstituteofForensicMedicine,UniversityofCopenhagen,11FrederikV’sVej,
DK-2100Copenhagen,Denmark
b´a,CampusdeCienciasdelaSalud,38320LaLaguna,Tenerife,SpainDepartamentodeCanarias,InstitutoNacionaldeToxicologı
Received22January2003;receivedinrevisedform2July2003;accepted7July2003
aAbstract
Wehavedevelopedarobustsinglenucleotidepolymorphism(SNPs)typingassaywithco-amplificationof25DNA-fragments
andthedetectionof35humanYchromosomeSNPs.ThesizesofthePCRproductsrangedfrom79to186basepairs.PCRprimersweredesignedtohaveatheoreticalTmof60Æ58Catasaltconcentrationof180mM.Thesizesoftheprimersrangedfrom19to34nucleotides.TheconcentrationofamplificationprimerswasadjustedtoobtainbalancedamountsofPCRproductsin8mMMgCl2.Forroutinepurposes,1ngofgenomicDNAwasamplifiedandthelowerlimitwasapproximately100pgDNA.Theminisequencingreactionswereperformedsimultaneouslyforall35SNPswithfluorescentlylabelleddideoxynucleotides.Thesizeoftheminisequencingprimersrangedfrom19to106nucleotides.Theminisequencingreactionswereanalysedbycapillaryelectrophoresisandmulticolourfluorescencedetection.FemaleDNAdidnotinfluencetheresultsofYchromosomeSNPtypingwhenaddedinconcentrationsmorethan300timestheconcentrationsofmaleDNA.Thefrequenciesofthe35SNPsweredeterminedin194maleDanes.ThegenediversityoftheSNPsrangedfrom0.01to0.5.#2003ElsevierIrelandLtd.Allrightsreserved.
Keywords:Ychromosome;Singlenucleotidepolymorphism;MultiplexPCR;Minisequencing;Genotyping
1.Introduction
Alargenumberofsinglenucleotidepolymorphisms(SNPs)havebeenidentified[1].InvestigationsofSNPsontheYchromosomeinvariouspopulationshavegivenusimportantinformationonthehistoryofthehumanmalepopulations(e.g.[2–8]).DuetothelowmutationratesofSNPs,theinformationrelatestolongerperiodsoftimecomparedtotheinformationobtainedwithe.g.shorttandemrepeat(STR)[9–11]andminisatellitemarkersas,forexam-pleMSY1[12,13].
Presently,typingofselectedshorttandemrepeat(STR)systemsisthestateoftheartinforensicroutinecasework.Itis,however,anticipatedthatSNPtypingwillbeusedfor
Correspondingauthor.Tel.:þ45-35-32-62-25;fax:þ45-35-32-61-20.
E-mailaddress:juan.sanchez@forensic.ku.dk(J.J.Sanchez).
*parentagetestingandforensiccaseworkinthefuture.TheadvantageofSNPsinforensiccaseworkisthatsmallDNAfragmentsof40–50bpsfrome.g.heavilydegradedDNAcanbeSNPtyped.Furthermore,theSNPtechnologyhasahighpotentialforautomation.AlthoughthegeneticinformationobtainedbyaSNP,inaverage,ismuchlowerthanthatobtainedbyanSTRsystem,typingof50–100selectedSNPswouldbesufficientforforensiccasework[14].ThelowmutationrateofSNPs[15,16]makesthesemarkersanattractivetoolforparentagetesting.
GeneticmarkersontheYchromosomearevaluabletoolsinforensiccaseworkinspecialsituations,e.g.incaseswithmixturesofDNAwithadominantamountoffemaleDNAandaverysmallamountofmaleDNA.Insuchcases,theDNAprofileoftheautosomesofthemalecannotbeobtained,buttheYchromosomemarkerscanusuallybetyped,eveninsituationswithaverylargerelativeamountoffemaleDNA[17].Inspecialcasesofparentagetesting,e.g.
0379-0738/$–seefrontmatter#2003ElsevierIrelandLtd.Allrightsreserved.doi:10.1016/S0379-0738(03)00299-8
J.J.Sanchezetal./ForensicScienceInternational137(2003)74–8475
iftheallegedfatherisunavailablefortestingwhileclosemalerelativesareavailable,investigationofgeneticmarkersontheYchromosomearevaluable.
IfSNPtypingisgoingtobeusedinforensiccasework,itisessentialthattheinvestigationscanbeperformedonsmallamountsofDNA,ifpossible,<1ngDNA.Ifthepolymerasechainreaction(PCR)isused,theamplificationsofallDNAfragmentstobeinvestigatedmustbedoneinoneorveryfewamplificationreactions.
WedecidedtoexploreaSNPtypingmethodthatisbasedonmultiplexPCRandmultiplexminisequencing.WechoseSNPmarkersontheYchromosomebecausethesemarkers,inforensicgenetics,offeradditionalinformationtotheinforma-tionobtainedbySTRtyping.Furthermore,theYchromosomeSNPsareusefultoolsforthestudyofgeneticsofpopulations.Inthelastyears,anumberofmultiplexPCRYchromo-someSNPanalyseshavebeenreported.MostofthemincludedalimitedamountofSNPs(often3–10SNPs)ineachPCR(e.g.[2,3,18])althoughlargermultiplexeshavebeenreported[19,20].
WeselectedYchromosomeSNPsthatwerereportedtobepolymorphicinEuropeanandotherpopulations[4,21,22].However,themainpurposeofthestudywastoexplorethetechnicalissuesrelatedtomultiplexingalargernumberofDNAfragmentsandsimultaneousdetectionofalargenumberofSNPs.TheintentionwasnottomakeafinalpanelfortypingofmajorYchromosomehaplogroups.InordertoassessthetechnicalperformanceoftheSNPtypingsystem,weincludedfourpairsofSNPseachofwhichpairwasexpectedtogiveconcordantresults(e.g.M40andM96).Here,wedescribeamethodfortyping35SNPsontheYchromosome.Thetypingwasperformedby(1)multiplexPCRamplificationof25YchromosomeDNAfragments,(2)multiplexprimerextensionreactionsof35SNPswithfluorescencelabellednucleotides,and(3)detectionofthe35SNPsbycapillaryelectrophoresisandmulticolourfluor-escencedetection.
2.Materialsandmethods2.1.DonorsandDNApreparations
Atotalof194unrelatedmalesand15unrelatedfemaleDanesdonatedbloodsamplesorbuccalcells.DNAwasisolatedfrom200mlofperipheralbloodusingQIAampDNABloodMiniKitaccordingtothemanufacturer’spro-tocol(Qiagen,Hagen,Germany).Alternatively,1.2mm(diameter)FTA1paper(WhatmanInternational,Cam-bridge,UK)soakedwithbloodorbuccalcellswasused.MixturesofDNAfrommalesandfemaleswerepreparedincheckerboardwiththreeconcentrationsofmaleDNA(0.16,0.8and1.6ng)andfemaleDNArangingfrom0to60ng.FluorometricmeasurementofDNAconcentrationwasdonebySYBRGreenIandanalysedinaLightCyclerinstrument(RocheDiagnosticsGmbH,Germany)and
Hoechst33258(MolecularProbesInc.,Eugene,OR)usingaHoeferDyNAQuant200instrument(MolecularVision).CalibrationreferencecurveswereestablishedusingacalfthymusDNAstandard(Sigma–Aldrich,Missouri,USA).2.2.SelectionofPCRamplificationprimers
TheYchromosomeSNPsselected(Table1)includedthoseusedbySeminoetal.[21]forastudyofthedistribu-tionofYchromosomeSNPsinEuropeanpopulations.Inaddition,weincludedSNPsthatwerereportedtobepoly-morphicinotherethnicgroups.
DNAsegmentsincludingtheSNPsselectedwereidenti-fiedandcomplementaryprimersweredesignedsothatthelengthsoftheamplifiedgenomicYchromosomeDNAfragmentswouldrangefrom79to186nucleotides.SomeSNPsweresituatedverycloselytoeachotheranditwasdecidedtoincludeanumberofamplificationtargetswithtwoorthreeSNPs(Table1).
ThesequenceofeachlocuswasobtainedfromGenBank1(http://www.ncbi.nlm.nih.gov)usinganucleotidebasiclocalalignmentsearchtool(BLAST).PublishedPCRprimerswereinitiallyusedasthereferencesequenceforeachYSNPlocus,butallofthemneededtoberedesigned.TheprimersforthegenomicsegmentsspanningoneormoreYchromosomemarkersweredesignedwiththePrimer3.0programv.0.2(http://www-genome.wi.mit.edu/cgi-bin/primer/primer3_www.cgi).Allprimerswereselectedtohavetheoreticalmeltingtemperaturesof60Æ58Catasaltcon-centrationof180mMandapurine:pyrimidinecontentcloseto1:1,whenpossible.Thelengthsoftheprimersrangedbetween19and34nt.Primerswithfourormorebasesatthe30endcomplementarytoanotherpartoftheprimerwerediscardedorredesignedtoavoidartefactsduetohairpinformation.Eachprimerpairwastestedforprimer–primerinteractions,andtheprimersequenceswerecheckedtoavoidsimilaritieswithrepetitivesequencesorwithotherlociinthegenome.Theprimerswerecheckedforhomologytootherampliconsinthepoolof25primerpairs.Table1showsthesequencesoftheamplificationprimersselected.2.3.PCRconditions
HPLCpurifiedprimersforamplificationwerepurchasedfromTAGA/S(Copenhagen,Denmark).AprimerstocksolutionwaspreparedbydissolvingthelyophilizedprimersinTris/EDTAbuffer(10mMTris,100mMEDTA,pH7.5;Sigma–Aldrich)toafinalDNAconcentrationof100pmol/ml.EachprimerpairwastestedinsingleplexPCR.TenngtemplatewasamplifiedbyPCRina25mlreactionvolumecontaining1ÂPCRbuffer,1.5mMMgCl2,200mMofeachdNTP,0.4mMofeachprimer,and0.6unitsofAmpliTaqGoldDNApolymeraseat948Cfor5minfollowedby30cyclesof30sat958C,30sat608C,30sat728C,andafinalextensionfor5minat728C.Theproductswereanalysedbyelectrophoresisin11%polyacrylamidegels.
76J.J.Sanchezetal./ForensicScienceInternational137(2003)74–84
Table1
YchromosomeSNPsandprimersequencesforPCRamplificationof25YchromosomeDNAfragmentswithSNPsLocus
GenBankor
dbSNPsaccesionRs33Rs3900Rs3908Rs3909Rs3010AC009977AC009977Rs1179188AC006040Rs2032631AC002531AC009977AC0108Rs20320Rs2032652AC0108AC0108AC010137AC0108AC010137AC0108AC0108AC009977AC006040Rs2032597Rs2032604Rs2032624Rs2032678Rs20326Rs2032665AC0108Rs2534636AC005820Rs2535813Rs150173
Mutation
PCRprimers(50!30)Forwardprimer
A/GC/G4G/3G
2bpinsertionT/AT/CA/CG/CG/AG/AT/CA/CC/TC/TC/TG/CG/A5G/4GG/AT/AT/CA/CA/CC/TA/CT/GA/CÀ5bpC/AT/CT/CA/G
Present/absentGA/AC/CA
acggaaggagttctaaaattcaggaggaccctgaaatacagaactgcctggtcataacactggaaatccctggtcataacactggaaatccctggtcataacactggaaatctgaccgtcataggctgagacatgaccgtcataggctgagacaagggcatggtccctttctattggtctcaatctcttcaccctgt
gagagaggatatcaaaaattggcagttatatggactctgagtgtagacttgtgacctcaacttcccagagtgttgtgcattactccgtatgttcgac
catctcttaacaaaagaggtaaattttgtcctggattcagctctcttcctaaggttattgccctctcacagagcacttgttgcccaggaatttgcatccccgaaagttttattttattcca
catctcttaacaaaagaggtaaattttgtccccccgaaagttttattttattcca
catctcttaacaaaagaggtaaattttgtccgagagaggatatcaaaaattggcagtaggaccctgaaatacagaactgcggaaccactaccagcttca
cagctcttattaagttatgttttcatattctgtgtgagccctctccatcagaagttttcttacaattcaagggcatttaggatttaaactctctgaatcaggcacatccatataaaaacgcagcattctgttccatataaaaacgcagcattctgtttgcattactccgtatgttcgactcatccagtccttagcaaccattacactgactgatcaaaatgcttacagatttaaatccctcctatttgtgctaacctggaccatcacctgggtaaagt
Reverseprimer
aaaatacagctccccctttatcctaaatatttcaacatttcacaaaggaaagctgaccacaaactgatgtagaagctgaccacaaactgatgtagaagctgaccacaaactgatgtagattgaagcccccaagagagacttgaagcccccaagagagactccatgcagactttcggagtcatttcagtaaatgccacacaagatgacagtggcaccaaaggtcggtgccgtaaaagtgtgaaataatcgacgaagcaaacatttcaagagagtggaagcttaccatctttttatga
cattgtgttacatggcctataatattcagtctgctcaggtacacacagagtatcaccacccactttgttgctttg
cacagagcaagtgactctcaaagttctcagacaccaatggtcctatccattgtgttacatggcctataatattcagtttctcagacaccaatggtcctatccattgtgttacatggcctataatattcagttgacagtggcaccaaaggtcaaatatttcaacatttcacaaaggaaagttaaggccccacgcagt
gtcctcattttacagtgagacacaacgccaggtacagagaaagtttggctgaaaacaaaacactggcttatcattctactgatacctttgtttctgttcattctggagagaacttgagaaaaagtagagaatggagagaacttgagaaaaagtagagaatggaagcttaccatctttttatgaccacataggtgaaccttgaaaatgggatcccttccttacaccttatacaaatgcatgaacacaaaagacgtagaggcagtataaggttgtcacatcacat
0.150.360.090.090.090.070.070.420.180.030.460.030.080.240.030.270.020.060.240.060.240.030.360.030.070.160.100.020.120.120.080.060.060.040.01mM
Ampliconsize(bp)1281861701701701601609611913811515213217913514388113179113179138186113119179817917617613215090109
M2/sY81M9aM17aM18aM19aM32aM33aM35
M40/SRY40M45aM46/TatM52M78aM81aMM96M123M139aM151aM153aM1aM157aM163aM167/SRY2627M170M172M173M175M212aM213aM224aSRY10831/SRY153212f292R7P25
aSNPmarkersonthesameDNAfragment:(M9andM163),(M17,M18andM19),(M32andM33),(M45andM157),(M78andM224),(M81,M151andM1),(M139andM153),(M212andM213).Allprimerswereredesignedcomparedtopreviouslypublishedprimers.
TBE(1Â)(mmol/lTrisbase,mmol/lboricacid,2mmol/lEDTA,pH8.3)wasusedaselectrophoresisbuffer.Thegelswerestainedwith0.5mg/mlethidiumbromide.The10bpladderfrominvitrogen(Groningen,TheNetherlands)wasusedtoassignthesizesofthefragments.
ThefinalsetupofthePCRamplificationincluded1ngDNAina50mlreactionvolumecontaining1ÂPCRbuffer,8mMMgCl2,400mMofeachdNTP,0.01–0.42mMofeachprimer,and2.5unitsofAmpliTaqGoldDNApolymerase(AB,FosterCity,CA).
AllDNAamplificationswereperformedinaGeneAmp9600thermalcycler(Perkin-Elmer,Wellesley,USA)usingthefollowingprogramme:denaturationat948Cfor5minfollowedby33cyclesfor30sat958C,30sat608C,and30sat658C,followedbyafinalextensionfor7minat658C.Theconcentrationsoftheprimersinthemultiplexreac-tionwereadjustedinordertoobtainequalamountofeachPCRproduct.Theprimerconcentrationsrangedfrom0.01to0.42mM(Table1).
ThePCRproductswereanalysedon11%polyacrylamidegelsasdescribedlater(Fig.1).
InordertoeliminatetheexcessofprimersanddNTPs,thePCRproductswaspurifiedonaMinElutePCRpurificationspincolumn(Qiagen,Hagen,Germany)followingtheman-ufacturer’sprotocol.TheDNAwaselutedin30mlofMilli-Qwater.
E.coliexonucleaseI(ExoI)andshrimpalkalinephos-phatase(SAP)wasalsousedtoremoveprimersandunin-corporateddNTPs(USBCorporation,Cleveland,USA).SixmicrolitersExoSAP-ITkitor5unitsofSAPand2unitsof
J.J.Sanchezetal./ForensicScienceInternational137(2003)74–8477
Fig.1.MultiplexPCRproductsof25YchromosomeDNAfragments.EthidiumbromidestainedpolyacrylamidegelwithPCRproductsobtainedfromvarioussourcesofblood.AnegativecontrolwithDNAfromafemalewasincluded.(L)10bpladderfrominvitrogene.
ExoIwereaddedto15mlofPCRproduct,mixed,andincubatedat378Cfor1h.Theenzymeswereinactivatedat758Cfor15min.
2.4.DesignofPCRminisequencingprimers
Table2showsthegenotypingprimersdesignedforeachSNP.Primersfordetectionofdeletionsandinsertionsweredesignedwiththe30,basecorrespondingtothelastbasebeforethepossibledeletionorinsertion.ForeachSNPsysteminvestigatedinthepresentstudy,thefollowingbasewouldidentifythepolymorphism.Thesequencesoftheprimerswerecheckedforthepossibilityofprimer–dimerandhairpinformationandinvestigatedinPCRwithouttemplate(‘self-extensionreaction’).Inordertodistinguishbetweenthesizesofthedetectionprimers,theprimersweresynthesizedwithlengthsbetween19and106nucleo-tideswithintervalsoffournucleotidesforthegreatmajor-ityoftheprimers(Table2).Thelengthsofthetemplatespecificpartsoftheprimersrangedfrom16to29nucleo-tides.Thedesiredlengthofaprimerwasadjustedatthe50endbyadditionofapieceofa‘neutral’sequenceand,ifnecessary,apoly-Ctail.Theneutralsequence,
50-AACTGACTAAACTAGGTGCCACGTCGTGAAAGT-CTGACAA-30,isarandomsequencethatdidnotmatchwithanyhumansequenceintheNCBInon-redundantdatabase[19].
Foreach4bpDNAfragmentsizeintervalofthedetectionprimers,twoSNPlociweredetected.ThiswasdonebyselectingtwoSNPlociwithdifferentnucleotidepolymorph-ism.OneSNPcouldbe,e.g.anA/TSNPandtheotheraC/GSNP.Thus,theminisequencingprimersforthetwoSNPscouldhavethesamelengthandthetwopolymorphismswouldstillbedetectable.PrimersforminisequencingwereHPLCpurified(DNA-TechnologyA/S,Aarhus,DenmarkandProligoFranceSAS,Paris,France).2.5.Minisequencingreactionandcapillaryelectrophoresis
MultiplexPCRminisequencingwasperformedin8mlreactionswith0.2mlpurifiedPCRproduct(6–10ngequiva-lentto5–8fmolofeachfragment),4mlofSNaPshotTMreactionmixand0.01–0.5mMoftheprimers(Table2).Thethermalcyclingwasperformedwitharapidthermalrampto968Cfor10s,508Cfor5s,and608Cfor30sfor25cycles.
78J.J.Sanchezetal./ForensicScienceInternational137(2003)74–84
Table2
Minisequencingprimersequencesfortypingof35YchromosomeSNPmarkersLocus
M170M45M139M2/sY81M46/Tat
M167/SRY2627M213M52P25M72R7MM123M35M153
M40/SRY40M1M32M151M17M96M172M173M19M224
SRY10831/SRY1532M18M157M81M163M212M912f2M33M175
aPoly(dC)NoneNoneNoneNoneNoneNoneNoneNoneNoneNoneNoneNoneNoneNoneNoneNoneNoneNoneNoneNoneNone734710171814252022292946
NeutralSequence(50!30)
NonecaaaagacaaNone
tgaaagtctgacaatgacaatctgacaa
tcgtgaaagtctgacaagaaagtctgacaagtgaaagtctgacaa
cacgtcgtgaaagtctgacaaacgtcgtgaaagtctgacaa
ggtgccacgtcgtgaaagtctgacaaggtgccacgtcgtgaaagtctgacaa
aaactaggtgccacgtcgtgaaagtctgacaagccacgtcgtgaaagtctgacaataggtgccacgtcgtgaaagtctgacaaaggtgccacgtcgtgaaagtctgacaa
actaaactaggtgccacgtcgtgaaagtctgacaa
aactgactaaactaggtgccacgtcgtgaaagtctgacaaaactgactaaactaggtgccacgtcgtgaaagtctgacaaaactgactaaactaggtgccacgtcgtgaaagtctgacaaaactgactaaactaggtgccacgtcgtgaaagtctgacaaaactgactaaactaggtgccacgtcgtgaaagtctgacaaaactgactaaactaggtgccacgtcgtgaaagtctgacaaaactgactaaactaggtgccacgtcgtgaaagtctgacaaaactgactaaactaggtgccacgtcgtgaaagtctgacaaaactgactaaactaggtgccacgtcgtgaaagtctgacaaaactgactaaactaggtgccacgtcgtgaaagtctgacaaaactgactaaactaggtgccacgtcgtgaaagtctgacaaaactgactaaactaggtgccacgtcgtgaaagtctgacaaaactgactaaactaggtgccacgtcgtgaaagtctgacaaaactgactaaactaggtgccacgtcgtgaaagtctgacaaaactgactaaactaggtgccacgtcgtgaaagtctgacaa
Targetspecificsequence(50!30)
caacccacactgaaaaaaactcagaaggagctttttgctaatctgacttggaaaggggctttatcctccacagatctca
gctctgaaatattaaattaaaacaacaagccccacagggtgc
tcagaacttaaaacatctcgttacaatatcaagaaacctatcaaacatcctgcctgaaacctgcctg
cttattttgaaatatttggaagggccatgaacacaaaagacgtagaagaactcaggcaaagtgagagatatttctaggtattcaggcgatgtcggagtctctgcctgtgtcgctcaaagggtatgtgaacatccaccctgtgatccgct
gttacatggcctataatattcagtacaagacaagatctgttcagtttatctcacaatctactacatacctacgctatatgccaaaattcacttaaaaaaacccggaaaacaggtctctcataatacaaacccattttgatgctt
tacaattcaagggcatttagaacaaactatttttgtgaagactgttgtaaattgatacacttaacaaagatacttcttgtatctgactttttcacacagtgtttgtggttgctggttgttacaccaaaggtcatttgtggt
cttggtttgtgtgagtatactctatgaccacaaaggaattttttttgag
gcattctgttaatataaaacacaaaacatgtctaaattaaagaaaaataaagagaacatgtaagtctttaatccatctccagttacaaaagtataatatgtctgagatcacatgccttctcacttctc
OrientationamMReverseReverseForwardReverseReverseForwardReverseReverseForwardReverseReverseReverseReverseReverseForwardReverseReverseForwardForwardReverseForwardForwardForwardForwardForwardForwardForwardReverseReverseReverseForwardReverseForwardReverseForward
0.020.020.010.280.250.350.020.020.040.020.010.090.030.250.020.080.030.500.020.020.150.100.030.100.130.030.050.200.030.510.200.400.020.180.28
Primersize(nt)19222226263030343438384242465050586266667074747878828686909498106
ThedetectionorientationhasbeenprobedrelativetotheYCCinformationreportedin[32].
Apositivecontrol(providedwiththekit)andnegativecontrol(sterilewaterorPCRproductfromafemale),wasperformedforeachbatchof44samples.
Thehomogeneityofeachprimerwascheckedinsingle-plexminisequencing.Theoccurrenceofextrapeaksoneormorenucleotidessmallerthantheexpectedsizeindicatedheterogeneityoftheminisequencingprimer.
Aftertheminisequencingreaction,1UnitofSAPwasaddedandthetubewasincubatedat378Cfor1hinordertoremovethe50phosphorylgroupsoftheunincorporated[F]ddNTPs.SAPwasinactivatedbyincubationat758Cfor15min.
OnemlofthepurifiedminisequencingPCRproductwasanalysedonanABPrism3100GeneticAnalyserwitha36cmcapillaryarray,POP-4polymerand10sat3000V
injections.GeneScan-120LIZTMwasusedasinternalsizestandard.ThedatawereanalysedusingGeneScanAnalysissoftwarev.3.7(AppliedBiosystems).Afterbackgroundsubstractionandcolourseparation,peaksweresortedintobinsaccordingtosizesbycomparisontotheinternalsizestandard.Peaksabove400relativefluorescenceunitswereconsideredpositivesignalsandaSNPtypewasassigned.
2.6.Reproducibilitystudies
DNAsamplesfrom194unrelatedmaleDanesweretypedtwicewiththeminisequencingtechniqueandassignedSNPtypesforthe35SNPsystems.TheassignmentsofSNPtypesoftheduplicatetestingwerecompared.
J.J.Sanchezetal./ForensicScienceInternational137(2003)74–8479
2.7.Statisticalmethods
GenediversitiesandstandarderrorswerecalculatedaccordingtothemethodsofNei[23].3.Results
3.1.DNApurificationmethods
DNApurifiedwithQiagencolumnsandDNAfromFTA1paperwithbloodstainsinallcasesgavesatisfactoryresults(Fig.1).DNAfrombuccalcellsonFTA1papergavevariableintensitiesoftheresultsofsamples.3.2.Designofprimers
Whennobandoronlyaveryweakbandwasobserved,suggestingthattheaffinitiesoftheprimersweresuboptimal,theprimerswereredesigned.Inonecase,thePCRamplifica-tionwasveryweakandfourdifferentsetsofprimersweretriedbeforeanacceptableyieldwasobtained.Itwasnotpossibletounderstandthereasonsincetheprimersetbestsuitedfromatheoreticalpointgavethelowestyield.Inthreecaseswithunsatisfactoryyields,theprimerswereredesigned
with‘GC’atthe30endwithsuccessfulresults.Twenty-oneofthe25primerpairsworkedsatisfactorilyatthefirstdesign.3.3.PCRbufferandefficiencyofmultiplexPCRamplification
Wefoundthatthebestresultsofamplificationofall25DNAtargetswereobtainedbyincreasingtheconcentrationto8mMMgCl2.Higherconcentrationsinhibitedtheampli-fication(datanotshown).
3.4.QualityofDNAprimersfortemplatePCRamplification
UnpurifiedprimerscouldbecombinedintomultiplexesuptosevensystemswhileHPLCpurifiedprimerscouldbecombinedtoamplifyatleast25templatesinonereaction.3.5.TitrationofprimerconcentrationsinPCRamplification
ItwasnecessarytotitrateprimerconcentrationstoobtainabalancedPCRmultimixforminisequencing.Thefinalconcentrationsofprimersrangedfrom0.11to0.46mM.
Fig.2.Electropherogrammewith35YchromosomeSNPprofilesfromamaledonor.GeneScananalysisofSNaPshotTMminisequencingoftheYchromosomeSNPmultiplex.
80
J.J.Sanchezetal./ForensicScienceInternational137(2003)74–84
25)%(stin20U ecne15cseroul10F evita5leR050
100
250
5001000200040008000
DNA (pg)
Fig.3.Sensitivityofthe35YchromosomeSNPtypingassay.ForeachDNAconcentration,therelativefluorescenceunits(RFUsfromGeneScan)ofinvestigationsoffourSNPsdetectedwitheachofthefourdyes:blue,green,yellowandredwerecollatedfromtypingoftwoindividuals.ForeachDNAconcentration,themedianRFUvalueofthetwoindividualswascalculatedforeachdye,andforeachconcentrationthemedianRFUswerenormalizedasapercentageofthetotalRFUsofalltheRFUsforthedyeinquestion.Finally,foreachDNAconcentration,themedianofthenormalizedRFUvaluesforallfourdyeswascalculatedasapercentageofthesumofallnormalizedmedianRFUvaluesofallconcentrations.Thus,thesumofRFUsinthefiguresumupto100%.Theerrorbarsindicatethestandarderrorofthemean(S.E.M.).
3.6.SensitivityofthetargetmultiplexPCRamplificationInourhands,thelowerlimitforreproducibleresultswasapproximately100pgDNAwitharangeuptoapproxi-mately10ngandanoptimumat1–2ng(Figs.2and3).3.7.PurificationofthePCRtemplateamplificationproduct
BothspincolumnandenzymaticpurifiedPCRamplifica-tionproductsgavesatisfactoryminisequencingtypingreac-tions.TherecoverywiththeExoI-SAPwas100%whilethecolumnpurificationhadarecoveryofapproximately80%(datanotshown).
3.8.DesignofDNAprimersforminisequencing
Noneofthe35detectionprimershadtoberedesigned.3.9.QualityofDNAprimersforminisequencing
Clear,homogeneouspeakswereobtainedonlyifthepurityoftheprimerswashigherthanapproximately90%.Ifthepuritywasless,thesignalfromdegeneratedprimers(nÀ1,nÀ2,etc.)woulddecreasethediscrimination.
3.10.Annealingtemperatureofminisequencingprimers
Annealingtemperaturesfrom50to608Cgavealmostthesameoverallresultsinthe35SNPmultiplexwhenjudgedbyinspectionofthepeakareas.
3.11.YchromosomeSNPtypingresults
Fig.2showsarepresentativeelectropherogrammeoftypingof35YchromosomeSNPsinanindividual.Inoneofthe194males,typingcouldnoreactionwasobtainedinM81.ThesamelackofreactioninM81wasfoundinthesonoftheinvestigatedman.Theremaining34Ychromo-someSNPsweredetectedinthemanandhischild.Allothermalesamplesgaveafull35-Y-SNPprofile.3.12.ReproducibilityofYchromosomeSNPtypingwithminisequencing
SNPtypingwasperformedtwiceinall194maleDanesandtheduplicatetypeswereconsistent.Ineachminisequen-cingexperiments,atleastonesamplewithknowntypesforall35SNPswasincluded,andconcordantassignmentsofSNPtypeswereobtainedinallcases.
Foursamplesweretypedforthe11SNPsSRY2627,M213,M35,M153,SRY40,M17,M18,M9,SRY10831,92R7,andP25aspartofaninterlaboratoryexerciseoftheEuropeanDNAProfilingGroup,andcorrectresultswereobtained.
Fig.4.EffectofexcessDNAfromfemalesonthe35YchromosomeSNPtypingassay.Therelativefluorescenceunits(RFUsfromGeneScan)ofmixturesofmaleDNAandfemaleDNAingreatexcess.TheRFUswerecalculatedasindicatedinFig.3.Ingeneral,therewasadoseresponserelationbetweentheconcentrationofmaleDNAandtheRFUsignalstrength,whilefemaleDNAhadpracticallynoinfluenceontheRFUsignalintheconcentrationrangeinvestigated.
J.J.Sanchezetal./ForensicScienceInternational137(2003)74–84
Table3
Frequenciesof35YchromosomeSNPmarkersinmaleDanesLocus
M2/sY81M9M17M18M19M32M33M35
M40/SRY40M45M46/TatM52M78M81cMM96M123M139M151M153M1M157M163
M167/SRY2627M170M172M173M175M212M213M224
SRY10831/SRY153212f292R7P25
ab81
Fragmentnumbera123334456710111213141511151172161718192021211022232425
PolymorphismbA/GC/G4G/3G
Noins./2bpins.T/AT/CA/CG/CG/AG/AT/CA/CC/TC/TC/TG/CG/A5G/4GG/AT/AT/CA/CA/CC/TA/CT/GA/C
Nodel./5bpdel.C/AT/CT/CA/G
Present/absentGA/AdC/CAdFrequency(number)194/085/109162/32194/0194/0194/0194/0190/4190/486/108193/1194/0192/2193/04/190190/4193/10/194194/0194/0194/0194/0194/0194/0119/751/5/105194/0194/04/190194/032/1621/586/108124/70
Frequency(%)100.0/0.043.8/56.283.5/16.5100.0/0.0100.0/0.0100.0/0.0100.0/0.097.9/2.197.9/2.144.3/55.799.5/0.5100.0/0.099.0/1.0100.0/0.02.1/97.997.9/2.199.5/0.50.0/100.0100.0/0.0100.0/0.0100.0/0.0100.0/0.0100.0/0.0100.0/0.061.3/38.797.4/2.5.9/.1100.0/0.0100.0/0.02.1/97.9100.0/0.016.5/83.597.4/2.4.3/55.763.9/36.1
SomePCRproductscontainmorethanoneSNPinthesamefragment.FollowingtheYchromosomeconsortiumnomenclaturesystem[32].cOnemalegavenoreactioninminisequencingofM81.dTwosignalsweredetectedinsomeindividuals[24,33].
3.13.Male–femalemixturesofDNA
FemaleDNAdidnotinfluencetheresultsofYchromo-someSNPtypingwhenaddedinconcentrationsmorethan300timestheconcentrationsofmaleDNA(Fig.4).3.14.YchromosomeSNPpopulationdatainDanesTable3showsthefrequencydistributionofthe35SNPsinvestigatedin194maleDanes.NoSNPsignalwasobtainedin15femaleDanes.Atotalof19SNPsshowedvariationwhile16SNPsweremonomorphicinthemaleDanesstudied.
TwosignalswereobtainedinP25and92R7insomeindividuals(cfdiscussion).DNAfromindividualswithtwo
signalsinthesessystemswasinvestigatedwithSTR-tech-nique.OnlyoneSTR-profilewasobtainedineachindividualdemonstratingthatcontaminationofDNAwasnotthereasonforthetwosignalsinP25and92R7.
4.Discussion
WehavedevelopedaPCRmultiplex-basedsystemfortypingofalargenumberofSNPsusingYchromosomeSNPsasanexample.AnimportantpartoftheworkwastoexplorethevariousaspectsofthemultiplexPCRmethods.The35YchromosomeSNPspresentedherearenotourfinalsetofYchromosomeSNPsforpopulationstudiesorforensicgeneticapplications.
82J.J.Sanchezetal./ForensicScienceInternational137(2003)74–84
SuccessfulPCRmultiplexingdependsonanumberoffactors.Below,wepresentsomeofourconsiderationsconcerningtheselectionoftheSNPsandthegenerationofthemultiplexPCRsforamplificationandminisequen-cing.
Atanearlystage,itwasdecidedtousethemulticolourfluorescenceelectrophoresistechniquecombinedwithPCRmultiplexingatapproximately608CinhighconcentrationsofMgCl2.Thespacingbetweenminisequencingprimerswasdecidedtobefournucleotidesbecausewewantedtoobtainreliableseparationintheelectrophoresis.
WeattemptedtoavoidSNPssituatedinregionsreportedtobereplicated.TwoexceptionsweretheP25and92R7SNPsthataresituatedinaregionthatmostprobablyispartofaduplication[24].BothSNPsseemtodiscriminatebetweenEuropeanandotherpopulations[25].
MultiplexPCRamplificationprimersbetween19and34basespairslongwereselectedbecauseitwasanticipatedthatsuchlongprimerswouldworkwellundermultiplexcondi-tions[26].
QiagenpurifiedDNAfrombloodsamplesandbloodstainsonFTA1paperworkedequallywellintheassay.Chelextreatedbloodsamplesworkedaswell(datanotshown).OptimalmultiplexSNPtypingresultswereobtainedwith1ngDNA(range0.1À20ngDNA).Thus,quantifica-tionofDNAisnotmandatoryfortheSNPassay.Itshould,however,benoticedthatthebalanceoftheamountsofamplificationproductsoftheDNAfragmentsischangedwithincreasingamountsoftemplates.WithincreasingconcentrationsofPCRamplifiedfragments,small,fluores-centadenosinnucleotidepeakswithsizesofPCRamplifiedfragmentsplusonenucleotidewereseen,mostlikelydotonon-templateadditionofasingleadenosinmoleculestothe30endofsomePCRamplifiedfragments.AtlowamountsoftemplateDNA,lossofsignalwilloccurduetostochasticphenomena[27].
CommonlyusedPCRbuffersincludeonlyKCl,TrisandMgCl2.Ithasbeenreportedthatmanyprimerpairsprodu-cingshortamplificationproducts(<200bp)workbetterathighersaltconcentration(KCl)inmultiplexsystems[26].IncreasingtheconcentrationofKClinthePCRbuffer1.6and2-foldinour35-plexdidnotincreasetheyieldofPCRproductsignificantlyandhadnoeffectonthesynthesisoffragments>150bp.IncreaseofMgCl2concentrationfrom2to8mMincreasedtheyieldofamplicons;higherMgCl2concentrationinhibitedtheamplification(datanotshown).WeusedAmpliTaqGoldDNApolymerase(AppliedBiosystems)becausethisenzymeminimizesprimerdimerformation.Evenwitha4-base30overlapbetweentwoprimersweobtainedhomogeneousPCRproducts(datanotshown).Themostefficientenzymeconcentrationseemedtobearound2.5U/50mlreactionvolume.
Inourhands,primerconcentrationsbelow0.01mMwereinsufficientandconcentrationsabove0.5mMseemedtoinhibitmultiplexPCRSprobablybyinducingdimer–dimerformation.Primerconcentrationswereadjustedtobe
approximately103timesmorethantheconcentrationofthetemplate.
WestoreddNTPsinsmallaliquotsatÀ208Cforupto8months.However,weobservedthatdNTPsweresensitivetorepeatedfreezingandthawing.Asaruleofthumb,themultiplexPCRwouldfailifthedNTPshavebeenfrozenandthawedmorethanfourtimes.Theamountoftimeinfreezerwaslessimportantasithasbeenreportedbyothersauthors[28].
Theenzymaticpurificationmethodisobviouslyeasy,hasanalmost100%recoveryandaverylimitedriskofcon-tamination.
Wechosetoadjustthelengthoftheminisequencingprimersbymeansof(1)apartofaneutralsequenceofupto40ntandforthelongerprimers(2)anadditionalpoly-Cpart.Theneutralsequencewasselectedinordertoobtainamorebalancedbasecomposition.Wechosepoly-Cforthetailbecause,intheory,poly-Gwouldgiveahighermolecularmass,poly-Awouldhaveariskofdepurinationduringsynthesis,andpoly-Ttailsmayinterferewiththeadditionof30ddAintheminisequencingreaction(SNaPshotTMprotocolrecommendation,AppliedBiosystems).
ThequalityofminisequencingprimersisimportantbecauseprimerbatcheswithheterogeneousprimersequencesconsistingoftheintendedDNAsequenceof‘n’nucleotidesplusaspectrumofshorternucleotides(nÀ1,nÀ2,nÀ3,etc.)inmanycaseswilldestroytheminisequencingreaction.Inaddition,weobservedamplifi-cationfailureduetoaheterogeneousprimerbatchinthePCRmultiplexwithsevensystemseventhougheachofthesevenworksinsingleplexreactions.Therefore,werecom-mendthateachprimerbatchistestedbeforethemultiplexPCRandsubsequentanalyses,e.g.byminisequencingormassspectrometry.Purificationoftheprimerswithe.g.HPLCorgelpurificationtechniquescantosomeextentsolvetheseproblems.
Theminisequencingsystemwasratherinsensitivetotheannealingtemperature.Itwasnecessarytoadjustprimerconcentrationsfrom0.01to0.50mMintheminisequencingmultimix.
Thelongerextensionproductshadelectrophoreticmobi-litiescorrespondingtothosepredictedbythenumberofbases.Themobilityofshorterextensionproductswiththesamenumberofbasesvariedtosomeextent.ThisismostprobablyduetothefactthatdifferencesinthemassesofthevariousfluorochromesusedandintheexactcompositionofpurinesandpyrimidineshavearelativelyhighinfluenceonthemobilityofshortDNAmolecules.
TheSNP-typingresultswerehighlyreproducible.Atotalof194maleswereSNPtypedinduplicateandnodiscre-pancieswereobserved.Furthermore,fiveofthemostpoly-morphicSNPswereanalysedbyaDNAhybridisationassayusingtheNanogentechnology[29].Concordantresultswereobtainedforall194individuals(datanotshown).
Inonefather-childcombination,noalleleofM81wasdetectable.Anamplifiedfragmentwaspresentinthefirst
J.J.Sanchezetal./ForensicScienceInternational137(2003)74–8483
PCRbecausetwootherSNPs(M151andM1)onthefragmentweredetected,butnoreactionofM81wasdetectedintheminisequencingreaction.Workisinprogressinordertodeterminethenatureofthevariant.
Atotalof19of29SNPsreportedtobepolymorphicinEuropeansinapreviousstudy[4]and9of10SNPsreportedinanotherstudy[21]turnedouttobepolymorphicinthemaleDanesstudied.Thegenediversityforthelocishowingpolymorphismrangedfrom0.01to0.5(Table3).M173,M45,92R7andM9werethemostpolymorphicmarkersinDanes.ThedataweredescribedasfrequenciesofindividualSNPsandnotasYchromosomehaplogroupsbecausethestudywasatechnicalstudyandtheYchromosomemulti-plexisnotidealfortypingofYchromosomehaplogroups.AlargerstudyofYchromosomehaplogroupsinDanesandotherpopulationswillbepublishedelsewhere.
P25and92R7werepreviouslyreportedasSNPs[30,31].However,theP25and92R7minisequencingprimerswereextendedwithtwodifferentdideoxynucleotidesduringtheminisequencingreactionofnumeroussamples.Thisindi-catesthatatleasttwodifferent,almostidenticalfragmentswereamplifiedduringthePCRreaction.Hurlesetal.[33]previouslyobservedthatSNPtypingof92R7gavetworesultsinsomeindividuals.FurtherstudieshaveconfirmedthatP25and92R7areparalogoussequencevariantsandthatatleastoneofthesequencevariantsineachgroupoflociispolymorphic[24].
ThemultiplexPCRSNPtypingformatpresentedhereseemstobeusefulforforensiccaseworkbecausesmallamountsofDNA(100pgDNA)canbereliablytyped.ThemultiplexpresentedisnotourfinalpackageforYchromosomeSNPsforforensicpurposes.Thewayforwardwouldgoeitherthrough(1)thedevelopmentofSNPpackagesoptimisedforaninitialscreeningplusfurtherpackagesoptimisedforthemajorpopulationsor(2)thedevelopmentofalargemultiplexpackagethatincludeYchromosomeSNPsthatcandiscriminatebetweenindividuallineagesinallpopulations.
Acknowledgements
WethankDr.RebeccaReynolds,RocheMolecularSys-tems,foradviceconcerningthedesignofthemultiplexPCRfortemplategenerationintheinitialphaseoftheproject.WethankMs.AnneMetteHolboBirkfortechnicalassistance.TheworkwassupportedbygrantstoJuanSanchezfromEllenandAageAndersen’sFoundationandManuelMoralesFoundation.References
[1]R.Sachidanandam,D.Weissman,S.C.Schmidt,J.M.Kakol,
L.D.Stein,G.Marth,S.Sherry,J.C.Mullikin,B.J.Mortimore,D.L.Willey,S.E.Hunt,C.G.Cole,P.C.Coggill,
C.M.Rice,Z.Ning,J.Rogers,D.R.Bentley,P.Y.Kwok,E.R.Mardis,R.T.Yeh,B.Schultz,L.Cook,R.Davenport,M.Dante,L.Fulton,L.Hillier,R.H.Waterston,J.D.McPher-son,B.Gilman,S.Schaffner,W.J.VanEtten,D.Reich,J.Higgins,M.J.Daly,B.Blumenstiel,J.Baldwin,N.Stange-Thomann,M.C.Zody,L.Linton,E.S.Lander,D.Altshuler,Amapofhumangenomesequencevariationcontaining1.42millionsinglenucleotidepolymorphisms,Nature409(2001)928–933.
[2]
S.Paracchini,B.Arredi,R.Chalk,C.Tyler-Smith,Hierarchicalhigh-throughputSNPgenotypingofthehumanYchromosomeusingMALDI-TOFmassspectrometry,NucleicAcidsRes.30(2002)e27.
[3]
M.Raitio,K.Lindroos,M.Laukkanen,T.Pastinen,P.Sistonen,A.Sajantila,A.C.Syvanen,Y-chromosomalSNPsinFinno-Ugric-speakingpopulationsanalyzedbyminise-quencingonmicroarrays,GenomeRes.11(2001)471–482.[4]
P.A.Underhill,G.Passarino,A.A.Lin,P.Shen,M.MirazonLahr,R.A.Foley,P.J.Oefner,L.L.Cavalli-Sforza,ThephylogeographyofYchromosomebinaryhaplotypesandtheoriginsofmodernhumanpopulations,Ann.Hum.Genet.65(2001)43–62.
[5]
M.A.Jobling,C.Tyler-Smith,Fathersandsons:theYchromosomeandhumanevolution,TrendsGenet.11(1995)449–456.
[6]
H.Oota,W.Settheetham-Ishida,D.Tiwawech,T.Ishida,M.Stoneking,HumanmtDNAandYchromosomevariationiscorrelatedwithmatrilocalversuspatrilocalresidence,Nat.Genet.29(2001)20–21.
[7]
M.Seielstad,AsymmetriesinthematernalandpaternalgenetichistoriesofColombianpopulations,Am.J.Hum.Genet.67(2000)1062–1066.
[8]
G.Passarino,G.L.Cavalleri,A.A.Lin,L.L.Cavalli-Sforza,A.L.Borresen-Dale,P.A.Underhill,Differentgeneticcom-ponentsintheNorwegianpopulationrevealedbytheanalysisofmtDNAandYchromosomepolymorphisms,Eur.J.Hum.Genet.10(2002)521–529.
[9]
P.deKnijff,Messagesthroughbottlenecks:onthecombineduseofslowandfastevolvingpolymorphicmarkersonthehumanYchromosome,Am.J.Hum.Genet.67(2000)1055–1061.
[10]M.A.Jobling,Y-chromosomalSNPhaplotypediversityinforensicanalysis,ForensicSci.Int.118(2001)158–162.[11]
J.L.Mountain,A.Knight,M.Jobin,C.Gignoux,A.Miller,A.A.Lin,P.A.Underhill,SNPSTRs:empiricallyderived,rapidlytyped,autosomalhaplotypesforinferenceofpopula-tionhistoryandmutationalprocesses,GenomeRes.12(2002)1766–1772.
[12]
M.A.Jobling,E.Heyer,P.Dieltjes,P.deKnijff,Ychromosome-specificmicrosatellitemutationratesre-exam-inedusingaminisatellite,MSY1,Hum.Mol.Genet.8(1999)2117–2120.
[13]
M.Brion,R.Cao,A.Salas,M.V.Lareu,A.Carracedo,Newmethodtomeasureminisatellitevariantrepeatvariationinpopulationgeneticstudies,Am.J.Hum.Biol.14(2002)421–428.
[14]
P.Gill,Anassessmentoftheutilityofsinglenucleotidepolymorphisms(SNPs)forforensicpurposes,Int.J.LegalMed.114(2001)204–210.
[15]
D.E.Reich,S.F.Schaffner,M.J.Daly,G.McVean,J.C.Mullikin,J.M.Higgins,D.J.Richter,E.S.Lander,D.
84J.J.Sanchezetal./ForensicScienceInternational137(2003)74–84
Altshuler,Humangenomesequencevariationandtheinfluenceofgenehistory,mutationandrecombination,Nat.Genet.32(2002)135–142.
[16]
R.Thomson,J.K.Pritchard,P.Shen,P.J.Oefner,M.W.Feldman,RecentcommonancestryofhumanYchromo-somes:evidencefromDNAsequencedata,Proc.Natl.Acad.Sci.U.S.A.97(2000)7360–7365.
[17]
M.A.Jobling,A.Pandya,C.Tyler-Smith,TheYchromo-someinforensicanalysisandpaternitytesting,Int.J.LegalMed.110(1997)118–124.
[18]
N.M.Makridakis,J.K.Reichardt,Multiplexautomatedprimerextensionanalysis:simultaneousgenotypingofseveralpolymorphisms,Biotechniques31(2001)1374–1380.
[19]
K.Lindblad-Toh,E.Winchester,M.J.Daly,D.G.Wang,J.N.Hirschhorn,J.P.Laviolette,K.Ardlie,D.E.Reich,E.Robinson,P.Sklar,N.Shah,D.Thomas,J.B.Fan,T.Gingeras,J.Warrington,N.Patil,T.J.Hudson,E.S.Lander,Large-scalediscoveryandgenotypingofsinglenucleotidepolymorphismsinthemouse,Nat.Genet.24(2000)381–386.[20]
R.Reynolds,K.Walker,L.Steiner,SNPgenotypingusingmegaplexPCRamplificationandlinearprobeassays,in:Proceedingsofthe19thInternationalCongressISFG,Mu
¨nster,Germany(P.Gill),FSS,2002,WS2.[21]
O.Semino,G.Passarino,P.J.Oefner,A.A.Lin,S.Arbuzova,L.E.Beckman,G.DeBenedictis,P.Francalacci,A.Kouvatsi,S.Limborska,M.Marcikiae,A.Mika,B.Mika,D.Primorac,A.S.Santachiara-Benerecetti,L.L.Cavalli-Sforza,P.A.Un-derhill,ThegeneticlegacyofPaleolithicHomosapienssapiensinextantEuropeans:aYchromosomeperspective,Science290(2000)1155–1159.
[22]
P.Malaspina,F.Cruciani,B.M.Ciminelli,L.Terrenato,P.Santolamazza,A.Alonso,J.Banyko,R.Brdicka,O.Garcia,C.Gaudiano,G.Guanti,K.K.Kidd,J.Lavinha,M.Avila,P.Mandich,P.Moral,R.Qamar,S.Q.Mehdi,A.Ragusa,G.Stefanescu,M.Caraghin,C.Tyler-Smith,R.Scozzari,A.Novelletto,NetworkanalysesofY-chromosomaltypesinEurope,northernAfrica,andwesternAsiarevealspecificpatternsofgeographicdistribution,Am.J.Hum.Genet.63(1998)847–860.
[23]
M.Nei,MolecularEvolutionaryGenetics,ColumbiaUni-versityPress,NewYork,1982,p.512.
[24]C.Bøsting,J.J.Sanchez,N.Morling,ThetwoYchromosome
loci,P25and92R7,arepolymorphicparalogoussequencevariants,ForensicSci.Int.(2003),submittedforpublication.[25]M.F.Hammer,T.M.Karafet,A.J.Redd,H.Jarjanazi,S.
Santachiara-Benerecetti,H.Soodyall,S.L.Zegura,Hierarch-icalpatternsofglobalhumanYchromosomediversity,Mol.Biol.Evol.18(2001)11–1203.
[26]O.Henegariu,N.A.Heerema,S.R.Dlouhy,G.H.Vance,P.H.
Vogt,MultiplexPCR:criticalparametersandstep-by-stepprotocol,Biotechniques23(1997)504–511.
[27]B.E.Krenke,A.Tereba,S.J.Anderson,F.Buel,S.Culhane,C.J.
Finis,C.S.Tomsey,J.M.Zachetti,A.Masibay,D.R.Rabbach,E.A.Amiott,C.J.Sprecher,Validationofa16-locusfluorescentmultiplexsystem,J.ForensicSci.47(2002)773–785.
[28]P.Markoulatos,N.Siafakas,M.Moncany,Multiplex
polymerasechainreaction:apracticalapproach,J.Clin.Lab.Anal.16(2002)47–51.
[29]P.N.Gilles,D.J.Wu,C.B.Foster,P.J.Dillon,S.J.Chanock,
Singlenucleotidepolymorphicdiscriminationbyanelectro-nicdotblotassayonsemiconductormicrochips,Nat.Biotech.17(1999)365–370.
[30]M.F.Hammer,A.J.Redd,E.T.Wood,M.R.Bonner,H.
Jarjanazi,T.Karafet,S.Santachiara-Benerecetti,A.Oppen-heim,M.A.Jobling,T.Jenkins,H.Ostrer,B.Bonne
´-Tamir,Jewishandmiddeleasternnon-jewishpopulationsshareacommonpoolofY-chromosomebiallelichaplotypes,Proc.Natl.Acad.Sci.U.S.A.97(2000)6769–6774.
[31]N.Mathias,M.Baye
´s,C.Tyler-Smith,HighlyinformativecompoundhaplotypesforthehumanYchromosome,Hum.Mol.Genet.3(1994)115–123.
[32]TheYChromosomeConsortium,Anomenclaturesystemfor
thetreeofhumanYchromosomalbinaryhaplogroups,GenomeRes.12(2002)339–3480.
[33]M.E.Hurles,R.Veitia,F.Arroyo,M.Armenteros,J.
Bertranpetit,A.Perez-Lezaun,E.Bosch,M.Shlumukova,A.Cambon-Thomsen,K.McElreavey,A.LopezDeMunain,A.Rohl,I.J.Wilson,L.Singh,A.Pandya,F.R.Santos,C.Tyler-Smith,M.A.Jobling,Recentmale-mediatedgeneflowoveralinguisticbarrierinIberia,suggestedbyanalysisofaY-chromosomalDNApolymorphism,Am.J.Hum.Genet.65(1999)1437–1448.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- efsc.cn 版权所有 赣ICP备2024042792号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务