您好,欢迎来到筏尚旅游网。
搜索
您的当前位置:首页IRS2308STRPbF资料

IRS2308STRPbF资料

来源:筏尚旅游网
元器件交易网www.cecb2b.com

HALF-BRIDGE DRIVERFeaturesimmune• Gate drive supply range from 10 V to 20 V• Undervoltage lockout for both channels• 3.3 V, 5 V, and 15 V input logic compatible• Cross-conduction prevention logic• Matched propagation delay for both channels• Outputs in phase with inputs• Logic and power ground +/- 5 V offset.• Internal 0 ns deadtime• Lower di/dt gate driver for betterFeature Comparisonnoise immunityCross-• RoHS compliantInputconductionPartlogicHIN/LINHIN/LININ/SDHIN/LINHIN/LIN• Floating channel designed for bootstrap operation• Fully operational to +600 V• Tolerant to negative transient voltage, dV/dtpreventionlogicnoyesyesyesyesDeadtime(ns)noneInternal 0Programmable 0 - 5000Ground PinsCOMVSS/COMCOMVSS/COMCOMVSS/COMCOMCOMton/toff(ns)220/200220/200750/200160/140220/200210621021082108421092109423042308Internal 0Programmable 0 - 5000Internal 100Internal 0Typical Connectionup to 600 VVCCVCCHINLINVBHOVSLOTOLOADHINLINCOM元器件交易网www.cecb2b.com

IRS2308(S)PbF

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage param-eters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measuredunder board mounted and still air conditions.SymbolDefinitionMin.Max.UnitsVB High-side floating absolute voltage -0.3 625VS High-side floating supply offset voltage VB - 25 VB + 0.3VHO High-side floating output voltage VS - 0.3 VB + 0.3VCC Low-side and logic fixed supply voltage -0.3 25VLO Low-side output voltage -0.3 VCC + 0.3VINdVS/dtPDRthJATJTSTLLogic input voltage (HIN & LIN )Allowable offset supply voltage transientPackage power dissipation @ TA ≤ +25 °CThermal resistance, junction to ambientJunction temperatureStorage temperatureLead temperature (soldering, 10 seconds)(8 lead PDIP)(8 lead SOIC)(8 lead PDIP)(8 lead SOIC)VSS - 0.3——————-50—VCC + 0.3501.00.625125200150150300°CV/nsW°C/WVRecommended Operating Conditions

The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within therecommended conditions. The VS and VSS offset rating are tested with all supplies biased at a 15 V differential.SymbolDefinitionMin.Max.UnitsVB High-side floating supply absolute voltage VS + 10 VS + 20VS High-side floating supply offset voltage Note 1 600VHO High-side floating output voltage VS VBVCC Low-side and logic fixed supply voltage 10 20VLO Low-side output voltage 0 VCCVINTALogic input voltageAmbient temperature COM VCC-40125°CVNote 1: Logic operational for VS of -5 V to +600 V. Logic state held for VS of -5 V to -VBS. (Please refer to the Design TipDT97-3 for more details).

元器件交易网www.cecb2b.com

IRS2308(S)PbF

Dynamic Electrical Characteristics

VBIAS (VCC, VBS) = 15 V, VSS = COM, CL = 1000 pF, TA = 25 °C, DT = VSS unless otherwise specified.

SymboltontoffMTtrtfDTDefinitionTurn-on propagation delayTurn-off propagation delayDelay matching | ton - toff |Turn-on rise timeTurn-off fall time Min. Typ.—————220200010035Max.UnitsTest Conditions3002804622080 nsVS = 0 VVS = 0 VVS = 0 V or 600 VDeadtime: LO turn-off to HO turn-on(DTLO-HO) & HO turn-off to LO turn-on (DTHO-LO)Deadtime matching = | DTLO-HO - DTHO-LO |400 0 680—060VBIAS (VCC, VBS) = 15 V, VSS = COM, DT= VSS and TA = 25 °C unless otherwise specified. The VIL, VIH, and IIN param-eters are referenced to VSS/COM and are applicable to the respective input leads: HIN and LIN. The VO, IO, and Ron

parameters are referenced to COM and are applicable to the respective output leads: HO and LO.Static Electrical Characteristics

SymbolVIHVILVOHVOLILKIQCCIIN+DefinitionLogic “1” input voltage for HIN & LINLogic “0” input voltage for HIN & LINHigh level output voltage, VBIAS - VOLow level output voltage, VOOffset supply leakage currentQuiescent VCC supply currentLogic “1” input bias currentMin.Typ.Max.UnitsTest Conditions2.5————0.4———0.050.02—1.05—0.80.20.150µAmA1.620VIO = 2 mAVB = VS = 600 VVIN = 0 V or 5 VVCC = 10 V to 20 VIQBS Quiescent VBS supply current 20 60 150HIN = 5 V, LIN = 5 VµAIIN- Logic “0” input bias current — 1 5 HIN = 0 V, LIN = 0 VVCC and VBS supply undervoltage positive goingthresholdVCC and VBS supply undervoltage negative goingthresholdHysteresisOutput high short circuit pulsed currentOutput low short circuit pulsed current8.0 8.9 9.87.40.3972508.20.72906009.0——mAIO-—VO = 0 V,PW ≤ 10 µsVO = 15 V,PW ≤ 10 µsVVCCUV+VBSUV+VCCUV-VBSUV-VCCUVHVBSUVHIO+www.irf.com3

元器件交易网www.cecb2b.com

IRS2308(S)PbF

VBIR2308HINVSS/COMLEVELSHIFTHVLEVELSHIFTERPULSEGENERATORUVDETECTRPULSEFILTERRSQHOVSDTDEADTIME &SHOOT-THROUGHPREVENTIONUVDETECTVCCLOLINVSS/COMLEVELSHIFTDELAYCOMVSS元器件交易网www.cecb2b.com

IRS2308(S)PbF

SymbolDescription

HIN Logic input for high-side gate driver output (HO), in phaseLIN Logic input for low-side gate driver output (LO), in phaseVB High-side floating supplyHO High-side gate driver outputVS High-side floating supply returnVCC Low-side and logic fixed supplyLO Low-side gate driver outputCOM Low-side return

Lead Assignments

1234

VCCHINLINCOM

VBHOVSLO

8

765

1234

VCCHINLINCOM

VBHOVSLO

8

765

8 Lead PDIP8 Lead SOIC

IRS2308PbFIRS2308SPbF

www.irf.com5

元器件交易网www.cecb2b.com

IRS2308(S)PbF

LIN

HIN

50%50%LINHIN

tontr90%toff90%tfLO

HOLO

10%10%LIN

50%

50%

HIN

90%HOLODTLO-HO90%10%DTHO-LO10%MDT=DT

LO-HO

- DT

HO-LO

元器件交易网www.cecb2b.com

IRS2308(S)PbF

500Tunr-On Dlaey Tyime nsTrun-one Dla Ti(me) (nsTnn-Onn Delealy T (n)nsTuurr-o Dayi mTeimes (5004003002001000-250255075100125Typ.Max.400300Max.200Typ.1000-50101214161820oC)oC)Temperature(Temperature (V Supply Voltage (V)VBIASBIAS Supply Voltage (V)Figure 4A. Turn-On TimeFigure 4A. Turn-On Timevs. Temperature vs. TemperatureFigure 4B. Turn-On TimeFigure 4B. Turn-On Time vs. Supply Voltagevs. Supply Voltage500TuOfff fTime e(nsn)s)Turrnn--O Tim (Trn-Off fTmie (en sTuurn-Of iTm()ns)5004003002001000-250255075100125Max.400300Max.Typ.2001000-50Typ.101214161820oC)oC)Temperature (Temperature( Supply Voltage (V)VV Supply Voltage (V)BIASBIASFigure 5B. Turn-Off Propagation Delay vs. Figure 5B. Turn-Off Propagation Delayvs. Supply VoltageSupply VoltageFigure 5A. Turn-Off Propagation DelayFigure 5A. Turn-Off Propagation Delay vs. Temperaturevs. Temperaturewww.irf.com7

元器件交易网www.cecb2b.com

500)sn(400 emiT e300siR nO200-Max.nruT 100Typ.0-50-250255075100125Temperature(oC)FiFigure 6A. Turn-On Rise Timegure 6A. Turn-On Rise Timevs.vs. TemperatureTemperature)200sn( emiT150 llaF ffO-100nruTMax.50Typ.0-50-250Temperature (2550oC)75100125Temperature(oC)Figure 7A. Turn-Off Fall TimeFigure 7A. Turn-Off Fall Timevs. Temperature vs. TemperatureIRS2308(S)PbF

500400300Max.200Typ.1000101214161820VBIAS Supply Voltage (V) Figure 6B. Turn-On Rise TimeFigure 6B. Turn-On Rise Time vs. Supply Voltagevs. Supply Voltage200150100Max.50Typ.01012V161820BIAS Supply Voltage (V)14Input Voltage (V)Figure 7B. Turn-Off Fall TimeFigure 7B. Turn-Off Fall Timevs. Supply Voltage vs. Input voltageTrnn-O TeimTurnu-O RnisRei sTeim (en s(n)s)u-rnOFall TiemTuTrnO-ff fFf all Tim e (ns)元器件交易网www.cecb2b.com

1000)s800n( )emnsMax.(i tde600amietTyp.DdaeD400Min.200-50-250255075100125Temperature (Temperature (oC)oC)Figure 8A. Deadtime vs. TemperatureFigure 8A. Deadtime vs. Temperature5))(V4 Ve(g aetgloatl Vo3tuVMin.p tnIupnI21-50-250255075100125Temperature (Temperature (oC)oC)Figure 9A. Logic \"1\" Input Voltage Figure 9A. Logic “1” Input Voltagevs. Temperature vs. Temperaturewww.irf.comIRS2308(S)PbF

1000)800Max.(600Typ.Min.400200101214161820VBIASBIAS Supply Voltage (V) Supply Voltage (V)Figure 8A. Deadtime vs. Supply VoltageFigure 8B. Deadtime vs Supply Voltage5)V4( egatlo3V Min.tupnI21101214161820VVBIASBIAS Supply Voltage (V) Supply Voltage (V)Figure 9B. Logic “1” Input VoltageFigure 9B. Logic \"1\" Input Voltage vs. Supply Voltagevs. Supply Voltage9

me e(nsn)sDeaaddtiuim np Voltage Iut(V)元器件交易网www.cecb2b.com

IRS2308(S)PbF

4321Max.4321Max.InIpupt uVlta g(Vnto Voglteae) (V)Inputt VVoollt (V))Inputaaggee (V0-500-250255075100125101214161820oC)Temperature (Temperatre (oVBIAS Supply Voltage (V)Figure 10A. Logic “0” Input VoltageFigure 10B. Logic \"0\" Input Voltage vs. Supply Voltagevs. Supply VoltageFigure 10A. Logic “0” Input VoltageFigure 10A. Logic \"0\" Input Voltagevs. Temperature vs. Temperatureh Ll Outp Vollttaagge))HigHhi gLeveevl eOutpuut tVoe ((VVHhe Lvlel OtpuVoltagV))Highig Lvee Ouutputt Vgee ((V0.50.40.30.20.10.0-50Max.0.50.40.30.20.1Typ.Max.Typ.0.0101214161820-250255075100125oC)Temperature (Temperature (oC)VBIASBAIS Supply Voltage (V)Figure 11A. High Level Output VoltageFigure 11B. High Lovel Output Voltage vs. Supply Voltagevs. Supply VoltageFigure 11A. High Level Output Voltage Figure 11A. High Level Output Voltagevs. Temperaturevs. Temperature元器件交易网www.cecb2b.com

IRS2308(S)PbF

w Leveell OOut ooltlage(VLLoow Levuttppuut VVtag e ()V)Lwow Lell Ouut Voltlagge Lo LeevveOtppuuttVotae( V()V)0.50.40.30.20.1Max.Typ.0.50.40.30.20.10101214161820Max.Typ.0.0-50-250255075100125oTemperature (Temperature (oC)C)V Supply Voltage (V) Supply Voltage (V)VBIASBIASFigure 12A. Low Level Output VoltageFigure 12A. Low Level Output Voltage vs. Temperaturevs.TemperatureFigure 12B. Low Level Output VoltageFigure 12B. Low Level Output Voltagevs. Supply Voltage vs. Supply Voltage30024018012060Max.ffftset upppl y eLLeeaakage Curet(OffOsOeSuplpyLakagecurrrenntµ(( A(f setS pSuly kage Curet µA)µ)Offts Sp lyLaekakeCuurre (µAA)Offse eStupupplyL eaagge Cenntt(µ30024018012060Max.0-5000100200300400500600VBoost Voltage (V)VB Boost Voltage (V)Figure 13B. Offset Supply Leakage Figure 13A. Offset Supply Leakage CurrentCurrent vs. Supply Voltagevs. Supply Voltage-250255075100125oTemperature (oC)Temperature (C)Figure 13A. Offset Supply LeakageFigure 13A. Offset Supply Leakage Current Current vs. Temperaturevs. Temperaturewww.irf.com11

元器件交易网www.cecb2b.com

300)Α(µ t240nerruC180 ylpp120Max.uS SB60Typ.VSBMin.0-50-250255075100125Temperature (Temperature (ooC)C)Figure 14A. VFigure 14A. VBS Supply Current Supply Current vs. Temperaturevs. Temperature3.02.41.8Max.1.2Typ.CCCC0.6Min.0.0-50-250255075100125Temperature (Temperature (ooC)C)Figure 15A. VFigure 15A. VCCCC Supply Current Supply Current vs. Temperaturevs. TemperatureIRS2308(S)PbF

300)Α(µ240 tnerru180C ylpp120uMax.S STyp.BBS60VMin.0101214161820VVBSBS Supply Voltage (V) Supply Voltage (V)Figure 14B. VFigure 14B. VBS Supply Current vs. Supply Voltagevs. Supply VoltageBS Supply Current 3)mΑ)A(m2.4 (t ntenrerrruu1.8CC ylylpp1.2ppuuS SMax. CCCC0.6Typ.VV0Min.101214161820VCC Supply Voltage (V) Supply Voltage (V)Figure 15B. VFigure 14B. VCCCC Supply Current Supply Current vs. Supply Voltagevs. Supply VoltageV SuplyCuen(µp rrt A)V Supply Curret (µA)nVV Su Cuurrere(mSuppply nnt t( mA))Α50)A)(A µtµn40(e trnreurruC30 Ctu tuppnIn 20I\" ”11\" “ cicg10Max.igooLTyp.L0-50-250255075100125Temperature (Temperature (ooC)C)Figure 16A. Logic \"1\" Input CurrentFigure 16A. Logic “1” Input Currentvs. Temperaturevs. Temperature 6A)µ)(A t5µMax( entnreur4rruC Cs tia3uBMax.p ntI pu”20In“ \"ci0g\" 1Typ.ocLigoL0-50-250255075100125Temperature (oC)Figure 17A. Logic “0” Input Bias Currentvs. Temperaturewww.irf.comIRS2308(S)PbF

50)Α( µtn40erruC30 tupMax.nI20 \"1\" ic10goTyp.L0101214161820VVCCCC Supply Voltage (V) Supply Voltage (V)Figure 16B. Logic \"1\" Input Current Figure 16B. Logic “1” Input Currentvs. Supply Voltagevs. Supply VoltageA)6µ( ) Atµn5Maxr(e nutre4rC Causri tB3 tuMax.pnup nI”I2 “\"0Typ.c\" 0i goc1iLLog0101214161820Supply Voltage (V)Figure 17B. Logic “0” Input Bias Currentvs. Supply Voltage13

Logi Input Curret (µc “1”nA)元器件交易网www.cecb2b.com

)V12( )+( 11dlohse10rhTMax. O9LVTyp.U 8CCMin.V7-50-250255075100125Temperature (Temperature (oC)C)Figure 18. VFigure 18. VCCcc Undervoltage Threshold (+) Undervoltage Threshold (+) vs. Temperaturevs. Temperature)12)vV( )()++(11( ddloolhhss10eerrhhMax.T TO 9LOTyp.UVVL U8BS SBMin.VV7-50-250255075100125Temperature (Temperature (ooC)Figure 20. VFigure 20. VBSBS Undervoltage Threshold (+) Undervoltage Threshold (+) vs. Temperaturevs. TemperatureIRS2308(S)PbF

)11v)( V)(- () -10(dl dolohhsse9erMax.rhhTT OO8Typ.LLVVUU cC7Min.cVCV6-50-250255075100125Temperature (ooC)C)Figure 19. VFigure 19. VCCcc Undervoltage Threshold (-) Undervoltage Threshold (-) vs. Temperaturevs. Temperature)11V() )(V- (10) -(dl dolohhs9seMax.errhhTT 8OOTyp.LLUVVU 7SSMin.BBVV6-50-250255075100125Temperature (ooC)C)Figure 21. VFigure 21. VBSBS Undervoltage Threshold (-) Undervoltage Threshold (-)vs. Temperaturevs. Temperaturecc UVLO Threshold (+) (V)V元器件交易网www.cecb2b.com

500))mΑm(A t n(400tTyp.rnerreruuCC300 ecerrcu200 SSot utputup100Max.tOOu0-50-250255075100125Temperature (Temperature (ooC)C)Figure 22A. Output Source Current Figure 22A. Output Source Current vs. Temperaturevs. Temperature1000)mAΑ800( tnerr600Typ.uC kni400 Stuu200Max.O0-50-250255075100125Temperature (Temperature (oC)oC)Figure 23A. Output Sink Current Figure 23A. Output Sink Currentvs.Temperaturevs. Temperaturewww.irf.comIRS2308(S)PbF

500)mAΑ( 400tnerruC300 ecuo200S tuTyp.pt100uOMax.0101214161820VVBIASBIAS Supply Voltage (V)Supply Voltage (V)Figure 22B. Output Source CurrentFigure 22B. Output Source Current vs. Supply Voltage1000Α800600400Typ.200Max.0101214161820VBIAS BIASSupply Voltage (V) Supply Voltage (V)Figure 23B. Output Sink CurrentFigure 23B. Output Sink Current vs. Supply Voltagevs. Supply Voltage15

ourut)Output Se Crren (mutpt k)OSin Current (mtputt SSink Crre (tm))OOuutpuCuurnetn (Am元器件交易网www.cecb2b.com

IRS2308(S)PbF

)0) VV(e( gega-2tlaootlVTyp. yV-4lpylppuuS-6 tSteesffsff-8OO V SSV-10101214161820VBSBS Flouting Supply Voltage (V) Floating Supply Voltage (V)Figure 24. Maximum VFigure 24. Maximum VS Negative OS Negative Offsetffset vs. Supply Voltagevs. Supply Voltage元器件交易网www.cecb2b.com

IRS2308(S)PbF

140120Temperature (oC)100806040201101001000Frequency (kHz)Figure 25. IRS2308 vs. Frequency (IRFBC20),Rgate=33Ω, VCC=15 V140 V 70 V 0 V140120Temperature (oC)100806040201101001000Frequency (kHz)Figure 26. IRS2308 vs. Frequency (IRFBC30),Rgate=22Ω, VCC=15 V140 V 70 V 0 V140 V140120Temperature (oC)140120Temperature (oC)140 V 70 V 0 V 70 V 0 V100806040201101001008060402010001101001000Frequency (kHz)Figure 27. IRS2308 vs. Frequency (IRFBC40),Rgate=15Ω, VCC=15 VFrequency (kHz)Figure 28. IRS2308 vs. Frequency (IRFPE50),Rgate=10Ω, VCC=15 Vwww.irf.com17

元器件交易网www.cecb2b.com

IRS2308(S)PbF

140120140120Temperature (oC)100806040201101001000Frequency (kHz)Figure 29. IRS2308S vs. Frequency (IRFBC20),Rgate=33Ω, VCC=15 V140 V 70 V 0 VTemperature (oC)140 V10080604020110100 70 V 0 V1000Frequency (kHz)Figure 30. IRS2308S vs. Frequency (IRFBC30),Rgate=22Ω, VCC=15 V140120140 V 70 V140120140 V 70 V 0 VTemperature (oC)10080604020110100 0 VTempreture (oC)1008060402010001101001000Frequency (kHz)Figure 31. IRS2308S vs. Frequency (IRFBC40),Rgate=15Ω, VCC=15 VFrequency (kHz)Figure 32. IRS2308S vs. Frequency (IRFPE50),Rgate=10Ω, VCC=15 V元器件交易网www.cecb2b.comIRS2308(S)PbFCase outlines8-Lead PDIPDA5BFOOTPRINT8X 0.72 [.028]01-601401-3003 01 (MS-001AB)DIMAbcDINCHESMIN.0532.013.0075.1.1497MAX.0688.0098.020.0098.1968.1574MILLIMETERSMIN1.350.100.330.194.803.80MAX1.750.250.510.255.004.00A1.00406E8765H0.25 [.010] A6.46 [.255]Eee1HKL8X 1.78 [.070]1234.050 BASIC.025 BASIC.2284.0099.016 0°.2440.0196.050 8°1.27 BASIC0.635 BASIC5.800.250.40 0°6.200.501.27 8°6Xee13X 1.27 [.050]yAC0.10 [.004] yK x 45°8X b0.25 [.010] NOTES:A1CAB8X L78X c1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.2. CONTROLLING DIMENSION: MILLIMETER3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.8-Lead SOICwww.irf.com 01-602701-0021 11 (MS-012AA)19元器件交易网www.cecb2b.com

IRS2308(S)PbF

Tape & Reel8-Lead SOICLOADED TAPE FEED DIRECTIONBAHDFC

NOTE : CONTROLLING DIMENSION IN MMEG F DCB AE G H REELDIMENSIONS FOR8SOICNMetricImperialCodeMinMaxMinMaxA329.60330.2512.97613.001B20.9521.450.8240.844C12.8013.200.5030.519D1.952.450.7670.096E98.00102.003.8584.015Fn/a18.40n/a0.724G14.5017.100.5700.673H12.4014.400.4880.566 元器件交易网www.cecb2b.com

www.irf.comIRS2308(S)PbF

LEADFREE PART MARKING INFORMATION

Part numberIRxxxxxxSDate codeYWW?IR logoPin 1?XXXXIdentifierLot Code?MARKING CODE(Prod mode - 4 digit SPN code)PLead Free ReleasedNon-Lead FreeReleasedAssembly site codePer SCOP 200-002

The SOIC-8 is MSL2 qualified.

This product has been designed and qualified for the industrial level.

Qualification standards can be found at www.irf.com

Data and specifications subject to change without notice. 11/27/2006

21

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- efsc.cn 版权所有 赣ICP备2024042792号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务