您好,欢迎来到筏尚旅游网。
搜索
您的当前位置:首页采用变速恒频机组的风电场并网问题研究综述

采用变速恒频机组的风电场并网问题研究综述

来源:筏尚旅游网
第34卷第3期2010年2月10日电力系统自动化AutomationofElectricPowerSystemsV01.34No.3Feb.10,2010ASurveyontheGridIntegrationofWindFarmswithVariableSpeedWindPlantSystemsSUNYuanzhang,LlNdin,LIGuojie,LlXiong(StateKeyLabofPowerSystems,DepartmentofElectricalEngineering,TsinghuaUniversity,Beijing100084,China)Abstract:Witharethedevelopmentofwindenergyandpowerelectriccontroltechnology,morestructurewindfarmswithvariablespeedwindplantsystems(VSWPSs)areintegratedintopowergrids.TheplantwithpowerandcontrolofmakeVSWPSsmuchmoredifferentfromtraditionalfixed—speedwindtoconnectsystems(FSWPSs),whichVSWPSsmoretopowerfulandflexibleseveralnewproblemscomplexityofsystemaddition.howtogrids.WhileVSWPSsimprovethestabilityofsystemsassomeextent。areintroducedintopowergrid,suchconvertertheadvancedcontrollersignificantlyincreasingthecurrentsandthepoweremittingharmonictothenreducingthepowerquality.InstoragetoimplementaffiliatedcontrolforVSWPSscoordinatewithtransmissionandpapersystemtoimprovesystemperformanceisanotherimportantissuecurrently,ThisresearchissuesrelatedtoprovidesanoverviewthelatesttheintegrationofwindfarmswithVSWPSs.plantsystem;controlscheme;energyKeywords:windfarm;DFIG;direct—drivegenerator;variablespeedwindstorage;power0IntroductionThemoreandplantscoordinationwindfarms(WFs)。severaltonewproblemstheareintroducedinofpowerhasenergy,especiallymoreimportantelectricintheenergy,has21stcenturybecomeChina.beenandprovidesanpowersystems.HowsystemsunderhighHowever,thedevelopmentofseriouslyrestrictedbyelectrichasnewlyindustrytheshortageofprimarybecomeaevaluateperformancewindpowerforpenetrationconditionsresearchers.ThishottotopicpapertooverviewthelatestresearchissuesrelatedenergytheexpansionoftraditionalpowerplantsmayalsoincreaseCOzemissionthatconsequentlyproblems.Underthiscausesthegridintegrationofwindfarmswithvariablespeedwindplantseriousenvironmentalofwindsystems(VSWPSs).situation,theexploitationnewsolutionsto1ABfiefIntroductiontoTwotypesVSWPSmostcommonlyinstalledinaenergy,whichprovidesthecontradictionofVSWPSsfirstarebetweeneconomicdevelopmentandenvironmentalhasbeeninevitable.pollution,windfarmsⅢ.Thelow-costaoneusesmultistagegearbox,ageneratorrotorrelativelyBeforetheIate1990s。mostwindaroundtheworldbuiltastandarddoubly-fedinductionconverterplantmanufacturerswindplantanda(DFIG)andwindingwithratedpowerelectronicafeedingthefixed—speedsystemsstandardtopowerratingofapproximatelyone30%ofthea(FSWPSs)usingmultistagegearboxpoweroftheturbine.Thesecondwithasousesgearlesssquirrel—cageinductiongenerator。directlyconnectedgrids[1】.However,theefficiencygeneratorsatthegeneratorsystemreducecalledindireet。driveandgenerator,toFSWPSisdesignedwindpower1990s。totomaximummainlyinductiontofailuresgearboxeselectroniclowerforthetheparticularreactivelatespeedwhenmostandmaintenanceproblems.Afull—ratedpowerisStructuresofthemthemcanpowerconverterconsumeSinceconnectedwithwindplantthenarenecessaryforthegridconnection.grids[“.theillustratedinreference[23.Bothofmanufacturershavechangedvariablespeedwindturbinesconverteraoperateundervariablespeedworkingconditions.(WTs)[“.AgeneratorspowerelectronicisusedtohelpasAdvantagesoftheadvancedVSWPSwindtoFSWPSaresignificant,suchconnectwithbegrids,asresult,muchmoretoenergycaptureeffectiveness,theonflexiblecontrolcouldasimplementedmaximumachievebetterandenhancementofcontrolflexibilityandtheimprovementperformancesuchtrackingpowerpointsystemstability.However,theeontrolsystemincreasesthecomplexityanddecreasesthepowerqualityduetoproducingreactivepower【“.harmonicsfluctuationWhilemorevariable-speedgeneratorsareinstalledinemission.Ontheotherhand。the.mind.powerinjectedintogridsisdecidedbythenaturalcharacteristicsofManuscriptThisworkreceivedNovember12,2009.issupportedbyNationalNaturalSciencewindspeed,randomization.AlthoughtVSWPScouldtemporarilycontrolpowerfluctuationJtosomeextent,thereisstillnoFoundationofChina(No.50977050.50823001).perfectsolutionpublishedtorestrainpower一75—万方数据2010,34(3)电力泰现自动代fluctuationforalongterm.Withthewindpenetrationproportiongettinghigher,thepowerfluctuationwillcausemuchmoreproblems.What’smore,onaccountofnewmodelandcharacteristicsofVSWPS,theinfluenceofpowerfluctuationalsoneedstoberevaluatedandthepowerdelivery,plantsoperatingandcontrolschemesneedtoberedesigned.2InfluenceofGridIntegrationofWindFarmswithVariableSpeedPlants2.1SystemStabilityAccordingtotheclassificationofpowersystemstabilityinreference[5],powersystemstabilitycouldbecategorizedintovoltagestability,frequencystabilityandrotoranglestability.VSWPSshavetheabilitytocontrolreactivepoweranddecoupleactiveandreactivepowercontrolthroughelectronicconverters.Thus,thevoltagestabilityofpowersystemsisimproved.Besidesthatwindenergycouldberestoredasrotatingkineticenergyinbladeandhub,andthenreleasedbyVSWPSsifnecessary.Sothefrequencystabilityofgridscouldbeenhancedtemporarily.Althoughthesystemstabilityisimproved,thecomplexityofthewholesystemisincreasedbyaffiliatedcontrolsystemofVSWPSs.HowtoevaluatetheimpactonsystemstabilitywithVSWPSshasbecomeoneofthehotspotsofcurrentwindpowerresearch.2.1.1StabilityModelReferences[6—12]developandanalyzeseveralkindsofstabilityVSWPSmodelsfromdifferentaspects.Inreferences[6-7],adetaileddynamicmodelforDFIGshasbeendeveloped。andbasedonthatthestabilitylimitationandcontrolparametersensitivitiesarecalculatedandoptimizedunderfrequencydomainapproach.Amodelforavariablespeedwindturbinewithapermanentmagnet,multi—poleandsynchronousgeneratorisdevelopedandimplementedinreference[8],whichissuitableforinvestigationsoftheshort—termvoltagestabilityandride-throughcapabilityofsuchwindturbines.DifferenttypesofreducedorderstabilitymodelsforDFIGsarediscussedandcomparedinreference[9].Inreference[10],astabilitymodelofwindturbineswithpitchcontrolanddetailedmulti—bodyaero-elasticequationsareconsidered.Referenees[11-12]presentaunified。modular,small-signaldynamicstabilitymodelforaninductionmachine-basedwindfarm,whichcouldrepresentanarbitrarynumberoffixedspeed,partiallyvariablespeed(doubly-fed)andvariablespeedinductiongeneratorsbasedwindunitsinawindfarm.2.1.2VoltageStabilityAsthebeginningofthischaptermentioned,thevoltagesupportcouldbeprovidedbyVSWPSstoenhancethevoltagestabilityofgrids.Besidesthat,thefault-ride一76一万方数据throughcapabilityforVSWPSsisalsorequiredbysystemgridcodestoimprovethevoltagestabilityduringlargedisturbance.Bothoftheinfluencesmentionedabovearediscussedinreferences[13—19].Inreference[13],areactivepowercontrolschemeisproposedforvoltageregulatioffataremotelocationbytakingintoaccountitsoperatingstateandlimits.Reference[14]derivesasteadystatePQdiagramforaDFIGandconcludesthatthereactivepowerproductionlimitationistherotorcurrentlimit.Thatconclusioniscrucialforthevoltagestabilityevaluation.ConsideringtheDFIGisquitesensitivetogridfault,reference[15]designsavoltagecontrolschemetocoordinatetherotor-sideandgrid-sideconverter.Underthatscheme,thegridstaticvoltagestabilityandtheFI。RTcapabilityisimprovedsignificantly.Afield—testunitisintroducedinreference[16],whichcouldgenerateavoltagedipattheWTterminals.TheWTmanufacturerisabletochecktheequipmentworksaccordingtothedesignspecificationsfulfillingthegridcoderequirementsandcanvalidatethesimulationmodels.Researchesinreferences[17—19]presentmodeling,analysisandcontroldesignofDFIG-basedwindturbinesunderunbalancednetworkcondition.2.1.3FrequencyStabilityReferences[20-24]discusstheeffectonfrequencystabilitybygridconnectedwindfarmwithVSWPSs.Reference[20]generalizesmethodologytoquantifythecapabilityofprovidingashort—termexcessactivepowerasfrequencysupportfordifferentwindturbineswithphysicalparametersinawiderrange.Inreference[21],authorsinvestigatewhetheradegreeofbuilt—infrequencystabilitycouldbeprovidedwhileincorporatingdynamicdemandcontrolintocertainconsumerappliances.AcontrolschemethatallowsDFIGstoparticipateeffectivelyinsystemfrequencyregulationisproposedinreference[22].Underthiscontrolapproach,windgeneratorsoperateaccordingtoaload—reducedoptimumpowerextractioncurvesuchthattheactivepowerprovidedbyeachwindturbineincreasesordecreasesduringsystemfrequencychanges.Amethodtoreleasethekineticenergyinthespinningwindturbineisintroducedinreference[23],anditalsoshowsthatthekineticenergyinVSWPSsfarexceedsthekineticenergyavailableinthefossilplants.Acontrollerisdesignedinreference[24],whichhelpstoreducethefrequencydropfollowingthetransientperiodafterthelossofnetworkgeneration.2.1.4RotorAngleStabilityOnlyafewresearchworkshavebeenpublishedontherotoranglestabilityareabecausethereisstillnoexactandacceptedrotor.angleconceptforvariablespeedgeneratorsespeciallyforDFIG.Reference[25]proposesacontrolschemeforDFIGnamedafterrotorfluxmagnitudeandangle・绿色电力自批su…a幽…Ⅷ躺=娥盎鬈言嬲i怒裂?8(FMAC)whichdefinestheanglebetweentherotorfluxvectorandthed-axisofthereferenceframeasrotorangle.Inreference[26],apowersystemstabilizer(PSS)isdesignedaccordingtotherotorangleconceptmentionedabove.ThesimulationresuhpresentsthatDFIGsemployedwithPSScontributetopowersystemdamp.2.2SystemReliabilityItisnecessaryandimportanttoanalyzegridreliabilityduetothewindpowerfluctuationbeforeawindfarmisbuilt.ComparedwithFSWPSs,VSWPSsallowwindturbinestoworkaboveratedwindspeed.Thereforethereliabilitymodelforgeneratorsisupdated.References1-27-31]areconcernedwiththemodeling,algorithmandtheevaluationmethodofreliability.References[27—28-1developasimplifiedwindpowergenerationmodelforDFIGswhichcontainsasix-stepwindspeedmodelapplicabletomultiplegeographiclocationsandadequateforreliabilityevaluationofpower.ThismodelcanbeusedintheconventionalgeneratingsystemadequacyassessmentutilizinganalyticalorMonteCarlostate-samplingtechniques.Research1-29]comparesfourrepresentativepopulationbasedintelligentsearchalgorithmswithtraditionalMonteCarlosimulationmethodologyonpowersystemsreliabilityassessmentwithwindpowerfluctuation.Inreference1-303,theoffshorewindfarmreliabilityisassessedandalistoffactorsthathighlyinfluenceoffshoreWFgenerationispresentedbasedontheassessmentresult.Inreference[31],bulkelectricsystem(BES)reliabilityanalysisassociatedwithwindenergyconversionsystems(WECS)isintroduced.Themethodologycouldassistsystemplannerstocreatepotentialtransmissionreinforcementschemestofacilitatelarge-scaleWECSadditionstoabulksystem.2.3PowerQuailtyPowerfluctuationcausedbyalargepenetrationofwindgenerationwillinfluenceonpowerqualitysuchasvoltageflicker,frequencydeviationsignificantly.Meanwhile,theharmonicscurrentsourcedfromcontrolsystemalsoincreasesthetotalharmonicdistortion(THD)indexofpowersystems.Severalreferences[32。40]focusonthesetopics.2.3.1VoltageFlickerDuringthecontinuousoperationandswitchingoperation,windturbinecausesvoltageflicker.References[32-34]evaluatetheflickereffectbywindfarm.Inreference[32]。thecalculationofmaximumapparentpowerandflickerofresidentialandcommereialradialdistributionfeederwithremotelyconnectedwindturbineshasbeeninvestigated.TheflickeremissionofvariablespeedwindturbineswithDFIGsisinvestigatedbyreference[33],andthedependenceofflickeremissiononmeanwindspeed,windturbulenceintensity,shortcircuitcapacityofgridsandgridimpedanceangleareanalyzed.Furthermore,acomparisonontheflicker万方数据isalsomadewiththefixedspeedwindturbineinthispaper.Inreference[34],asimplifiedsecond—ordermodelforpredictionoftheresponseofDFIGwindturbinesisderivedandusingthismodelsteady-stateimpact,suchasflickeremissionismeasuredandanalyzed.2.3.2FrequencyDeviationInsection2.1.thetemporaryfrequencyregulationismentioned.However,thefrequencydeviationcausedbypowerfluctuationforalongtermisstillinevitable.References[35—37]discussonthisproblem.Inreference[35],thefrequencydeviationisestimatedbyadeterministicmethodbasedonthetransferfunctionsofsystemcomponents.Asthegridfrequencyisregulated,thedeviationcanlimithighwindpowerpenetration.Inreference[36],aschemeforsupervisorycontrolofwindfarmsispresented,whichconcentratesonreductionofpoweroutputvariation.Reference[37]presentsamethodtoquantifywindpenetrationbasedontheamountoffluctuatingwindpowerthatcanbefilteredbywindturbinegeneratorsandthermalplants.Foroptimalwindpoweracquisition,thepenetrationlevelisconservativelyestimatedtObe500A.2.3.3HarmonicEmissionVariablespeedwindplantsareequippedwithself-commutatedinvertersystems,whicharemainlyPWMinverters,usinginsulatedgatebipolartransistor(IGBT)technology.ThePWMinverterisconvenienttoimplementcontrolstrategieswiththedisadvantagesofproducingharmoniccurrents.Referencesr38—40]discusstheeffectoftheharmoniccurrentinjected.Inreference[38],theimportantgeneralcharacteristicsoftheharmonicbehaviorofWTsareoutlined,suchastheshapeandthefrequencyrangeoftheharmoniccurrentspectrum,thevariationoftheharmonicswiththeWToperatingpoint.thestatisticalcharacte“sticsoftheirmagnitudeandphaseangle.theeffectofgroupingandtime-averaging,aswellastheirsymmetricalcomponentcharacteristics.Reference[39]analyzestherepercussionsfromtheconnectionofwindfarmswithvariablespeedgeneratorsontheoperationofweakelectricdistributionsystems.Generalconclusionsaredrawnconcerningthevoltagefluctuations,harmoniccontent,andthepenetrationofharmonicsthroughthenetwork.Thereactivepowerandharmoniccompensationschemesincludepassivefilters,activefilters,andhybridcompensationmethodsforaSCRinterfacedpermanentmagnetgeneratorbasedvariablespeedwindturbineisstudiedinreference[-401.Theeffectivenessofthecompensationschemeshasbeeninvestigatedintermsofreactivepowerandharmonics.WindPowerTransmissionWithwindbeinganuncontrollableresource,powerfromalarge-scaleWFintoapowersystemposesbuilt—upofoffshorewindfarms一77—2.4deliverychallenges.Meanwhile,the2010,34(3)电力暴统匀劝化withhigh-capacityvariablespeedgeneratoralsorequiresmoreflexibleandtrustablepowertransmissionsystems.References[41—47]furtherdiscussonthistopic.References[41—43]considerasolutionfortheintegrationoflargeoffshoreDFIG-basedWFswithacommoncollectionbuscontrolledbyastaticsynchronouscompensator(STATCOM)intothemainonshoregridusingline-commutatedhigh—voltageIX;connection.References[44—45]describetheuseofvoltagesourceconverter(VSC)一basedHVDCtransmissionsystem(VSCtransmission)technologyforconnectinglargeDFIG-basedWFsoverlongdistance.Inreference[46],theimpactofSTATCOMtofacilitatetheintegrationofalargeWFintoaweakpowersystemisstudied.Reference[473concernswiththeissueofthefaultride-throughcapabilityofaWFofinductiongenerators,whichisconnectedtoanACgridthroughanHVDClinkbasedonVSCs,2.5RequirementforEnergyStorageTherequirementforenergystorageinpowersystemsisdrivenbytheamountofinstalledwindturbinesandbygenerationsystemflexibility.Benefitsaremoresignificantinsystemsonrestrainingpowerfluctuationtoimprovegridstabilityandpowerqualityifenergystoragedeployed.Variablespeedgeneratorsareallowedtoimplementmuchmoreflexiblecontrolstrategythanfixed—speedwindturbineincorporatedwithenergystorage.References[48—54]discussonthistopic.Inreferences[48—49],acontrolschemewhichincorporatesDFIGwithflywheelispresented.Inreference[50],acomputationalproceduretodeterminethebatteryenergystoragesystem(BESS)capacityandtheevaluationoftheDCvoltageisshown.ThismethodcouldhelpplannersdeterminethecapacityoftheBESStoensureconstantdispatchedpowertotheconnectedgrid,whilethevoltagelevelacrosstheDC-linkofthebufferiskeptwithinpresetlimits.Reference[513considerstheintegrationofashort—termenergystoragedeviceinaDFIGdesigninordertosmooththefast。windinducedpowervariations.Thisstoragefeaturecanalsoenhancethelowvoltageridethrough(LVRT)capability.Inreference[52],ahybridpowersystemisanalyzed.Itiscomposedofsolarpower,windfarmofDFIGs,pumpedstoragestation,residentialloadandindustryload.Inreferences[s3—543,thefutureapplicationofenergystorageinNetherlandsandGermanyisdiscussed.Compressedairenergystoragescoordinatingwithvariablewindturbineareprovedtobeasuitablesolutionfortheintegrationofwindpowerinthesecountries.2.6CoordinationwithOtherTypesofGeneratorUnitsDHetotheuncertaincharacteristicsofthewindproduction,thewayofthereservemanagementforwindintegrationistoprovideadditionalreservemarginbytraditionalpowerplants.AndVSWPSsarealsoabletobe一78~万方数据controlledtocoordinatewithothertypesofgeneratorswhichcouldrestrainpowerfluctuation.References[55—57]focusonthisarea.Inreference[55],astrategythatincorporatesDFIGwindfarmswithtraditionalunitstoactivelyprovideprimaryreserveforfrequencycontroltogetherispresented.Thiscontrolschememanagesadditionalreservemarginofeonventionalplantstorestraineffectoftheuncertaincharacteristicsofthewindpowerfluctuation.ReferenceIs6]proposesanAC-linkedhybridwind/photovoltaic(PV)/fueleell(FC)alternativeenergysystem.WindandPVaretheprimarypowersourcesofthesystem,andanFCcombinationisusedasabackupandalong—termstoragesystem.AnoverallpowermanagementstrategyisdesignedfortheproposedsystemtOmanagepowerflowsamongdifferentenergysourcesandthestorageunitinthesystem.Inreference[57],themodelingandcontrolstrategyofawind—dieselgenerationsystemarediscussed.Intheproposedhybridsystem,boththedieselengineandthewindturbinearevariablespeedmachines,allowingmaximumruelefficiencyandoptimalenergycapturefromthewind.3ConclusionWindenergyhasdevelopedoverpast25years,anditwillprobablycontinuetoadvanceoverthenext20years.Withthedevelopmentofwindenergytechnology,VSWPSswillreplacethedominantpositionofFSWPSsgradually.HowevertherearestillanumberofissuesassociatedwithintegrationofwindfarmswithVSWPSsintopowersystems。Thispaperhasprovidedanoverviewofthelatestachievementsonthisareaandcategorizedthemintodifferentresearchdirections.Amongthem。accordingtothestatisticalresultsofpaperspublishedinimportantinternationaljournals,theimprovementonvoltageandfrequencystability,theevaluationofsystemreliability,theinfluencesonpowerquality,andthecoordinationwithenergystorageutilitiesarethehottesttopicsinthisarea.Authorswillpaymoreconcernsaboutthesedirectionsinthefuture.AcknowledgementsThanksforthefundsofBPAlternativeEnergyInctothisproject・References[1]SL00TwEGJG,DEVRIEsE.Insidewindturbines--fixedv¥variablespeed.RenewEnergyWorld,2003,6(1):30—40.[z]ACKERMANT.Windpowerinpowersystem.Chichester,UK:Wiley,2005.[3]POLINDERH,DEHAANSWH,SLOOTWEGJG,eta1.Basicoperationprinciplesandelectricalconversionsystemsofwindturbines.EPEJournaI,2005。15(4):43—50.[4]POLINDERH。VANDERPIJIFFA,DEVILDERGJ,eta1.Comparisonofdirect-driveandgearedgeneratorconceptsforwindturbines.IEEETransonEnergyConversion,2006,21(3):725—733.・绿色电力自动化・suNYuanz‰g,eta・脶=≯嚣盎墨言嬲i晃篡裂三一[5]KuNDuRP。PAsERBAJ,AJJARAPUV。eta1.DefinitionandcIassificationofpowersystemstability.IEEET阳nsonPowerSvstems.2004.19(2):1387—1401.[6]EKANAYAKEJB。HOLDSw()RTHL,GuANGwX,eta1.Dynamicmodehngofdoublyfedinductiongenerator,宵indturbines.IEEETransonPowerSystems,2003,18(2):803.809.[7]LINJin,LIGuojie.SUNYuanzhang。et8I.TheanalysisonDFIGandtheoptimizationfortheparametersofcontrolsystem.AutomationofElectricPowerSystems(inChinese),2009,33(5):86—89。95.[8]AKHMATOVV.Modell.ngandride-throughcapabilityofvariablespeedwindturbineswithpermanentmagnetgenerators.WindEnergy,2006r9(4):313—326.[9]sDRENSENP.HANSENAD,LUNDT。eta1.Reducedmodelsofdoublyfedinductiongeneratorsystemforwindturbinesimulations.WindEnergy,2006,9(4):299—311.[10]RlzIoTIsVA。POLITIsEs,VOUTsINAssG。eta1.Stabilityanalysisofpitch—regulated,variable-speedwindturbinesinclosedloopoperationu5ingalineareigenvalueapproach.WindEnergy。2008,11(5):517—535.[11]TABEsHA,IRAVANIR.Small—signaldynamicmodelandanalysisofa“xed—speedwindfarm:afrequencyresponseapproach.IEEETransonPowerDelivery,2006.2l(2):778—787.[12]TABEsHA。IRAVANIR.small—signalmodelanddynamicanalysisofvariablespeedinductionmachinewindfarms.IETGeneration,Transmission&Distribution,2008,2(4):215—227.[13]K0Hee-Sang,YoONGi—Gab.HONGwon-Pyo.ActiveuseofDFI(}basedvariabl}speedwind—turbineforvoItageregulationataremotelocation.1EEETransonPowerSystems,Z007,22(4):1916—1925.[14]LuND丁。sDRENsENP,EEKJ.ReactivepowercapaKlityofawindturbinewithdoublyfedind、lctiongenerator.WindEnergy。2007,lO(4):379—394.[15]HANsENAD,MICHALKEG,sDRENSENP。eta1.Co-ordinatedvoltagecontrolofDFIGwindturbinesinuninterruptedoperationduringgridfaults.WindEnergy・2007,lO(1):51—68.[16]AusINJC。GEVERsDN,ANDREsENB.Faultnde_throughcapabilitytestunitforwindturbines.WindEnergy,2008。11(1):3—12.[17]L()PEzJ。GuBIAE。sANcHIsP,eta1.windturbinesbasedondoublyfedinductiongeneratorunderasymmetricalv01tagedips.IEEETransonEnergyConversion,2008,23(1):321—330.[18]I。IEx,Y1w.DynamicmodelingandcontrolofDFIGbasedwindtufbinesunderunbalancednetworkconditions.IEEETransonPowerSystems,2007,22:314—323.[19]BREKKENTKA,MoHANN.ControIofadoublyfedinductionwindgeneratorunderunbalancedgridvoltageconditions.IEEETransonEnergyConver5ion,2007,22(1):129・135.[20]uLLAHNR,THIRINGERT。KARLss()ND.TemporaryprimaryfrequencycontrolsupportbyVariablespeedwindturbinespotentialandapplications.IEEETransonPowerSystems,2008,23(2):601—612.[21]sHoRTJA。INFIELDDG,FRERISLL.stabi“zationofgridfrequencythroughdynamicdemandcontr01.IEEETransonPowerSystems。2007,22(3):1284—1293.[22]DEALMElDARG,LOPEsjAP.Participationofdoublyfedinductionwindgeneratorsinsystemfrequencyregulation.万方数据IEEETransonPowerSystems。2007。22(3):944—950.[23]KEuNGPK,LIP,BANAKARH,eta1.Kineticenergyofwind—turbinegeneratorsforsystemfrequencysupport.IEEETransonPowerSystems。2009,24(1):279—287.[24]ANAYA.LARA0,HUGHESFM。JENKlNSN.etaI.ContributionofDFlG-basedwindfarmstopowersystemshon—termfrequencyregulatiorLIEEProceedings:Generation,Transmission&Distribution,2006,153(2):164—170.[25]ANAYA—LARA0,HUGHESFM,JENKlNSN,eta1.Rotorfluxmagnitudeandanglecontrolstrategyfordoublyfedinductiongenerators.WindEnergy,2006.9(5):479—495.[26]HuGHEsFM,ANAYA—LARA0,JENKINsN。eta1.ApowersystemstabilizerforDFIG—basedwindgene阳tion.IEEETransonPowerSystems,2006,21(2):763—772.[27]KARKIR,PoH.BILLINTONR.Asimplifiedwindpowergenerationmodelforreliabilityevaluation.IEEETransonEnergyConversion,2006,2l(2):533—540.[28]BILLINTONR,YIG.Multistatewindenergyconversionsystemmodelsforadequacyassessmentofgeneratingsystemsincorporatingwindenergy.IEEETransonEnergyConversion,2007,23(1):163—170.[29]sINGHB。KAsALGK,GAIROLAS.PowerqualityimDrovementinconventionaIelectronicloadcontrollerforanisolatedpowergeneratioILIEEETransonEnergyConversion,2008,23(3):764—773.[30]NEGRANB,HOLMsTROMO,BAK—JENsENB。eta1.Aspectsofrelevanceinoffshorewindfarmreliabilityassessment.IEEETransonEnergyConversion,2007,22(1):159—166.[31]BILLINTONR,wANGDEEw.Reliability-basedtransmissionreinforcementplanningassociatedwithlarge.scalewindfams.IEEETransonPowerSystems,2007。22(1):34—41.[32]DEM0uRAAP。DEMOURAAAF.Analysisofinjectedapparentpowerandnickerinadistributionnetworkafterwindpowerplantconnection.IETRenewablePowerGeneration,2008。2(2):113—122.[33]TA()s,zHEc,BLAABJERGF.F“ckerstudyonvariablespeedwindturbineswithdoublyfedinductiongenerators.IEEETransonEnergyConversion,2005,20(4):896—905.[34]PETERSSONA。THIRINGERT,HARNEFORsL,eta1.T订odelingandexperimentalve“ficationofgridinteractionofaDFIGwindturbine.IEEETransonEnergyConversion,2005,20(4):878—886.[35]cHANGLINGL,BOoN—TEcKo.FrequencydeviationofthemaIpowerplantsduetowindfams.IEEETransonEnergyConversion,2006,21(3):708—716.[36]LuBOsNYZ,BIAI,EKJw.supervisorycontrolofawindfarm.IEEETransonPowerSvstems,2007.22(3):985—994.[37]LuoChangling,FARHG,BANAKARH,etaLEstimtionofwindpenetrationaslimitedbyfrequencydeviation.IEEETransonEnergyConversion.2007。22(3):783—791.[38]sOKRATIsTT,sTAVRosA.AninVestigationoftheharmonicemissionsofwindturbines.IEEETransonEnergyConversion,2007,22(1):150—158.[39]KANEl,LOSFD。HATZIARGYRIoUND.Theeffectofvariablpspeedwindturbinesontheoperationofweakdistributionnetworks.IEEETransonEnergyConversion,2002,17(4):543—548.[40]cHENZ.CompensationschemesforascRconverterinvariablespeedwindpowersystems.IEEETransonPowerDellvery,2004,19(2):813—821.[41]BOZHKOS,ASHERG。RIsHENGL,eta1.Largeoffshore一79—2010,34(3)电windthefarmwith力纛HVDCTrans统自动健DFlG—basedconnectionontoline-commutatedstudies.IEEElarge-scalewindNetherlandspoweranduseofenergystorageinthemaingrid:engineeringelectricitysupply.IETRenewablePowerEnergyConversion,2008.23(1):119-127.SGeneration。2008.2(3):34—46.[4幻BOZHKOContr01V,BLASco—GIMENEZoffshoreDFIG-basedconnection.R,LIRisheng。eta1.gridwithon[54]sIEMEsP,HAUBRICHHJ,VENNEGEERTsH,eta1.ofwindpowerintoofwindfarmline-ConceptsfortheimprovedintegrationthecommutatedHVDcIEEETransEnergyGermaninterconnectedsystem.IETGeneration,Transmission8LDistribution,2008,2(1):26—33.Conversion,2007。22(1):71—78.[43]XIANGDawei,RANL,BUMBYJR。eta1.Coordinatedcontrolofaan[55]cHANG—cHIENLe-Ren,HUNGChih—Min,YINDynamicwindreserveYao-Ching.HVDClinkanddoublyfedinduetionwindgeneratorsinallocationforTtansonsystemcontingencybyDFIGlargeoffshorefarm.IEEETransonPowerDelivery.farms.IEEEPowerSystems,2008,23(2);2006。21(1):463—471.729—736.[44]BRESESTIconnectionIEEETransP,KLlNGwL,HENDRIKSRL。eta1.HVDCto[56]CAISHENGW,NEHRIRMstand—alonewindphotovoltaicTransonH.Powermanagementofaofoffshorewindfarmsonthetransmissionsystem.fuelcellenergysystem.IEEEEnergyConversion,2007,22(1):37—43.C.GridintegrationEnergyConversion,2008。23(3):957—967.[45]XuLie,YAOlargeDFIG-basedTransonLiangzhong。SASSEwindofIs7]PENAR,cARDENAsR,PROBOSTEj,eta1.Wind-dieselgenerationonfarmsusingVSCtransmission.IEEEusingdoublyfedinductionmachines.IEEETransPowerSystems,2007,22(3):976—984.AEnergyConversion。2008。23(1):202-214.[46]HUANGChong-Han。BARANE,eta1.STATCOMwindfarmintoaQ,BHATTAcHARYAMonimpactloopstudytheintegrationofalargeonSUNYuanzhang(1954一)。male,receivedtheUniversityB.S.degreefrominweakpowersystem.IEEETransWuhanofhydroandelectricalengineering,ChinaResearchEnergyConversion,2008,23(1):226—233.1978,theM.S。degreeA,eta1.Controlthegrid(EPRI)。ChinaininfromElectricPowerInstituteTsinghua1982[47]VRIONISofanTD.KOUTIvAconnectingxaI,VOVOSwindfarmNtoon1982。and1988。allinthePh.D.degreefromHVDClinkforfaultSystems,University,Beijingtoelectricalengineering.Frominatride-throughenhancement.IEEETrans2007,22(4):2039—2047.Power1985.hewaswithEPRI。China,workingisathePowerSystema1.PoweraResearchtheDepartment.HeheadprofessorpowerTsinghua[483CARDENASusingTransaR,PENAR,PEREZM,etsmoothingUniversityandandofdynamicsimulationassystemlab,1999.switchedreluctancemachineEnergyR,drivingflywheel.IEEEhehasbeenappointeda“ChangJfangScholar”sinceonConversion。2006,21(1):294-295.PENA-R,generationE—mail:yzsun@mail.tsinghua.edu.caLINr49]CARDENASsmoothinginASHERsystemsdrivingaG,aeta1.PowervectorJln(1985一)。male.receivedhisbachelordegreefromTsinghuaUniversity,ChinaofElectricalininelectricalwindusingsensorlessengineeringisa2007.Currentlyheinarecontrolledinduetiononmachineflywheel.IEEETtansPh.D.studentEngineeringinterestsTsinghuarenewableEnergyXConversion,2004,19(1):206—216.Y,MAHlNDAvILATHGAMUWAD.CHOIofbatteryTransstoragecapacityinenergyonUniversity,P.R.China.Hissresearchon[solwANGwindS.energyandthestabilityanalysispowersystem.E—mail:linjin03Determinationbufferfor@mails。tsinghua。edu。cnLIinfarm.IEEEEnergyConversion,2008,23(3):Guojie(1965一)。male,receivedhisbachelorandmasterelectricallengineeringdegreesinin1989868—878.fromTsinghuaUniversity,ChinareceivedPh.D.degreeEngineering,ESl3ABBEYenergyC,JOOSG.Short—termenergyRecordstoragefor2005windIASand993,respectively.HealsoofElectricalandtheapplications//ConferenceMeeting,OctoberoftheSchoolElectronicinNanyangisanAnnual2-6,2005,HungKong,China;TechnologicalUniversityassociateSingapore1999.Currently,heof2035—2042.professorintheDepartmentElectricalEngineering,[523zHouY。FERREIRAJA。BAUERP.Grid-connectedandislandedPoweroperationTsinghuaUniversity,China.Hisrenewableenergy,powercurrentresearchandinterestsincludeofahybridpowersystem//ProceedingsofandExpositioninsystemanalysiscontrol,powerEngineeringSocietyConferencequality,andVSCHVDc.E—mail;liguojie@mail.tsinghua.edu.cn16—20,2007,Johannesburg,SouthAfrica.[53]UMMELSBC,PELGRUME,KLINGWL.IntegrationofAfrica,July采用变速恒频机组的风电场并网问题研究综述孙元章,林今,李国杰,黎雄(清华大学电机系电力系统国家重点实验室,北京市100084)摘要:随着风电技术以及电力电子技术的不断进步,越来越多采用变速恒频机组的风电场被接入电网。变速恒频机组相对于传统的恒速恒频机组,在电机结构和控制机理上更为先进,能够实现更为灵活的电网接入。虽然变速恒频机组在一定程度上增强了电力系统的稳定性,但一些新问题也随之而来,例如先进的控制器显著增加了系统的复杂性、风机的功率变换器发出谐波电流降低了系统的电能质量等。此外,如何通过给变速恒频机组增加附加控制器,实现其与传输系统及储能系统的协制,以改善系统性能,也是当今学术界的一个重要课题。文中对上述这些采用变速恒频机组的风电场并网问题的最新研究成果进行了综述。关键词:风电场;双馈机组;直驱机组;变速恒频机组;控制模式;储能系统;机组协调一80一万方数据

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- efsc.cn 版权所有 赣ICP备2024042792号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务