Hop-by-hopCongestionControloveraWireless
Multi-hopNetwork
YungYiandSanjayShakkottai
Abstract—Thispaperfocusesoncongestioncontrolovermulti-hop,wirelessnetworks.Inawirelessnetwork,animportantconstraintthatarisesisthatduetotheMAC(MediaAccessControl)layer.ManywirelessMACsuseatime-divisionstrategyforchannelaccess,where,atanypointinspace,thephysicalchannelcanbeaccessedbyasingleuserateachinstantoftime.Inthispaper,wedevelopafairhop-by-hopcongestioncontrolalgorithmwiththeMACconstraintbeingimposedintheformofachannelaccesstimeconstraint,usinganoptimizationbasedframework.Intheabsenceofdelay,weshowthatthisalgorithmaregloballystableusingaLyapunovfunctionbasedapproach.Next,inthepresenceofdelay,weshowthatthehop-by-hopcontrolalgorithmhasthepropertyofspatialspreading.Inotherwords,focusedloadsataparticularspatiallocationinthenetworkget“smoothed”overspace.Wederiveboundsonthe“peakload”atanode,bothwithhop-by-hopcontrol,aswellaswithend-to-endcontrol,showthatsignificantgainsaretobehadwiththehop-by-hopscheme,andvalidatetheanalyticalresultswithsimulation.
Keywords:Controltheory,Mathematicalprogram-ming/optimization
I.INTRODUCTION
Weconsidertheproblemofcongestioncontroloverwire-less,multi-hopnetworks.Nodesinsuchnetworksareradio-equipped,andcommunicatebybroadcastingoverwirelesslinks.Communicationpathsbetweennodeswhicharenotinradiorangeofeachotherareestablishedbyintermediatenodesactingasrelaystoforwarddatatowardthedestination.Thediverseapplicationsofsuchnetworksrangefromcommunitybasedroof-topnetworkstolarge-scalead-hocnetworks.
Overthepastfewyears,theproblemofcongestioncontrolhasreceivedwide-spreadattention,bothintheInternetcontext[1],[2],[3],aswellasinanad-hocnetworkcontext[4].Mostofthisresearchhasfocusedonmodeling,analysis,algorithmdevelopmentofend-to-endcontrolschemes(suchasTCP),andadaptationofsuchschemestoad-hocnetworks.Givenroutingpathandbandwidthconstraints,algorithmshavebeendevelopedwhichconvergeandhaveastableoperation.
Inawirelesscontext,however,animportantadditionalconstraintthatarisesisthatduetotheMAC(MediaAccessControl)layer.ManywirelessMACsuseatime-divisionstrategyforchannelaccess[5],[6],where,atanypointinspace,thephysicalchannelcanbeaccessedbyasingleuserat
ThisresearchwassupportedbyNSFGrantsACI-030andCNS-0325788,andagrantfromtheTexasTelecommunicationsEngineeringProgram(TxTEC).TheauthorsarewiththeWirelessNetworkingandCommunicationsGroup,DepartmentofElectricalandComputerEngineering,TheUniversityofTexasatAustin,email:{yi,shakkott}@ece.utexas.edu.AshorterversionofthispaperappearedintheProceedingsofIEEEInfocom,,March,2004.
eachinstantoftime(atimeconstraint).Thispaperformulatesanoptimizationframeworkforcongestioncontrolalgorithminwirelessmulti-hopnetworkswiththeconstraintimposedbytheMAC.Wedevelopadistributed,hop-by-hopcongestioncontrolscheme,whichisshowntobestableintheabsenceofpropagationdelays.
Hop-by-hopcongestioncontrolalgorithmshavebeenstud-iedintheInternetcontext[7],[8],[9].Suchschemesprovidefeedbackaboutthecongestionstateatanodetothehopprecedingit.Theprecedingnodethenadaptsitstransmissionratebasedonthisfeedback.Feedbackistypicallyprovided[7],[8],[10],[11],[9]basedonthequeuelengthatthecongestednode.Ifthequeuelengthexceedsathreshold,congestionisindicatedandtheprecedingnodeisnotifiedinordertodecreaseitstransmissionrate.Itiswellknownthatsuchschemes,byreactingtocongestionfasterthanend-to-endschemes(thebottlenecknodewouldsendfeedbackbackward,thusdecreasingthedelayinthecontrolloop),resultinbetterperformancethanacorrespondingend-to-endscheme.How-ever,Internetcongestioncontrolhasbeendominatedbyend-to-endschemes(inparticular,TCP),andresearchinalternatemechanismsintherecentpasthasfocusedonthesame[1],[3],[2],primarilyduetoscalabilityanddeployability.Hop-by-hopschemesrequiretohaveper-flowstatemanagementinintermediatenodes,whichgeneratesscalabilityproblems.However,inawirelessnetwork,thenumberofflowspernodeisofamuchsmallerorderthanintheInternet.Further,wirelessnetworksusuallyhaveper-flowqueueingforreasonsofpacketscheduling[5],andthefactthatdifferentusersareatdifferentlocations,thusrequiringdifferentphysicallayerstrategies(suchasthechannelcodingandmodulationschemeofthepowerlevel).Thus,wearguethathop-by-hopschemesarefeasibleoverawirelessnetwork.
Inthispaper,wedevelopahop-by-hopcontrolscheme,whichisshowntoconvergeintheabsenceofdelay,andallocatesbandwidthtovarioususersinaproportionally-fairmanner.Inthepresenceofdelay,weshowthatithasthepropertyofspatialspreading.Inotherwords,focusedloadsataparticularspatiallocationinthenetworkget“smoothed”overspace.InFigure1,weillustratethiseffect.Consideranodeaccessedbyanumberofflows.Whileanend-to-endcontrolschemecouldresultinlargetransientoverloads(duetodelayedfeedback)atasinglenode,ahop-by-hopschemewill“push-back”andcausecongestiontooccuroverspace,resultinginsmallerpeakoverloads.Thus,evenifthebottlenecknodeisveryclosetothereceiver(the“worst-case”forahop-by-hopscheme),therearepotentialgainstobehadduetospatialspreading.Hence,evenifthetotalbuffer
Congested Region..Sources...Destinations.....2-D NetworkFig.1.SpatialSpreadingwithhop-by-hopcontrollers
requirementoverthenetworkisthesame,thehop-by-hopschemeensuresthatthebuffersrequiredarespatiallyspread.
II.MAINCONTRIBUTIONS
Themaincontributionsinthispaperare:
(i)Wedevelop(weighted)proportionally-faircongestion
controlalgorithms(bothhop-by-hopaswellasend-to-end)withtheMACconstraintbeingimposedintheformofachannelaccesstimeconstraint,usinganoptimizationbasedframework.Intheabsenceofdelay,weshowthatthesealgorithmsaregloballystableusingaLyapunovfunctionbasedapproach.
(ii)Weconsidertheevolutionofthesealgorithmsinthe
presenceofpropagationdelay.Weanalyticallyshowtheeffectofspatialspreading,byexplicitlyderivingthereductioninpeakbufferoverloadunderthehop-by-hopschemeforatreenetwork.Weshowthatatabottlenecknode,thedifferenceinthepeakqueuelengthbetweenanend-to-endschemeandahop-by-hopschemeisatleastoforderLαN,whereListhenumberofhops,Nisthenumberofsessions,andforsomeα≥1.A.RelatedWork
Theworkof[12],[2]providesanoptimizationbasedframe-workforInternetcongestioncontrolandderivesadifferentialequationbaseddistributedsolution.Worksof[13],[1],[14],[3],[15],[16]studythestabilityofsuchend-to-endcontrollersinthepresenceoffeedbackdelay.
In[8],[17],[7],[9],usingasimulationbasedapproach,theauthorsprovidehop-by-hopcontrolalgorithmsandshowthatthehop-by-hopschemesreactfasterthanend-to-endschemes,thusreducingbufferrequirements.In[10],theauthorproposesaframeworkforcongestioncontrolandroutingbasedonpush-back,where-in,queuebuildupatadown-streamnodecausesupstreamnodestodecreaserateandusealternatepaths.Thishasbeenextendedtothemulticastcasein[11].
Relatedworkincludes[18],wheretheauthorsconsidermax-minfairschedulinginthecontextofawirelessnetworkusingasimilarmodelasthatconsideredhereformediaaccesscontrol(MAC).Theauthorsdevelopatokenbasedlocalschedulingpolicyateachnodetoensuremax-minfairness.
2
Thispaperdiffersinthatwedevelopratebased(end-to-endandhop-by-hop)controllerswiththeobjectiveof(weighted)proportionally-fairresourceallocationamongusers,andwithMACconstraints.Wederiveexplicitboundsonqueuelengthsinthepresenceofpropagationdelay,bothwithanend-to-endandhop-by-hopscheme,anddemonstratespatialspreadingwithhop-by-hopcontrol.B.Organization
WebeginwithadescriptionofthesystemmodelinsectionIII,anddiscussanutilityfunctionbasednetworkoptimizationframework.
Next,inSectionVII,weillustratespatialspreadinginahop-by-hopalgorithmbymeansofderivingboundsonthepeakqueuelengthsinthepresenceoffeedbackdelay.WeprovidesimulationresultsinSectionVIIItovalidatetheanalysis.
III.SYSTEMMODEL
ConsideranetworkwithasetLoflinks,asetVofvertices(nodes),andletclbethefinitecapacityoflinkl,forl∈L.Eachvertexcorrespondstoanodeinthenetwork.Eachdataflowrinthenetworkcorrespondstoanorderedsequenceoflinksl∈L,andwedenoteRasthesetofpossiblesessions1.Thus,wemodelawirelesslinkbetweenanytwonodesinthenetworktohaveafinitepositivecapacity.
Inreality,wirelesschannelsaretime-varying[19],eachwithsomeaveragecapacitywhichwilldependonthephysicallayerscheme.However,inthispaper,wemodelthelinktohaveafixedcapacity.Suchamodelisaccurateintworegimes:(i)wherethechannelchangesaremaskedbythephysicallayercodingandmodulationschemesoastopresenta“constantchannel”tothehigherlayer,or,(ii)thechannelchangesmuchslowerthanthecongestioncontrolscheme.Inthiscase,usingatime-scaledecompositionargument,wecanthenformallyjustifyaconstantchannelmodelatthetime-scaleofthecongestioncontroller(thusleadingtoafluidmodelfortheMAC).Further,asin[18],weassumethatatanyinstantoftime,dataflowsthatdonotsharenodescantransmit/receivesimultaneously,butdataflowsthatshareanodecannotdoso.Inotherwords,simultaneoustransmissionscantakeplaceoverlinks(i.e.,betweenapairnodes)aslongasthelinksdonotshareacommonnode.
This,forinstance,modelsawirelesssystemwheremul-tiplefrequencies/codesareavailablefortransmission(usingFDMA/CDMA),andenablesparallelcommunicationsinaneighborhoodusingsuchorthogonalFDMA/CDMAchannels(see[18]foradditionaldiscussion).Inaddition,allowingsimultaneousparalleltransmissionscouldalsomodelwirelesssystemsthatemployinterferencecancellation[19].
Thus,accessconstraintsattheMAC/PHYlayersariseduetothefactthateachnodehasonlyasingletransceiver,andhencecannotperformmultipletransmissionsorreceptionssimultaneously.Wenextdescribetheconstraintsonthedataflowsthatfollowsfromthiswirelesssystemmodel.
1We
usethewords’session’and’flow’interchangeablythroughoutthis
paper.
3
A1C3D2Brestrictourselvestoonlytimeconstraints.Ingeneral,thetimeconstraintspresentedabovearenotsufficienttoensurethatafeasibleMACprotocolexists[18],[20].However,afeasibleMACalwaysexistsifthetimeconstraintsarerelaxedbyreplacingtheRHSoftheexpressions(i.e.,theterm’1’)byaparameterρ≤2/3.Thiscorrespondstothefactthat100%utilizationofresourcesateachnodemaynotbealwaysfeasiblebecauseofthenetworktopology(see[18]foranexample).However,ithasbeenshownin[20]thatifthetimeconstraintisrelaxedto2/3,afeasibleMACalwaysexists.A.AnOptimizationProblem
TimeConstraint
x1+x2c2x1+x3
x1+x2
LetusdenoteN(L),N(V),andN(R)asthenumberoflinks,nodes,andsessions,respectively.Foranylinklandsessionr,letAlr=1
≤1
x1+x2
c2x1+x3c2
≤1+
x1+x3
cj
Observethaty11canbeinterpretedasthefractionoftimenode’C’expendstoreceivedataofsession1fromnodeAoveranunitintervaloftime.Similarly,y13isinterpretedasthefractionoftimeexpendedbynode’C’totransmitdataofsession1tonodeDoveranunitintervaloftime.Similarinterpretationsholdforallyij.Thus,astotalfractionoftimeexpendedatnode’C’cannotexceed’1’,thetimeconstraintatnode’C’is
yij≤1.
i,j
Similartimeconstraintsapplyforallothernodesinthenetwork.TableIpresentsvariouslinkandtimeconstraintsforthenetworkinFigure2.Aswecanobservefromthetable,thelinkconstraintsaresubsumedbythetimeconstraints.Anylinkconstraintistriviallyatimeconstraint,ifitistheonlyflowandterminatesatthenode.Inallothercases,thetimeconstraintisstrictlystrongerthanalinkconstraint.Thus,wedonotneedtoconsiderlinkconstraints,andwillhenceforth
developcongestioncontrolmechanismstosharethetimeresourcesinthenetworkina(weighted)proportionallyfairmanner.WeconsiderafluidmodelfortheMAC,anddonotfocusontheactualimplementationoftheresourceshar-ingmechanismateachnode.Forexample,anidealMACalgorithmwouldallowthemaximumpossible(subjecttoMACfeasibility)time-resourcesateachnodetobeusedforsuccessfuldatatransfer.However,anALOHAbasedMACwouldhaveinefficienciesassociatedwithit,whichwouldallowonlyafractionofthetimeresourcesatanodetobeusedforsuccessfuldatatransfer.Atthefluidtime-scale,thedetailsofthesedifferentMACprotocolsmanifestonlyasanefficiencyfactorthatiscapturedbytheparameterin(3),whichgovernsthefractionoftimethatthetimeresourceateachnodecanbeusedforsuccessfuldatatransfer.Asdiscussedearlier,theefficiencyfactorischosensuchthatsomeMACprotocolisfeasibleforthegivennetworktopology.Fromourearlierdiscussion,≥1/3ensuresthatatime-divisionMACisalwaysfeasibleindependentofthenetworktopology[20].Further,aninefficientMACscheme(suchasrandomaccess)wouldbeassociatedwithalargervalueof.
Thus,foranyfixedβ>0,andwithsessionratesx=(xr,r∈R),weneedtosolve
P:max
r∈Rwr
Tβ
log(xr)+λ(GAx−(1−)1).
(4)
Wedenotetheinputandoutputlinkofasessionronvwhenasessionrgoesthroughvasli(v,r)andlo(v,r),respectively(forinstance,inFigure2,areli(C,1)=1andlo(C,1)=3).Forcompleteness,forthesourceanddestinationnodes,wedefinecli(s(r),r)=∞andclo(d(r),r)=∞respectively,wherethesourceandthedestinationofsessionraredenotedbys(r)andd(r).LetusdenoteAj(r)asthesetofalldownstreamnodesfromjinthepathofsessionr.Thus,As(r)(r)isthecollectionofallnodesinthepathofsessionr.Bydifferentiating(4),wehave
dL
βx−(1)λjj∈As(r)(r)
lo(j,r)
=0(5)rc4
Therefore,theuniquesolutiontotheproblemPisgivenbythefollowingcondition:
xr=
wr
1
cli(j,r)
+
c+
1
li(j,r)
c+
1
li(j,s)
cli(j,r)
+
1
c1
li(j,r)
+
cli(j,r)
+
1
y
+
(9)
Asseenin(8),theparameteryofpj(y)isthesumofMAC
timeutilizationsbyallflows,bothincomingandoutgoing,atnodej.
Thus,pjdesired(y)marksthefractionofflowwhichexceedsatimethresholdtj.ObservethatthetotaltimeutilizationattheMACcannotexceed1.Thus,timeutilization(say,randomtj<1isaparameterthatcontrolstheatthelink.Forinstance,foraninefficientMACaccess),onewouldsetWewilldiscussthechoiceofthisparameterinSectiontjIV-C.
1.C.StabilityAnalysis
Inthissection,weshowthatthesystemofcontrollersdefinedin(7)isgloballystable.Theproofisanalogoustothatin[12].LetthefunctionU(x)bedefinedbyPU(x)=−
s∈D(j)
xs(t)(
1
clo
(j,s)
)
pj(y)dy
∈V
0
+
rjwr
∈R
V.DISTRIBUTEDHOP-BY-HOPALGORITHM
Inthissection,wedevelopadistributedhop-by-hopal-gorithmforcongestioncontrol.First,weobservethatthecongestioncontrolleratthesourceofeachsessionreactsbasedonthesumofthecongestionpricesateachnode.Insteadofpassingthisfeedbackdownstreamasintheend-to-endalgorithm,onecouldenvisageaschemewhereeachnodepassesthe(partialsum)priceupstream.Inotherwords,eachnodeaddsitscurrentcongestioncosttothatitreceivedfromadownstreamnode,andpassesthisinformationtowardtheupstreamnode.Thesourcewillultimatelyreceivethesumofallpriceinformationfromthecorrespondingdownstreamnodesandusetheinformationforcontrollingrates.WerefertoFigure3fortheillustrationofthehop-by-hopalgorithm.Thebasicideaofahop-by-hopalgorithmisthateverynodeinthepathofthesessionoperatesacongestioncontrolalgorithm.InFigure3,thecongestionpriceatnodeCispassedtotheupstreamnodeB.NodeBcomputesitslocalcongestionpriceandaddsittothecongestionpricefromnodeC.NodeBadaptsitstransmissionratetonodeCbasedonthissumofcongestionprices.Inaddition,nodeBpassesthissumoftwopricestotheupstreamnodeA.Usingthis“pricepassing”method,thesourceofsession1receivesaggregatecongestionpricefromitsdownstreamnodesandcontrolsitstransmissionratebasedonit.Letusdenoteair(t)astheactualtransmissionrateatthei-thhopofsessionrinthehop-by-hopcontrolalgorithm.Correspondingtoeachnodeialongthepathofsessionr,is
5
cλ1A
(t)+`
1
cλ2
´
B(t)+
1
feedbackB:
`
1
c2
´
λB(t)+
1
cλ2
C(t)
feedback Afeedback Bfeedback CSource12ABC : Destinationsession 1c+
1
li(j,r)
Proposition5.1:Thetransmissionratesforthehop-by-hopcontrollerdescribedin(11)and(12)convergetotheequilib-riumvaluex∗=(x∗1,...,x∗R)T
giveninProposition4.1.In
particular,foreachrouter,andforeachhopi,ai∗
.
r(t)→xast→∞rProof:Atanyfixedtimet,notethatair(t)decreasesalongaflowpath.Thisfollowsfrom(12),wherethemin
impliesthatair(t)≤ai−1
thethesumofther(t).Further,from(11),itfollowsthatLagrangemultipliersdecreasesalongaflowpath(assmallernumberofnon-negativetermsaddedaswegetclosertothedestination).Thesetwofactsimplythat
d
VI.CONGESTIONCONTROL
WITH
DELAY
Intheprevioussectionwhereweprovedstability,weassumedthatthetimeresourcewaslargeenoughsothatqueueingdidnotoccur(orequivalently,thetimethresholdtaresuitablychosen).Inthissection,wedonotmakesuchanassumption.Wewillstudythedynamicswithqueueinginthepresenceoffeedbackdelay.
Fortheend-to-endalgorithm,wedenotetheoutputtrans-missionrateofsessionratk-thhoptraversingthelinklbyxkr,l(t).Thesuperscriptkcorrespondstothefactthatlinklis
k-thhopofthepathofthesessionr.Thus,xk−1
r,l
i(j,r)
(t)andxkr,lo(j,rthe)(t)aretheincominginputandoutgoingtransmissionrateinend-to-endalgorithmrespectively.
Similarly,forthehop-by-hopalgorithm,wedenotetheactualandmaximum(virtual)sendingrateofsessionratk-th
hoptraversingthelinkl.byakr,l(t)andck
r,l(t),respectively.
Thus,akr,lk
i(j,r)(t)andar,lo(j,r)(t)aretheactualincominginputandactualoutgoingtransmissionratesofsessionratnodejrespectively.
Finally,eachnodehasaper-flowbuffertotemporarilystoredatabeforeforwarding.Wedenotethequeuelengthofsessionratnodejbyqrj(t).
6
A.TheEnd-to-EndControllerwithDelay
Unlikeinthedelay-freecaseconsideredinSectionIV,queueingcanoccuratintermediatenodesduetofeedbackdelay.Inthissection,wedescribethedetaileddynamicsofratesforasessionateachnode.
Foreachnodej,letusdefineEj
I(t)by
Ej
j,r)(t)
I(t)
=
rxk
−1
r,li(∈D(j)
clo(j,r)
TheinterpretationofEj
O(t)isthefollowing:Ifthereisnocongestionatthenodej,theoutputtransmissionsimplybeequaltotheincomingrate.Ej
rateswould
O(t)isthetimeutilizationattheMACinsuchacase.
Wenowconsiderthefollowingtwocases.
(i)EjEj
I(t)+O(t)>1
Asthetimeutilizationatthenodewillexceed’1’iftheoutputflowratesequaltheinputflowrates,wedecreasethetransmittedoutputratessuchthatthetimeconstraintismet.Inotherwords,wechooseα(t)∈(0,1]suchthatEj(t)EjrateI(t)+αbyxkO(t)=1,andsetk−1
theoutputtransmission
r,lo(j,r)(t)=α(t)x−α(t))isqueuedr,li(j,r)(t).Theremainingflow(offraction1atnodej.(ii)EI(t)+EO(t)≤1
Inthiscase,theoutputflowrateforeachsessioncanbesettoatleasttheinputrateofthecorrespondingsession.Ifsomeofthesessionshavestrictlypositivequeuelengths,i.e.,userswithbackloggedqueues(cor-respondingtocongestioninthepast),theseusersareallocatedoutputratesthataregreaterthantheirinputrates.Therateswillbeallocatedinsomefairmanner(forexample,aproportionalrateincreasetoallbackloggedusers),subjecttothetimingconstrainbeingmet.LetusdenoteQ+j(t)bethesetofbackloggedsessionsatnodejattimet.Wechooseα(t)>1suchthatthetime
utilizationatthenodeislessthanorequaltoallsessionsr∈Q+j(t),xk
t)xkone,−1andfor
r,lo(j,r)(t)=α(r,li(j,r)(t).B.TheHop-by-HopControllerwithDelay
Wenowdevelopthedynamicsofthehop-by-hopcontrollerwithdelay.AsintheSectionVI-A,wedefinethetotaltimeutilizationduetoincomingflowsatnodej,by
Hjr,li(j,r)
(t)I(t)=
r∈ak−1
D(j)
clo(j,r)
+
min[ckk−1r,lo(j,r)(t),ar,li(j,r)(t)]
r∈D(j)
r∈/Q+j(t)
7
c+
1
I
Nc+
1
I
β(x∗(1/cI+1/cO)−wherex∗istheaveragesteady-staterateovert)
,
allflows,and
isinvariantwithN.
Wefinallycommentthatwehaveassumedthatthefeedback(marks)donotexperiencecongestion,andthatthedelayinthefeedbackissolelyduetopropagationdelays.Aswehaveper-flowqueueing,apacketimplementationtoapproximatethiscouldbethefollowing.Whencongestionoccursatanode,insteadofmarkingtheincomingpacket(implementedviasettingtheECN(ExplicitCongestionNotification)bit[26]),onecouldmarkthehead-of-line(outgoing)packetinthequeueofthecorrespondinguser.Thiswouldensurethatthequeueingdelaysareminimizedforthefeedback,andthatthesourcegetstheappropriatefeedback.Suchaschemeisfeasiblein
awirelesscontext,asper-flowqueueingisexpectedtobeimplementedforschedulingaswellasphysical)=summing(15)acrossallsessions,weobtain
Nlayerreasons.
Letx(t1
Nj=1wj.Byx˙(t)=κw−βx(t−D)1c
−tO
=1+cO
κβw1cI+
1cO
Now,denotingc=
+
(16)
c+
et
1
cI
+
1
cI
+
1
I
xO(t)
cI
+
cI+cO
=cxI(t)I =cIcO cI+ccI O cI+cO (ii)xI(t)≤ (18) cI+cO andqe(t)=0 Inthiscase,asthebufferatthebottlenecknodeisempty,andthereisnocongestion,wehaveq˙e(t)=0.Thus,with q˙e(t)= q˙e(t)WenextderivecI+cO. the“worst-case”peakqueuelengthsatthe bottlenecknodeundertheend-to-endcontrolleraswellasahop-by-hopcontroller,duetoinitialtransients.LetQmaxe(T)bethe(unscaled)maximumqueuelengthatthebottlenecknodewithend-to-endcontrolwiththeround-tripdelayforeachsessionbeingT.Thus,thiswouldcorrespondtothetreenetworkinFigure4havingLlinkspersession,witheachlinkhavingaround-tripdelayofT/L.Alsoletqmaxe(T)=Qmaxe(T)/Nbethepeakqueuelengthforthescaledsystemdefinedby(17)and(20).Withthisdefinition,wehave Lemma7.1:Fixanyδ>0.Then,∃(Lo,α)withα≥1andLo≥1,suchthat∀L≥Lo,LαQmaxe(δ)≤Qmaxe(Lδ). 8 TheproofispresentedinAppendixA.Usingthisresult,we provethemainresultofthissection.LetQmaxh(T)bethe(unscaled)maximumqueuelength(duetoinitialtransients)fromwiththehop-by-hopcontrol,andqmaxh(T)bethecorrespondingscaledqueue-length,whereTistheround-tripdelayforeachsession.Wethenhave Proposition7.1:Fixanyδ>0.Then,∃(Lo,α)withα≥1andLo≥1,suchthat∀L≥Lo,Lαqmaxh(Lδ)≤qmaxe(Lδ). Proof:Observethatanupperboundonthequeuelengthatthebottlenecknodewiththehop-by-hopcontrolcanbederivedbyassuminganinfinitebacklogofdataatallthenodesprecedingthebottlenecknode(theLevel2nodesinFigure4).Asthecontrolloopforthishophasroundtripdelayδ,withnointermediatenodes,itfollowsthatqmaxh(Lδ)≤qmaxe(δ).Thus,fromLemma7.1,thedesiredresultfollows. 40End to EndHop by Hop353025setaR m20uS15105001002003004005006007008009001000TimeFig.5.SumRatesofbothcontrollerswithκ=1,w=0.13,and˜t =0.415.1000End to EndHop by Hop800edoN kcenel600ttoB eht ta ht400gneL eueuQ d200eipuccO0−20001002003004005006007008009001000TimeFig.6.Occupiedqueuelengthatthebottlenecknode(D=20) illustratestheeffectofspatialspreading.Eventhoughtheconvergencepropertiesareaboutthesame,thepeakqueuelengthatthebottlenecknodeunderthehop-by-hopschemeissmaller. InFigure7,weincreasetheroundtripdelaytoD=40(correspondingtoaone-wayperhopdelayof4msec),thiseffectisexacerbated.Thus,theresultsinthispaperargueforconsideringhop-by-hopcontrollersforawirelessmulti-hopnetwork. B.PacketSimulations Inthissection,weconsiderpacketlevelsimulationsusingthens-2[27]simulator.Wehavemadesuitablemodificationsinns-2tosupporthop-by-hopaswellasend-to-endcontrollerswithaMAC.Inourimplementation,weapproximatethefluidmodelforaMACwithatime-divisionMAC. ThenetworktopologyusedinthepacketsimulationisthesameasthatinthefluidsimulationpresentedinSectionVIII.Eachoftheinputandoutputlinksatthebottlenecknodehasabandwidthof5Mbps.Sincewesetthesizeofpackettobe1000bytes,thiscorrespondsto625pkts/sec.Thus,theequilibriumrateoveronesessionpkts/sec.Wesuitablysetwand˜atthebottleneckis62.5 t suchthatthelinkutilizationratioisabout95%. 9 1800End to EndHop by Hop1600ed1400oN kce1200nelttoB e1000ht ta ht800gneL eu600euQ dei400puccO2000−20001002003004005006007008009001000TimeFig.7.Occupiedqueuelengthatthebottlenecknode(D=40)400)ces/st300kp( etaR gnidne200SEnd to End etHop by HopagerggA la100toT00100200300400500600Time (sec)Fig.8.Ratesofasessionofbothcontrollers,Onehopdelay=10msec400)ces/st300kp( etaR gnidne200S etagerggEnd to EndA la100Hop by HoptoT00100200300400500600Time (sec)Fig.9.Ratesofasessionofbothcontrollers,Onehopdelay=200msecFigures8and9plottheinstantaneoussumrateoffivesessionsfor10msecand200msecofone-hopdelay,respec-tively.The10mseccasecorrespondstoanefficientMAC,wherethehop-delayprimarilyoccursduetothepropagationdelayandphysicallayerairinterface.Ontheother-hand,thecasewherethehopdelayis200mseccorrespondstoa 10 400End to EndHop by HopARate300Occupied Queue Size (pkts)B200Time10000100200300Time (sec)4005006002 RateFig.10.msecOccupiedqueuelengthatthebottlenecknode.Onehopdelay=10A700End to EndHop by HopB6005004003002001000Occupied Queue Size (pkts)Time2 0100200300Time (sec)400500600APPENDIXA:PROOF OF LEMMA7.1 Fig.11.Occupiedqueuelengthatthebottlenecknode.Onehopdelay=200msecnetworkwithlargeper-hopdelays(possiblyduetotheMACimplementation).Inbothofthesecases(Figures8and9),weseethatthetransmissionrates(withtheend-to-endandhop-by-hopcontrollersoscillateaboutthecorrespondingfixedpoint.Asexpected,weobservethatforthelargedelaycase,theend-to-endalgorithmleadstolargeroscillationsthanthehop-by-hopalgorithm. InFigures10and11,weplottheevolutionofthebottleneckqueuelength(measuredevery20msec).Thespatialspreadingeffectisclearlyillustratedbytheseplots,whereweseethatthepeakbuffersizewiththehop-by-hopcontrollerismuchsmallerthanthatoftheend-to-endcontroller.Thesefluidandpacketsimulationsindicatethatsignificantgainsaretobehadwiththehop-by-hopscheme,andvalidateouranalyticalresults. IX.ACKNOWLEDGMENTS TheauthorswouldliketothankProf.GustavodeVecianaforhiscommentsandvaluablediscussions. Lemma7.1:Fixanyδ>0.Then,∃(Lo,α)withα≥1andLo≥1,suchthat∀L≥Lo,LαQmaxe(δ)≤Qmaxe(Lδ). Proof:Letusdefinethefollowingtimeepochs.Lett1bethetimesuchthatx(t)crossesc,t2bethefirsttimeaftert1suchthatx(t)crossesc,t3=t1+δ,t4=t2+δ,t5=t3+δ,andt6bethefirsttimeaftert4suchthatx(t)crossesc.ThesetimesareillustratedinFigure12andFigure13.Formally,wecandefinethesetimeepochsby t1=inf{t>0:x(t)>c}t2=inf{t>t1:x(t)>c}t3=t1+δt4=t2+δ t5=t3+δ t6=inf{t>t4:x(t) Nowobservethatthepeakqueuelengthatthebottlenecknodeisgivenby t6 qmaxe(δ)=x(t)dt(21) t2 Weassumethattheinitialconditionsatisfiesx(s)≤c,∀s≤0.First,wenotethatforfixedκsuchthatδκ<1,wehaveqmaxe(δ) x˙(t)=κw(22)Usingthefactthatc−c=κw(t2−t1),wehave tc−c 2−t1= (23) Inaddition, t−tκ 1 43=t2−t1= 2 )+dκw+c(27) Bydefinition,wehavey(δ)=x(t5).Wenowderivetheconditiononδκsuchthaty(δ)=to¯c.Thiswillcorrespondt 6=t5.=c⇔κ(wt− κwt2 y(δ)2 )+δκw−w=0 ⇔(κδ)2−4κδ+2=0 (28) 5Thus, itispossiblethatx¯(t) 11 Solving,wegetκδ=2+ √ 2,thisconditionensuresthatthetrajectoryofx(t), andthusx¯(t),isoftheformshowninFigure13. Further,fromthemonotonicitypropertyofthequeuelengthwithrespecttodelay,forfixedκ,andanyδsuchthatκδ2+ √≤22(correspondingto Figure13). Thepeakqueue-lengthcomputationdiffersdependingontherelativepositionofcIwithRAandRB.WefirstconsiderthecasewherecI>RA(seeFigure13). LetusdenotetheareaoftheregionS1(overthetimeinterval[t2,t3])inFigure13byA(S1).Then, A(S1)= 1 2κ (δκ−1)2(29) Bydefinition,wehave A(S2)= s y(t)dt, (30) 0 wheres√ischosensuchthaty(s)=c.From(27),wehave s=1+ κe .Thus,A(S2)=wehaves (y(t)−c)dt 0= − 1+√6+ κ2 1+√+ 1+ √2κ κ (31)Thus,fromtheequations(29)and(31),whenwehavecI>RB,thepeakqueuelengthisgivenby A(S1)+A(S2)= w −1+2δκ−1+2δκ3 −1+2δκ(δκwκw −w) 2 w Next,definefort∈[0,∆t], y¯1(t)=x¯(κtw+ t4) andfort∈[0,δ−∆t],define y¯2(t) =x¯(t+t4+∆t) Thus,wehave y¯1(t−δ)=κwt+cy¯2(t−δ)=cI (33) Thus,fort∈[0,∆t],wehave y¯˙1(t)=κ(w−(κwt+c)p(κwt+c)) =−κ2Similarly,fort∈[0,δ−wt∆ t],wehave y¯˙(34)2(t)=κ(w−cIp(cI)) =−κ(cI−c) (35) Also,bydefinition,wehave y¯1(0)=cIy¯2(0)=y¯1(∆t) (36) Thus,integrating,wehave y¯t2 1(t)=−κ2 w 2w (cI−c)2+cI (37) Inaddition,defining¯ttobethefirsttimesuchthaty¯2(¯t)=c,¯t =12w )(38) Thus,thepeakqueuelengthatthebottlenecknodewhencI 2 (2δ−∆t)(cI−c)+M, (39) whereM=∆t0y¯1(t)dt+Finally,weneedtoperformt¯ 0y¯2(t)dtisindependentofδ.asimilarcomputationwhenRB [1]F.P.Kelly,“Modelsforaself-managedInternet,”Philosophical TransactionsoftheRoyalSociety,vol.A358,pp.2335–2348,2000.[2]S.KunniyurandR.Srikant,“End-to-endcongestioncontrol:utility functions,randomlossesandECNmarks,”inProceedingsofIEEEInfocom,TelAviv,Israel,March2000,vol.3,pp.1323–1332. [3]F.Paganini,J.Doyle,andS.Low,“Scalablelawsforstablenetwork congestioncontrol,”inProceedingsoftheIEEEConferenceonDecisionandControl,December2001,vol.1,pp.185–190. [4]G.HollandandN.H.Vaidya,“AnalysisofTCPperformanceover mobileadhocnetworks,”inProceedingsofIEEE/ACMMobicom,August1999,pp.219–230. [5]P.Bender,P.Black,M.Grob,R.Padovani,NSindhushayana,and A.Viterbi,“CDMA/HDR:Abandwidthefficienthighspeedwirelessdataservicefornomadicusers,”IEEECommunicationsMagazine,pp.70–77,July2000.[6]“IEEE802.11bstandards,”Availablefordownloadat http://grouper.ieee.org/groups/802/11/main.html. [7]H.T.KungandA.Chapman,“TheFCVC(flowcontrolledvirtual channel)proposalforatmnetworks,”inProceedingsofICNP,October1993. 12 [8]P.P.MishraandH.Kanakia,“Ahopbyhopratebasedcongestion controlscheme,”inProceedingsofACMSigcomm,August1992.[9]H.T.Kung,T.Blackwell,andA.Chapman,“Credit-basedflowcontrol foratmnetworks:Creditupdateprotocol,adaptivecreditallocationandstatisticalmultiplexing,”inProceedingofACMSigcomm,1994,pp.101–114. [10]L.Tassiulas,“Adaptiveback-pressurecongestioncontrolbasedonlocal information,”IEEETransactionsonAutomaticControl,vol.40,no.2,pp.236–250,February1995. [11]S.SarkarandL.Tassiulas,“Backpressurebasedmulticastscheduling forfairbandwidthallocation,”inProceedingsofIEEEInfocom,2001,pp.1123–1132. [12]F.P.Kelly,A.Maulloo,andD.Tan,“Ratecontrolincommunication networks:shadowprices,proportionalfairnessandstability,”JournaloftheOperationalResearchSociety,vol.49,pp.237–252,1998. [13]G.Vinnicombe,“Onthestabilityofend-to-endcongestioncontrolfor theInternet,”2001,UniversityofCambridgeTechnicalReport. [14]L.Massoulie,“Stabilityofdistributedcongestioncontrolwithhet-erogenousfeedbackdelays,”TechnicalReport,MicrosoftResearch,Cambridge,UK,2000. [15]S.Shakkottai,R.Srikant,andS.Meyn,“Boundsonthethroughputof congestioncontrollersinthepresenceoffeedbackdelay,”IEEE/ACMTransactionsonNetworking,vol.11,no.6,pp.972–981,December2003. [16]R.JohariandD.Tan,“End-to-endcongestioncontrolfortheInternet: Delaysandstability,”IEEE/ACMTransactionsonNetworking,vol.9,no.6,pp.818–832,December2001. [17]C.M.Ozveren,R.J.Simcoe,andG.Varghese,“Reliableandefficient hop-by-hopflowcontrol,”IEEEJournalonSelectedAreasinCommu-nications,vol.13,no.4,pp.2–650,1995. [18]L.TassiulasandS.Sarkar,“Maxminfairschedulinginwireless networks,”inProceedingsofIEEEInfocom,NewYork,NY,June2002,pp.763–772. [19]T.S.Rappaport,WirelessCommunications:PrinciplesandPractice, PrenticeHall,UpperSaddleRiver,NJ,2002. [20]B.HajekandG.Sasaki,“Linkschedulinginpolynomialtime,”IEEE TransactionsonInformationTheory,vol.34,no.5,1988. [21]J.MoandJ.Walrand,“Fairend-to-endwindow-basedcongestion control,”IEEE/ACMTransactionsonNetworking,vol.8,no.5,pp.556–567,2000. [22]S.KunniyurandR.Srikant,“Atime-scaledecompositionapproachto adaptiveECNmarking,”IEEETransactionsonAutomaticControl,vol.47,no.6,pp.882–4,June2002. [23]S.KunniyurandR.Srikant,“Analysisanddesignofanadaptivevirtual queuealgorithmforactivequeuemanagement,”inProceedingsofACMSigcomm,SanDiego,CA,August2001,pp.123–134. [24]Y.YiandS.Shakkottai,“Hop-by-hopcongestioncontrolovera wirelessmulti-hopnetwork,”TechnicalReport,WirelessNetworkingandCommunicationsGroup,DepartmentofElectricalandComputerEngineering,TheUniversityofTexasatAustin,2003. [25]S.ShakkottaiandR.Srikant,“Howgoodaredeterministicfluidmodels ofInternetcongestioncontrol?,”inProceedingsofIEEEInfocom,NewYork,NY,June2002,vol.2,pp.497–505. [26]S.FloydandV.Jacobson,“Randomearlydetectiongatewaysfor congestionavoidance,”IEEE/ACMTransactionsonNetworking,vol.1,no.4,pp.397–413,August1993. [27]UCB/LBNL/ISI,NetworkSimulator-ns(version2).Availableat http://www.isi.edu/nsnam/ns 因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- efsc.cn 版权所有 赣ICP备2024042792号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务