您好,欢迎来到筏尚旅游网。
搜索
您的当前位置:首页等腰三角形时常用的辅助线作法

等腰三角形时常用的辅助线作法

来源:筏尚旅游网
有等腰三角形时常用的辅助线

⑴作顶角的平分线,底边中线,底边高线例:已知,如图,AB = AC,BD⊥AC于D,

求证:∠BAC = 2∠DBC

⑵有底边中点时,常作底边中线

例:已知,如图,△ABC中,AB = AC,D为BC中点,DE⊥AB于E,DF⊥AC于F,

求证:DE = DF

⑶将腰延长一倍,构造直角三角形解题

例:已知,如图,△ABC中,AB = AC,在BA延长线和AC上各

取一点E、F,使AE = AF,求证:EF⊥BC

⑷常过一腰上的某一已知点做另一腰的平行线

例:已知,如图,在△ABC中,AB = AC,D在AB上,E在AC延长线上,且BD = CE,连结

DE交BC于F求证:DF = EF

1

⑸常过一腰上的某一已知点做底的平行线例:已知,如图,△ABC中,AB =AC,F在AC上,E在BA延长线上,且AE = AF,连结DE求证:EF⊥BC⑹常将等腰三角形转化成特殊的等腰三角形------等边三角形例:已知,如图,△ABC中,AB = AC,∠BAC = 80o ,P为形内一点,若∠PBC = 10o , ∠PCB = 30o 求∠PAB的度数.有等腰三角形时常用的辅助线⑴作顶角的平分线,底边中线,底边高线例:已知,如图,AB = AC,BD⊥AC于D,求证:∠BAC = 2∠DBC证明:(方法一)作∠BAC的平分线AE,交BC于E,则∠1 = ∠2 = 又∵AB = AC∴AE⊥BC∴∠2+∠ACB = 90o∵BD⊥AC∴∠DBC+∠ACB = 90o∴∠2 = ∠DBC∴∠BAC = 2∠DBC(方法二)过A作AE⊥BC于E(过程略)21∠BAC2A12DBEC(方法三)取BC中点E,连结AE(过程略)⑵有底边中点时,常作底边中线例:已知,如图,△ABC中,AB = AC,D为BC中点,DE⊥AB于E,DF⊥AC于F,求证:DE = DF证明:连结AD.∵D为BC中点,A∴BD = CD又∵AB =AC∴AD平分∠BACEF∵DE⊥AB,DF⊥ACBC∴DE = DFD⑶将腰延长一倍,构造直角三角形解题例:已知,如图,△ABC中,AB = AC,在BA延长线和AC上各取一点E、F,使AE = AF,求证:EF⊥BC证明:延长BE到N,使AN = AB,连结CN,则AB = AN = AC∴∠B = ∠ACB, ∠ACN = ∠ANC∵∠B+∠ACB+∠ACN+∠ANC = 180o∴2∠BCA+2∠ACN = 180o∴∠BCA+∠ACN = 90oN即∠BCN = 90o∴NC⊥BCE∵AE = AFA∴∠AEF = ∠AFE又∵∠BAC = ∠AEF +∠AFEF∠BAC = ∠ACN +∠ANCBC∴∠BAC =2∠AEF = 2∠ANC∴∠AEF = ∠ANC∴EF∥NC∴EF⊥BC⑷常过一腰上的某一已知点做另一腰的平行线例:已知,如图,在△ABC中,AB = AC,D在AB上,E在AC延长线上,且BD = CE,连结DE交BC于F求证:DF = EF证明:(证法一)过D作DN∥AE,交BC于N,则∠DNB = ∠ACB,∠NDE = ∠E,∵AB = AC,∴∠B = ∠ACBA∴∠B =∠DNB∴BD = DN又∵BD = CE D∴DN = EC在△DNF和△ECF中1C2BFN∠1 = ∠2∠NDF =∠EE3DN = EC ∴△DNF≌△ECF∴DF = EFA(证法二)过E作EM∥AB交BC延长线于M,则∠EMB =∠B(过程略)⑸常过一腰上的某一已知点做底的平行线D例:已知,如图,△ABC中,AB =AC,E在AC上,D在BAC1M2B延长线上,且AD = AE,连结DEF求证:DE⊥BCE证明:(证法一)过点E作EF∥BC交AB于F,则∠AFE =∠B∠AEF =∠C∵AB = AC∴∠B =∠C∴∠AFE =∠AEFND∵AD = AEAM∴∠AED =∠ADE又∵∠AFE+∠AEF+∠AED+∠ADE = 180oEFo∴2∠AEF+2∠AED = 90 即∠FED = 90o BC∴DE⊥FE又∵EF∥BC∴DE⊥BC(证法二)过点D作DN∥BC交CA的延长线于N,(过程略)(证法三)过点A作AM∥BC交DE于M,(过程略)⑹常将等腰三角形转化成特殊的等腰三角形------等边三角形例:已知,如图,△ABC中,AB = AC,∠BAC = 80o ,P为形内一点,若∠PBC = 10o ∠PCB = 30o 求∠PAB的度数.解法一:以AB为一边作等边三角形,连结CE则∠BAE =∠ABE = 60oAE = AB = BE∵AB = AC∴AE = AC ∠ABC =∠ACB∴∠AEC =∠ACE∵∠EAC =∠BAC-∠BAE = 80o -60o = 20oo180o∴∠ACE = (180-∠EAC)= 1250o∵∠ACB= (180o-∠BAC)= ∴∠BCE =∠ACE-∠ACB2 = 80o-50o = 30oAo∵∠PCB = 30∴∠PCB = ∠BCE∵∠ABC =∠ACB = 50o, ∠ABE = 60o∴∠EBC =∠ABE-∠ABC = 60o-50o =10oPBC∵∠PBC = 10oE∴∠PBC = ∠EBC4在△PBC和△EBC中∠PBC = ∠EBCBC = BC∠PCB = ∠BCE∴△PBC≌△EBC∴BP = BE∵AB = BE∴AB = BP∴∠BAP =∠BPA∵∠ABP =∠ABC-∠PBC = 50o-10o = 40o1∴∠PAB = (180o-∠ABP)= 70o2解法二:以AC为一边作等边三角形,证法同一。解法三:以BC为一边作等边三角形△BCE,连结AE,则EB = EC = BC,∠BEC =∠EBC = 60o∵EB = EC∴E在BC的中垂线上同理A在BC的中垂线上∴EA所在的直线是BC的中垂线∴EA⊥BC1∠AEB = ∠BEC = 30o =∠PCB2由解法一知:∠ABC = 50o∴∠ABE = ∠EBC-∠ABC = 10o =∠PBC∵∠ABE =∠PBC,BE = BC,∠AEB =∠PCB∴△ABE≌△PBC∴AB = BP ∴∠BAP =∠BPA∵∠ABP =∠ABC-∠PBC = 50o-10o = 40o11∴∠PAB = (180o-∠ABP) = (180o-40o)= 70o22EABPC5

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- efsc.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务